Skip to main content
Erschienen in: Journal of Orthopaedic Surgery and Research 1/2020

Open Access 01.12.2020 | Systematic review

Prevalence and influencing factors of nonunion in patients with tibial fracture: systematic review and meta-analysis

verfasst von: Ruifeng Tian, Fang Zheng, Wei Zhao, Yuhui Zhang, Jinping Yuan, Bowen Zhang, Liangman Li

Erschienen in: Journal of Orthopaedic Surgery and Research | Ausgabe 1/2020

Abstract

Objective

The aim of this study is to assess the prevalence of nonunion in patients with tibia fracture and the association between influencing factors and tibia fracture nonunion.

Method

A database searches of PubMed, the Cochrane Library, EMBASE, China National Knowledge Infrastructure (CNKI), Weipu database, and Wanfang database from inception until June 2019 was conducted. The pooled prevalence, odds ratio (OR), and 95% confidence intervals (CI) were calculated with Stata software.

Results

In this study, 111 studies involving 41,429 subjects were included. In the study of the relationship between influencing factors and tibia fracture nonunion, 15 factors significantly influenced the fracture union, including > 60 years old, male, tobacco smoker, body mass index > 40, diabetes, nonsteroidal anti-inflammatory drugs (NSAIDs) user, opioids user, fracture of middle and distal tibia, high-energy fracture, open fracture, Gustilo-Anderson grade IIIB or IIIC, Müller AO Classification of Fractures C, open reduction, fixation model, and infection.

Conclusion

The prevalence of nonunion in patients with tibia fracture was 0.068 and 15 potential factors were associated with the prevalence. Closed reduction and minimally invasive percutaneous plate osteosynthesis (MIPPO) have the low risks of nonunion for the treatment of tibial fractures.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CNKI
China National Knowledge Infrastructure
OR
Odds ratio
CI
Confidence intervals
NSAIDs
Nonsteroidal anti-inflammatory drugs
AO
Müller AO Classification of Fractures
MIPPO
Minimally invasive percutaneous plate osteosynthesis
IMN
Intramedullary nailing
NRCTs
Non-randomized controlled trials

Introduction

Fracture is a common disease that has a great impact on patients’ lives. Take Canada as an example, fractures and dislocations of the lower limb make up 38% of all injury admissions [1]. It is estimated that the disability from traffic accidents (the major cause of fractures) will rank the top three of all causes of disability by 2020 [2].
Fracture nonunion is one of the most common complications of fracture. The rate of fracture nonunion varies greatly in different anatomical locations of the fracture [3], with an average incidence rate of 4.93% [4]. Fracture nonunion is a chronic condition in terms of pain, and functional and psychosocial disability [5]. Nonunion of some fractures can reduce the quality of life and even increase the risk of death [3]. The cost of treatment for fracture nonunion was much more than that of fracture union [6, 7]. Other economic burdens caused by prolonged disability and downtime of job are more difficult to quantify but must be considered [8].
Good blood supply is an important condition for fracture union [1, 9]. Compared to other long bones with abundant blood vessels and soft tissue, the tibia with a longer subcutaneous boundary normally has a poorer blood supply [10]. Therefore, tibial fracture has a higher risk of nonunion due to its special structure and blood supply. The definition of tibia fracture nonunion was no sign of union 9 months after surgical operation or no possibility of union if no further intervention was given assessed by surgeon [11].
Doctors need to know how to predict the risk of fracture nonunion and set up a plan to reduce the rate of fracture nonunion [8, 12]. In 2007, the “diamond concept” was introduced by Giannoudis et al., aiming to define what is required to achieve adequate fracture healing. This concept highlights the importance of three biological factors (osteogenic cells, osteoconductive scaffolds, growth factors) and a fourth factor known as mechanical stabilization. If one or more of these factors are altered, adequate fracture healing will be threatened [9, 13, 14].
Clinical and experimental studies have identified a number of potential factors that may help to predict fracture nonunion [1518]. These factors include uncontrollable factors (for example, gender, age, underlying diseases, the way of injury) and controllable factors (for example, treatment method) [19, 20]. The uncontrollable factors of tibial nonunion may be similar to those of other anatomic sites. But there are too many influencing factors and even the same influencing factor may lead to different consequences in different anatomical positions [21]. For controllable influencing factors, the treatment of tibial fracture is also controversial [22]. Some doctors believe that intramedullary nailing (IMN) is the gold standard for the treatment of tibial fractures [23, 24]; however, most doctors consider that different treatment options have different advantages [2528]. The use of non-steroidal anti-inflammatory drugs (NSAIDs) and the fixation of fibular fractures have also been considered as controversial factors for many years [29, 30].
Herein, we conducted a systematic review to explore the prevalence of nonunion in patients with tibia fracture and evaluate the association between influencing factors and tibia fracture nonunion. The study would provide valuable information for future prevention and treatment of tibia fracture nonunion.

Methods

Search strategy

The PubMed, Cochrane Library, EMBASE, CNKI (China National Knowledge Infrastructure), Wanfang database, and Weipu database were systematically searched, from inception to June 2019. The search keywords were “tibia” AND "fracture” AND “union OR nonunion OR disunion.” The manual search was performed through checking the reference lists of key studies and review articles to identify additional studies.

Study selection

An overall literature search was performed and relevant studies were screened independently by two reviewers (Ruifeng Tian, Fang Zheng). Initially, all the titles and abstracts which were identified based on the keywords were screened. Secondly, full texts of articles which were selected from the first phase were reviewed. Finally, the articles which had contents suitable for data extraction were included in the systematic review. Disagreements between the two reviewers were resolved by a third reviewer (Wei Zhao) via discussion and consensus.

Exclusion criteria

Exclusion criteria were as follows: neither English nor Chinese; animal model experiment; patients at the age of < 18; the cases of patients being lower than 10; insufficient information; duplicate publication; and obscure definition, such as delay union or mixed-descriptions of delay union and nonunion.

Data extraction

Relevant data were extracted independently by two reviewers (Ruifeng Tian and Yuhui Zhang). Each of the following information was entered into a pre-designed form: first author’s name, publication year, basic information of patients (including history of medication, unhealthy habits and basic diseases), fracture type, operative information, the number of all tibia fracture patients, and the number of tibia fracture nonunion patients. The information of 19 potentially influencing factors were also exacted for comparison analyses, including age, gender, tobacco smoke, drink, body mass index (BMI), diabetes, nonsteroidal anti-inflammatory drugs (NSAIDs) user, opioids user, osteofascial compartment syndrome, fracture site, injury energy (low or high energy that causes tibia fracture), open fracture, Gustilo-Anderson grade, Müller AO Classification of Fractures (AO), debride time (the time from injury to debride), open reduction, fibula fixation, infection, and fixation models. Disagreements between the two reviewers were resolved by a third reviewer (Jinping Yuan) via discussion and consensus.

Data analysis

Stata software (v12.0, Stata Corp, College Station, TX, USA) was used to assess all statistical analyses and a p < 0.05 was considered statistically significant. First, for exploring the prevalence of nonunion in patients with tibia fracture, the pooled prevalence and its 95% confidence intervals (CI) were calculated by using a random-effect model (p < 0.05, I2 > 50%), otherwise, or a fixed-effect model was selected (p > 0.05, I2 < 50%). When the prevalence rate in the included study was zero, double arcsine was used to deal with the data in case of data exclusion. Second, in the study of the association between potentially influencing factors and nonunion, the odds ratio (OR) and its 95% CI were calculated. To assess sources of heterogeneity, subgroup analyses were conducted, stratified by above 19 potentially influencing factors. Sensitivity analysis was performed by eliminating individual studies one by one. Publication biases were assessed by using the Begg’s test and Egger’s test.

Results

Characteristics of included studies

A total of 3846 studies (2195 English and 1651 Chinese) were searched. Following selection process (Fig. 1), 111 studies were included in this systematic review and meta-analysis [6, 15, 16, 19, 31136].
These studies were published between 1997 and 2019 from USA, China, Australia, Belarus, Canada, Egypt, France, India, Iran, Italy, Japan, Malaysia, Singapore, Turkey, and UK. There were 46 studies written in English and 65 studies in Chinese. The number of patients with tibia fracture ranged from 30 to 14638, and the prevalence of tibia fracture nonunion ranged from 0 to 42.7%. The basic information in all included studies were listed in Table 1.
Table 1
The basic information and prevalence of tibia fracture nonunion in each included study
Author
Year
Country
Age
Male
Female
Number of tibia fracture
Number of nonunion
Prevalence
2018
USA
40.4
225
102
284
19
0.067
2018
USA
35.2
29
11
40
4
0.100
2018
USA
43.5
20
12
32
6
0.188
Chang BS [34]
2018
China
23-57
38
26
60
7
0.117
Liu BQ [35]
2018
China
36.1
46
5
51
3
0.059
Zhang JS [36]
2018
China
49.4
60
34
94
5
0.053
Zhang QL [37]
2018
China
35
50
36
86
0
0.000
Yu JQ [38]
2018
China
42.4
65
39
94
5
0.053
Jin PF [39]
2018
China
57.6
90
107
197
26
0.132
Ge Y [40]
2018
China
39.3
50
42
92
2
0.022
Fang YS [41]
2018
China
45.2
49
13
62
1
0.016
Li J [42]
2018
China
35.5
46
39
70
2
0.029
Xu DY [43]
2018
China
40.9
38
26
64
3
0.047
Li ZT [44]
2018
China
52.4
48
42
90
1
0.011
2018
UK
 
739
264
1003
121
0.121
2018
Singapore
38.2
101
2
103
44
0.427
2018
Egypt
37.2
52
8
60
2
0.033
Javdan M[48]
2017
USA
 
231
12
0.052
2017
USA
42
184
131
315
17
0.054
2017
USA
18-63
6273
6535
12808
944
0.074
2017
USA
36
364
102
486
56
0.115
2017
USA
44
82
32
114
24
0.211
Xiong SR [52]
2017
China
42.5
82
66
148
8
0.054
2017
Iran
35.9
45
4
49
3
0.061
2017
Turkey
40.6
52
21
73
1
0.014
2017
India
37.14
32
10
42
3
0.071
2017
India
38.9
5
31
36
4
0.111
Mukherjee S [56]
2017
India
40.3
26
14
40
3
0.075
2016
USA
42.2
156
28
184
16
0.087
2016
USA
 
8132
6506
14,638
1758
0.120
2016
USA
40.6
162
54
216
29
0.134
2016
USA
39.3
93
289
382
56
0.147
2016
USA
 
64
5
0.078
2016
China
45
54
71
125
0
0.000
2016
China
36.8
40
16
56
2
0.036
Hao LS [62]
2016
China
19-67
67
15
82
2
0.024
Hu H [63]
2016
China
36.7
30
22
52
1
0.019
Liu JQ [64]
2016
China
43.2
44
16
60
1
0.017
Rao HR [65]
2016
China
35.7
35
15
50
2
0.040
Bai T [66]
2016
China
36.8
43
17
60
4
0.067
Zhao KP [67]
2016
China
35.6
41
17
58
1
0.017
2016
Japan
41.9
77
8
85
3
0.035
2016
India
42.7
22
8
30
1
0.033
2015
USA
49.5
24
17
45
12
0.267
Sun KF [71]
2015
China
43.1
32
20
115
7
0.061
Sun JQ [72]
2015
China
48
35
21
56
7
0.125
Ma N [73]
2015
China
45.4
334
246
580
82
0.141
Huang H [74]
2015
China
17-65
52
44
96
5
0.052
Huang PZ [75]
2015
China
32
43
13
56
1
0.018
Zhang YH [76]
2015
China
36.5
49
21
70
2
0.029
Luo BX [77]
2015
China
38.5
47
31
78
1
0.013
Wang B [78]
2015
China
41.2
39
33
72
2
0.028
Cui LH [79]
2015
China
37.5
53
21
74
2
0.027
Meng YH [80]
2015
China
31.6
19
35
54
1
0.019
Gong Y [81]
2015
China
16-39
38
32
70
11
0.157
Lian HK [82]
2015
China
35.1
51
43
94
4
0.043
2015
India
37.5
32
12
44
2
0.045
2014
USA
37.5
63
30
93
17
0.183
2014
China.
43.3
116
5
121
2
0.017
Dai QH [86]
2014
China
34.5
23
19
42
0
0.000
Wu ZH [87]
2014
China
48.5
32
18
50
1
0.020
Li ZZ [88]
2014
China
43.8
76
44
60
5
0.083
Ren Y [89]
2014
China
34.7
49
21
70
4
0.057
Luan HX [90]
2014
China
37.1
78
20
98
6
0.061
Zhang WJ [91]
2014
China
44
43
25
68
3
0.044
Heng WX [92]
2014
China
18-79
45
23
68
4
0.059
2014
Turkey
42
32
23
55
3
0.055
2014
USA
45
92
71
163
13
0.080
Berlusconi M [95]
2014
Italy
45
42
18
60
5
0.083
2013
USA
52.5
378
475
853
99
0.116
Huang Q [96]
2013
China
36.9
80
40
120
3
0.025
Gong M [97]
2013
China
40.3
41
11
52
2
0.038
Lv YM [98]
2013
China
39.1
77
34
111
6
0.054
Xu YD [99]
2013
China
39
105
58
163
2
0.012
2013
UK
77.9
63
170
233
23
0.099
2013
Belarus
43
54
26
80
7
0.088
2013
Malaysia
24.5
52
6
58
10
0.172
2012
USA
 
32
1
0.031
Lin ZF [104]
2012
China
36.6
222
194
416
33
0.079
Zhang H [105]
2012
China
39.6
58
38
96
1
0.010
Jia QT [106]
2012
China
36
61
27
88
4
0.045
Zhou JL [107]
2012
China
53
43
9
52
10
0.192
2012
Iran
26.4
45
8
54
3
0.056
2011
USA
38.3
85
19
114
6
0.053
Zhu DK [110]
2011
China
18-76
53
31
84
3
0.036
Zhao DL [111]
2011
China
37.8
54
26
80
1
0.013
Liu F [112]
2011
China
32.6
32
14
46
4
0.087
2011
Australia
42.4
66
23
89
26
0.292
Xu JQ [114]
2009
China
36.3
121
49
170
8
0.047
Li ZG [115]
2009
China
35.8
71
56
127
3
0.024
Mahmudi N [116]
2009
China
37
34
10
44
3
0.068
Deng HP [117]
2009
China
40.3
51
34
85
4
0.047
Dong JH [118]
2009
China
18-74
77
51
128
2
0.016
Fu KL [119]
2009
China
 
112
11
0.098
Zhou L [120]
2009
China
37.9
52
41
93
5
0.054
Lang ZY [121]
2009
China
33.6
51
16
67
2
0.030
Wu C [122]
2009
China
19-71
25
12
37
2
0.054
Li QM [123]
2009
China
37.6
168
51
219
6
0.027
2008
Japan
34.6
70
14
84
17
0.202
2008
UK
 
54
3
0.056
Lu HY [126]
2007
China
34.5
158
98
256
9
0.035
Hu GZ [127]
2007
China
33.4
301
116
396
11
0.028
Zeng CJ [128]
2006
China
30.7
390
264
541
14
0.026
Zhang YL [129]
2006
China
35
73
25
98
9
0.092
Zhao XZ [130]
2006
China
43.8
52
26
78
5
0.064
Zhu GH [131]
2005
China
34
55
23
78
5
0.064
2005
Australia
34
124
39
163
13
0.080
2004
USA
 
89
2
0.022
2003
France
40.8
34
15
49
8
0.163
2002
Canada
 
110
13
0.118
1997
USA
 
112
9
0.080

Pooled results, sensitive analysis, publication bias of the prevalence of tibia fracture nonunion

Based on the results of random-effects method (p < 0.05, I2 > 50%), the prevalence of nonunion from tibia fracture patient was 0.068 (95% CI 0.060–0.077) (Fig. 2, Table 2). The sensitive analysis demonstrated that there was no individual studies significantly affected the pooled results. The publication bias were found in pooled results (t = 3.19, p = 0.002) (Fig. 3).
Table 2
The pooled results and subgroup analysis of prevalence of nonunion from tibia fracture patient
 
Number of study
N
n
Prevalence rate
Heterogeneity
Model
effect size
lower limit
upper limit
I2
p
Total
 
111
41429
3817
0.068
0.060
0.077
86.60%
< 0.01
Random
1. Age (year)
< 60
3
545
60
0.125
0.060
0.189
77.50%
0.012
Random
> 60
3
316
65
0.204
0.160
0.249
0.00%
0.689
Fixed
2. Gender
Male
11
8186
790
0.131
0.104
0.159
77.80%
< 0.01
Random
Female
11
8123
618
0.118
0.085
0.150
84.50%
< 0.01
Random
3. Tobacco smoker
Yes
8
2263
299
0.173
0.119
0.226
91.80%
< 0.01
Random
No
8
12177
888
0.111
0.072
0.150
87.30%
< 0.01
Random
4. Drink
Yes
2
348
42
0.136
0.036
0.235
82.50%
0.017
Random
No
2
12842
958
0.098
0.043
0.152
86.90%
0.006
Random
5. Body mass index
< 30
2
24466
2257
0.091
0.049
0.133
99.30%
< 0.01
Random
> 30
2
3790
451
0.119
0.109
0.129
0.00%
0.557
Fixed
30–40
2
2507
236
0.094
0.083
0.105
0.00%
0.441
Fixed
< 40
2
26973
2493
0.091
0.053
0.128
99.20%
< 0.01
Random
> 40
2
1283
215
0.160
0.020
0.218
87.80%
0.004
Random
6. Diabetes
Yes
4
347
73
0.221
0.178
0.267
8.50%
0.335
Fixed
No
4
984
103
0.102
0.065
0.139
67.50%
0.046
Random
Yes
3
371
58
0.153
0.116
0.189
0.00%
0.420
Fixed
No
3
1197
144
0.117
0.099
0.135
59.90%
0.083
Random
8. Opioids user
Yes
3
1035
145
0.140
0.118
0.161
0.00%
0.694
Fixed
No
3
522
58
0.097
0.031
0.164
78.40%
0.010
Random
9. Fracture site
Proximal
7
586
30
0.043
0.027
0.06
26.50%
0.254
Fixed
Middle
7
724
115
0.146
0.080
0.211
84.60%
< 0.01
Random
Distal
7
614
88
0.139
0.104
0.178
24.10%
0.253
Fixed
10. Injury energy
High
4
710
105
0.149
0.083
0.241
83.60%
< 0.01
Random
Low
4
298
22
0.065
0.007
0.175
87.30%
< 0.01
Random
11.Open fracture
Yes
10
14037
916
0.062
0.049
0.074
56.20%
0.015
Random
On
10
1985
390
0.197
0.145
0.294
84.80%
< 0.01
Random
12. Gustilo-Anderson gradea
I or II
9
680
57
0.070
0.051
0.089
31.30%
0.168
Fixed
IIIA
9
394
55
0.130
0.097
0.163
0.00%
0.686
Fixed
IIIB or IIIC
9
220
89
0.382
0.198
0.566
88.90%
< 0.01
random
13.Müller AO Classification of Fractures (AO) classificationb
A
7
1039
69
0.059
0.027
0.090
68.90%
0.004
Random
B
7
600
103
0.140
0.086
0.204
65.90%
0.007
Random
C
7
285
54
0.158
0.078
0.260
74.50%
0.001
Random
14. Debride time
< 6 h
2
138
41
0.302
0.074
0.530
89.10%
0.002
Random
> 6 h
2
49
20
0.405
0.268
0.541
0.00%
0.411
Fixed
15. Open reduction
Yes
9
573
48
0.075
0.043
0.107
52.40%
0.032
Random
No
9
606
26
0.043
0.028
0.060
42.10%
0.086
Fixed
16. Fixation modec
ORIF
41
6216
703
0.081
0.058
0.107
82.10%
< 0.01
Random
IMN
51
12642
1326
0.054
0.040
0.070
77.30%
< 0.01
Random
MIPPO
25
988
18
0.023
0.015
0.032
0.00%
0.835
Fixed
External fixation
 
680
33
0.055
0.023
0.098
76.90%
< 0.01
Random
Conservative treatment
4
116
22
0.134
0.003
0.409
92.10%
< 0.01
Random
17. Fibula fixed
Yes
7
166
11
0.073
0.027
0.140
53.20%
0.046
Random
No
7
538
69
0.122
0.094
0.149
< 0.01
0.611
Fixed
18. Osteofascial compartment syndrome
Yes
3
210
31
0.134
0.088
0.179
61.90%
0.072
Fixed
No
3
1359
162
0.105
0.058
0.151
85.40%
0.001
Random
19. Infection
Yes
2
217
84
0.510
0.155
0.866
93.80%
< 0.01
Random
No
2
1366
119
0.076
0.022
0.129
92.80%
< 0.01
Random
aGustilo-Anderson classification: grade I: clean wound < 1 cm in length; grade II: wound 1–10 cm in length without extensive soft-tissue damage, flaps or avulsions; grade III: extensive soft-tissue laceration (>10 cm) or tissue loss/damage or an open segmental fracture; grade IIIa: adequate periosteal coverage of the fracture bone despite the extensive soft-tissue laceration or damage; grade IIIb: extensive soft-tissue loss, periosteal stripping and bone damage, usually associated with massive contamination; grade IIIc: associated with an arterial injury requiring repair, irrespective of degree of soft-tissue injury
bAO classification of tibia fractures with designations of A: simple, B: wedge, C: complex
cORIF open reduction and internal fixation, IMN intramedullary nailing, MIPPO minimally invasive plate osteosynthesis

Subgroup analysis of prevalence of tibia fracture nonunion and comparison results

The prevalence of tibia fracture nonunion in different countries were of various (Tables 2, 3, and 4), for example, USA was 0.094 (95% CI 0.075–0.114), China was 0.047 (95% CI 0.039–0.057), etc.
Table 3
The comparison results stratified by 19 influencing factors
 
Study
Comparison results
Heterogeneity
Model
p
OR
lower limit
upper limit
I2
p
1. Age (year)
> 60 vs. < 60
3
< 0.05
2.602
1.686
4.016
48.70%
0.142
Fixed
2. Gender
Male vs. Female
11
< 0.05
1.256
1.122
1.407
14.00%
0.311
Fixed
3. Tobacco smoker
Yes vs. No
8
< 0.05
1.692
1.458
1.964
49.30%
0.055
Fixed
4. Drink
Yes vs. No
2
0.083
1.367
0.960
1.947
0.00%
0.518
Fixed
5. Body mass index (BMI)
30 < BMI < 40 vs. BMI < 30
2
0.801
1.085
0.575
2.050
93.70%
< 0.05
Random
BMI > 40 vs. BMI < 30
2
< 0.05
1.874
1.607
2.185
0.00%
0.660
Fixed
BMI > 30 vs. BMI < 30
2
0.189
1.351
0.862
2.119
93.00%
< 0.05
Random
BMI > 40 vs. 30 < BMI < 40
2
0.045
1.773
1.014
3.102
84.30%
0.012
Random
BMI > 40 vs. BMI < 40
2
< 0.05
1.899
1.630
2.212
0.00%
0.892
Fixed
6. Diabetes
Yes vs. No
3
< 0.05
2.731
1.857
4.014
32.20%
0.229
Fixed
7. Nonsteroidal anti-inflammatory drugs user
Yes vs. No
3
0.018
1.536
1.076
2.194
0.00%
0.384
Fixed
8. Opioids user
Yes vs. No
3
0.012
2.010
1.166
3.468
0.00%
0.370
Fixed
9. Fracture site
Middle vs. Proximal
7
< 0.05
3.152
2.019
4.922
0.00%
0.788
Fixed
Distal vs. Proximal
7
< 0.05
2.877
1.822
4.543
0.00%
0.911
Fixed
Distal vs. Middle
7
0.670
0.932
0.673
1.290
0.00%
0.650
Fixed
10. Injury energy
High vs. Low
4
0.001
2.602
1.484
4.562
35.90%
0.182
Fixed
11. Open fracture
Yes vs. No
9
< 0.05
2.846
1.700
4.202
16.50%
0.296
Fixed
12. Gustilo-Anderson gradea
IIIA vs. I or II
9
0.005
1.831
1.204
2.784
0.00%
0.847
Fixed
IIIB or IIIC vs. I or II
9
< 0.05
7.202
4.781
10.848
4.60%
0.394
Fixed
IIIB or IIIC vs. IIIA
9
< 0.05
3.695
2.422
5.639
32.60%
0.168
Fixed
13. Müller AO Classification of Fractures (AO) classificationb
B vs. A
7
0.010
2.522
1.249
5.930
54.20%
0.041
Random
C vs. A
7
< 0.05
3.685
2.405
5.648
37.00%
0.160
Fixed
C vs. B
7
< 0.05
3.569
2.428
5.325
39.60%
0.142
Fixed
14. Debride time
< 6 h vs. > 6 h
2
0.631
1.190
0.585
2.419
0.00%
0.520
Fixed
15. Open reduction
Yes vs. No
9
< 0.05
2.887
1.715
4.861
26.20%
0.220
Fixed
16. Fixation modec
IMN vs. MIPPO
15
0.003
2.681
1.397
5.146
0.00%
0.980
Fixed
IMN vs. ORIF
28
0.020
1.127
1.019
1.247
54.10%
<0.05
Random
ORIF vs. MIPPO
7
0.010
3.495
1.351
9.045
0.00%
0.859
Fixed
External vs. ORIF
10
0.115
0.506
0.217
1.182
54.00%
0.016
Random
Conservative vs. ORIF
4
0.264
1.496
0.737
3.035
64.10%
0.062
Fixed
External vs. IMN
10
0.993
1.006
0.266
3.806
55.40%
0.022
Random
17. Fibula fixed
Yes vs. No
7
0.435
1.317
0.659
2.634
47.60%
0.075
Random
18. Osteofascial compartment syndrome
Yes vs. No
3
0.106
1.420
0.968
2.173
80.30%
0.006
Fixed
19. Infection
Yes vs. No
2
< 0.05
11.877
7.461
18.906
52.10%
0.149
Fixed
aGustilo-Anderson classification: grade I: clean wound < 1 cm in length; grade II: wound 1–10 cm in length without extensive soft-tissue damage, flaps or avulsions; grade III: extensive soft-tissue laceration (> 10 cm) or tissue loss/damage or an open segmental fracture; grade IIIa: adequate periosteal coverage of the fracture bone despite the extensive soft-tissue laceration or damage; grade IIIb: extensive soft-tissue loss, periosteal stripping and bone damage, usually associated with massive contamination; grade IIIc: associated with an arterial injury requiring repair, irrespective of degree of soft-tissue injury
bAO classification of tibia fractures with designations of A: simple, B: wedge, C: complex
cORIF open reduction and internal fixation, IMN intramedullary nailing, MIPPO minimally invasive plate osteosynthesis
Table 4
Prevalence of nonunion from tibia fracture in different countries
 
Number of study
N
n
Prevalence rate
Heterogeneity
Model
Effect size
Lower limit
Upper limit
I2
p
USA
19
30167
3083
0.094
0.075
0.114
93.40%
< 0.01
Random
China
68
7550
396
0.047
0.039
0.057
69.50%
< 0.01
Random
Australia
2
252
39
0.182
0.026
0.389
93.90%
< 0.01
Random
Belarus
1
80
7
0.088
Canada
1
110
13
0.118
Charlotte
1
163
13
0.08
Egypt
1
60
2
0.033
France
1
49
8
0.162
India
5
150
10
0.059
0.026
0.092
0
0.73
Fixed
Iran
3
152
9
0.059
0.022
0.097
0
0.99
Fixed
Italy
1
60
5
0.083
Japan
2
169
20
0.114
0.049
0.278
91.70%
0.001
Random
Malaysia
1
58
10
0.172
Singapore
1
103
44
0.427
Turkey
1
73
1
0.014
UK
4
1042
156
0.108
0.092
0.124
47.60%
0.126
Fixed
In the following comparisons of influencing factors (Table 3), each of the former prevalence of tibia fracture nonunion was significantly higher than the latter one (p < 0.05), i.e., > 60 years old (0.204) vs. < 60 years old (0.125), male (0.131) vs. female (0.118), tobacco smoker (0.173) vs. non-smoking (0.111), BMI > 40 (0.160) vs. BMI < 40 (0.091), diabetes (0.221) vs. no diabetes (0.102), NSAIDs user (0.153) vs. none NSAIDs user (0.117), opioids user (0.140) vs. none opioids user (0.097), fracture of middle segment (0.146) vs. proximal segment (0.043), fracture of distal segment (0.139) vs. proximal segment (0.043), high-energy injury (0.149) vs. low-energy injury (0.065), open fracture (0.197) vs. close fracture (0.062), Gustilo-Anderson grade I or II (0.070) vs. IIIA (0.130) vs. IIIB and IIIC (0.382), AO Classification A (0.059) vs. B (0.140) vs. C (0.158), open reduction (0.075) vs. close reduction (0.043), infection (0.510) vs. without infection (0.076). No significant difference was found between other comparisons (p > 0.05).
There were 5 fixation models of tibial fractures available, including open reduction and internal fixation (ORIF), intramedullary nailing (IMN), minimally invasive percutaneous plate osteosynthesis (MIPPO), external fixation, and conservative treatment. Significant difference was found between each other comparison of the following 3 fixation models, ORIF (0.081) vs. IMN (0.054) vs. MIPPO (0.023) (p < 0.05) (Fig. 4). No significant difference was found between external and ORIF, conservative and ORIF, or external and IMN (p > 0.05).

Discussion

To our knowledge, this is the first systematic review and meta-analysis to estimate the prevalence of nonunion in patients with tibia fracture and the relationship between different influence factors and tibia fracture nonunion. The pooled prevalence of tibial fracture nonunion was 0.068. Different countries were in variety of prevalence, indicating a heredity disparity. The lowest prevalence was seen in Turkey (0.014) and next was Egypt (0.033); however, the numbers of included studies were so small that the conclusions were not so robust. There were 68 studies that were conducted in China involving 7550 tibia fracture patients and the prevalence of nonunion was 0.047. However, one study in Singapore, a country that has lots of Chinese population, presented a very high prevalence of tibia fracture nonunion 0.427, indicating other influencing factors other than heredity. In calendar year 2011, an inception cohort study in a large payer database of patients with fracture in the USA was conducted using patient-level health claims for medical and drug expenses compiled for approximately 12,808 patients, and the prevalence of tibial fracture nonunion was reported to be 0.074 [137]. In contrast, the present systematic review involved 30,167 patients in a total of 19 studies conducted in the USA and the prevalence was 0.094. The pooled results enabled a larger sample size and accessed more to the real conclusion.
Some influencing factors contributed to the nonunion of tibial fractures. In 2016, O'Halloran K et al. created a Nonunion Risk Determination Score (NURDS) to predict nonunion risk, based on 7 influencing factors (p < 0.05, OR > 2), including flaps, compartment syndrome, chronic condition(s), open fractures, male gender, grade of American Society of Anesthesiologists Physical Status, and percent cortical contact. While another 2 factors including spiral fractures and low-energy injuries can be predictive of union [19]. In our study, we found more influencing factors, including age > 60 years old, diabetes, opioids user, middle and distal fracture, high-energy injury, open fracture, Gustilo-Anderson grade IIIB and IIIC, and AO Classification C met above criteria (p < 0.05, OR > 2) and can be regarded as predictive indicators. Still, there were some other influencing factors, including male, tobacco smoker, BMI > 40, and NSAIDs user, partially predicated the risks (p < 0.05, OR < 2).
The present study showed that BMI > 40 and diabetes were the influencing factors of nonunion of tibia fractures. With the improvement of quality of life, the negative impact of obesity has gradually become a hot issue of concern. Obesity can lead to vitamin D deficiency, and whether there is a causal relationship between fracture nonunion and vitamin D deficiency is the focus of discussion [138, 139]. But we cannot ignore the fact that diabetes mellitus is closely related to obesity. In our study, the use of NSAIDs was also associated with fracture nonunion. Some experiments have proved that NSAIDs can temporarily inhibit the process of fracture union [140, 141]; however, other studies considered that the pain caused by fracture nonunion of patients led to their resorting to NSAIDs [142].
Our comparison showed that open reduction had a higher rate of fracture nonunion than closed reduction. In surgery, although open reduction can bring good fracture repair, but closed reduction can better protect blood supply and soft tissue. In addition, our study did not find a relationship between fibular fixation and nonunion rates of tibial fractures. However, Strauss EJ and Kumar A’ experiments on cadavers showed that fibular fixation can increase the stability of tibial fractures after surgery [143145]. So whether it is necessary to fix the fibula for the treatment of tibial fracture accompanied by fibular fracture should be further determined.
The choice of fixation mode is a way to control the nonunion rate of tibial fracture artificially [146, 147]. We compared 5 fixation modes available. The nonunion rate of conservative treatment was the highest one compared with that of surgical treatment. This is obviously different from the lowest rate reported by Li H et al. [148]. This may be related to the insufficient number of articles in conservative treatment. Compared with traditional ORIF, IMN and MIPPO have lower fracture nonunion rate. No significant difference was found between external fixation and ORIF. Ebraheim NA et al. reported that IMN can achieve better healing effect in the treatment of tibial fractures, comparing to ORIF and external fixation [149]. MIPPO had the lowest nonunion rate of all fixation modes. It was proved that MIPPO can maximize the protection of soft tissue and bone marrow around the fracture site [150]. The above 5 fixation modes destroy the necessary conditions of fracture healing to varying degrees. However, it is worth mentioning that different options have different advantages in the treatment of tibial fractures [151, 152]. For example, in distal tibial fractures, more comminuted fractures would rather require open reduction than “simple” type A fractures. So it is unreasonable to only consider the nonunion rate of fracture of operation [148].
The systematic review and meta-analysis had made strict inclusion and exclusion criteria, but still had some limitations and bias which may be unavoidable. Firstly, due to different attentions of individual studies, the influencing factors were only extracted from partial studies with available data and some other influencing factors such as hemoglobin and bone defect were not mentioned. Secondly, different doctors and different hospitals had a variety of surgical technologies and conditions, which may cause unavoidable bias. Thirdly, the number of included studies and the data for meta-analysis were limited which may affect the final results to a certain degree. Fourthly, publication bias was found in the study. Therefore, the data from literature in other languages, more areas, and ongoing studies are required to reflect a more accurate and wide variation. Finally, non-randomized controlled trials (nRCTs) were involved in this systematic review. As a result, subjective factors may affect the result. More rigorous designs and large RCTs are required to make further verification.
In conclusion, the prevalence of nonunion in patients with tibia fracture was 0.068 and 15 potential factors were associated with the prevalence. Closed reduction and MIPPO have low risks of nonunion for the treatment of tibial fractures. A series of factors shed the light which may affect the union rate of tibial fracture for doctors’ reference, and provide the probability of nonunion of tibial fracture under different treatment schemes. The authors hope to help doctors assess the risk of nonunion and propose the most suitable treatment for patients with tibial fractures under different conditions.

Acknowledgements

Not applicable.
This study has obtained ethics approval and consent of the ethics committee in our hospital.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Bell A, Templeman D, Weinlein JC. Nonunion of the Femur andTibia: An Update. Orthop Clin North Am. 2016;47(2):365–75..PubMed Bell A, Templeman D, Weinlein JC. Nonunion of the Femur andTibia: An Update. Orthop Clin North Am. 2016;47(2):365–75..PubMed
2.
Zurück zum Zitat Lu C, Miclau T, Hu D, et al. Ischemia leads to delayed union duringfracture healing: a mouse model. J Orthop Res. 2007;25(1):51–61..PubMedPubMedCentral Lu C, Miclau T, Hu D, et al. Ischemia leads to delayed union duringfracture healing: a mouse model. J Orthop Res. 2007;25(1):51–61..PubMedPubMedCentral
3.
Zurück zum Zitat Zura R, Braid-Forbes MJ, Jeray K, et al. Bone fracture nonunion ratedecreases with increasing age: A prospective inception cohort study. Bone. 2017;95:26–32..PubMed Zura R, Braid-Forbes MJ, Jeray K, et al. Bone fracture nonunion ratedecreases with increasing age: A prospective inception cohort study. Bone. 2017;95:26–32..PubMed
4.
Zurück zum Zitat Zura R, Watson JT, Einhorn T, et al. An inception cohort analysis topredict nonunion in tibia and 17 other fracture locations. Injury. 2017;48(6):1194–203..PubMed Zura R, Watson JT, Einhorn T, et al. An inception cohort analysis topredict nonunion in tibia and 17 other fracture locations. Injury. 2017;48(6):1194–203..PubMed
5.
Zurück zum Zitat Lerner RK, Esterhai JL Jr, Polomano RC, et al. Quality of lifeassessment of patients with posttraumatic fracture nonunion, chronic refractory osteomyelitis, and lower-extremity amputation. Clin Orthop Relat Res. 1993;295:28–36.. Lerner RK, Esterhai JL Jr, Polomano RC, et al. Quality of lifeassessment of patients with posttraumatic fracture nonunion, chronic refractory osteomyelitis, and lower-extremity amputation. Clin Orthop Relat Res. 1993;295:28–36..
6.
Zurück zum Zitat Antonova E, Le TK, Burge R, et al. Tibia shaft fractures: costly burden of nonunions. BMC Musculoskelet Disord. 2013;14:42.PubMedPubMedCentral Antonova E, Le TK, Burge R, et al. Tibia shaft fractures: costly burden of nonunions. BMC Musculoskelet Disord. 2013;14:42.PubMedPubMedCentral
7.
Zurück zum Zitat Ekegren CL, Edwards ER, de Steiger R, et al. Incidence, costs and predictors of non-union, delayed union and mal-union following long bone fracture. Int J Environ Res Public Health. 2018;15:12. Ekegren CL, Edwards ER, de Steiger R, et al. Incidence, costs and predictors of non-union, delayed union and mal-union following long bone fracture. Int J Environ Res Public Health. 2018;15:12.
8.
Zurück zum Zitat Hak DJ, Fitzpatrick D, Bishop JA, et al. Delayed union and nonunions: epidemiology, clinical issues, and financial aspects. Injury. 2014;45(2):3–7. Hak DJ, Fitzpatrick D, Bishop JA, et al. Delayed union and nonunions: epidemiology, clinical issues, and financial aspects. Injury. 2014;45(2):3–7.
9.
Zurück zum Zitat Calori GM, Giannoudis PV. Enhancement of fracture healing with the diamond concept: the role of the biological chamber. Injury. 2011;42(11):1191–3.PubMed Calori GM, Giannoudis PV. Enhancement of fracture healing with the diamond concept: the role of the biological chamber. Injury. 2011;42(11):1191–3.PubMed
10.
Zurück zum Zitat McMillan TE, Johnstone AJ. Technical considerations to avoid delayed and non-union. Injury. 2017;48(1):64–8. McMillan TE, Johnstone AJ. Technical considerations to avoid delayed and non-union. Injury. 2017;48(1):64–8.
11.
Zurück zum Zitat Fong K, Truong V, Foote CJ, et al. Predictors of nonunion and reoperation in patients with fractures of the tibia: an observational study. BMC Musculoskelet Disord. 2013;14:103.PubMedPubMedCentral Fong K, Truong V, Foote CJ, et al. Predictors of nonunion and reoperation in patients with fractures of the tibia: an observational study. BMC Musculoskelet Disord. 2013;14:103.PubMedPubMedCentral
12.
Zurück zum Zitat Zura R, Mehta S, Della Rocca GJ, et al. Biological risk factors for nonunion of bone fracture. JBJS Rev. 2016;4:1. Zura R, Mehta S, Della Rocca GJ, et al. Biological risk factors for nonunion of bone fracture. JBJS Rev. 2016;4:1.
13.
Zurück zum Zitat Rodriguez-Buitrago AF, Jahangir A. Tibia nonunion. StatPearls. Treasure Island: StatPearls Publishing; 2019. Rodriguez-Buitrago AF, Jahangir A. Tibia nonunion. StatPearls. Treasure Island: StatPearls Publishing; 2019.
14.
Zurück zum Zitat Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38(4):3–6. Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38(4):3–6.
15.
Zurück zum Zitat Thakore RV, Francois EL, Nwosu SK, et al. The Gustilo-Anderson classification system as predictor of nonunion and infection in open tibia fractures. Eur J Trauma Emerg Surg. 2017;43(5):651–6.PubMed Thakore RV, Francois EL, Nwosu SK, et al. The Gustilo-Anderson classification system as predictor of nonunion and infection in open tibia fractures. Eur J Trauma Emerg Surg. 2017;43(5):651–6.PubMed
16.
Zurück zum Zitat Burrus MT, Werner BC, Yarboro SR. Obesity is associated with increased postoperative complications after operative management of tibial shaft fractures. Injury. 2016;47(2):465–70.PubMed Burrus MT, Werner BC, Yarboro SR. Obesity is associated with increased postoperative complications after operative management of tibial shaft fractures. Injury. 2016;47(2):465–70.PubMed
17.
Zurück zum Zitat Schmitz MA, Finnegan M, Natarajan R, et al. Effect of smoking on tibial shaft fracture healing. Clin Orthop Relat Res. 1999;365:184–200. Schmitz MA, Finnegan M, Natarajan R, et al. Effect of smoking on tibial shaft fracture healing. Clin Orthop Relat Res. 1999;365:184–200.
18.
Zurück zum Zitat Kyrö A, Usenius JP, Aarnio M, et al. Are smokers a risk group for delayed healing of tibial shaft fractures? Ann Chir Gynaecol. 1993;82(4):254–62.PubMed Kyrö A, Usenius JP, Aarnio M, et al. Are smokers a risk group for delayed healing of tibial shaft fractures? Ann Chir Gynaecol. 1993;82(4):254–62.PubMed
19.
Zurück zum Zitat O'Halloran K, Coale M, Costales T, et al. Will my tibial fracture heal? Predicting nonunion at the time of definitive fixation based on commonly available variables. Clin Orthop Relat Res. 2016;474(6):1385–95.PubMedPubMedCentral O'Halloran K, Coale M, Costales T, et al. Will my tibial fracture heal? Predicting nonunion at the time of definitive fixation based on commonly available variables. Clin Orthop Relat Res. 2016;474(6):1385–95.PubMedPubMedCentral
20.
Zurück zum Zitat Ross KA, O'Halloran K, Castillo RC, et al. Prediction of tibial nonunion at the 6-week time point. Injury. 2018;49(11):2075–82.PubMed Ross KA, O'Halloran K, Castillo RC, et al. Prediction of tibial nonunion at the 6-week time point. Injury. 2018;49(11):2075–82.PubMed
21.
Zurück zum Zitat Lee M, Choi WJ, Han SH, et al. Uncontrolled diabetes as a potential risk factor in tibiotalocalcaneal fusion using a retrograde intramedullary nail. Foot Ankle Surg. 2018;24(6):542–8.PubMed Lee M, Choi WJ, Han SH, et al. Uncontrolled diabetes as a potential risk factor in tibiotalocalcaneal fusion using a retrograde intramedullary nail. Foot Ankle Surg. 2018;24(6):542–8.PubMed
22.
Zurück zum Zitat Costa ML, Achten J, Hennings S, et al. Intramedullary nail fixation versus locking plate fixation for adults with a fracture of the distal tibia: the UK FixDT RCT. Health Technol Assess. 2018;22(25):1–148.PubMedPubMedCentral Costa ML, Achten J, Hennings S, et al. Intramedullary nail fixation versus locking plate fixation for adults with a fracture of the distal tibia: the UK FixDT RCT. Health Technol Assess. 2018;22(25):1–148.PubMedPubMedCentral
23.
Zurück zum Zitat Manon J, Detrembleur C, Van de Veyver S, et al. Predictors of mechanical complications after intramedullary nailing of tibial fractures. Orthop Traumatol Surg Res. 2019;105(3):523–7.PubMed Manon J, Detrembleur C, Van de Veyver S, et al. Predictors of mechanical complications after intramedullary nailing of tibial fractures. Orthop Traumatol Surg Res. 2019;105(3):523–7.PubMed
24.
Zurück zum Zitat Caubere A, Demoures T, Choufani C, et al. Use of intramedullary nailing in poor sanitary conditions: French Military Medical Service experience. Orthop Traumatol Surg Res. 2019;105(1):173–7.PubMed Caubere A, Demoures T, Choufani C, et al. Use of intramedullary nailing in poor sanitary conditions: French Military Medical Service experience. Orthop Traumatol Surg Res. 2019;105(1):173–7.PubMed
25.
Zurück zum Zitat Wani IH, Ul Gani N, Yaseen M, et al. Operative management of distal tibial extra-articular fractures—intramedullary nail versus minimally invasive percutaneous plate osteosynthesis. Ortop Traumatol Rehabil. 2017;19(6):537–41.PubMed Wani IH, Ul Gani N, Yaseen M, et al. Operative management of distal tibial extra-articular fractures—intramedullary nail versus minimally invasive percutaneous plate osteosynthesis. Ortop Traumatol Rehabil. 2017;19(6):537–41.PubMed
26.
Zurück zum Zitat Vaienti E, Schiavi P, Ceccarelli F, et al. Treatment of distal tibial fractures: prospective comparative study evaluating two surgical procedures with investigation for predictive factors of unfavourable outcome. Int Orthop. 2018;43(1):201–7.PubMed Vaienti E, Schiavi P, Ceccarelli F, et al. Treatment of distal tibial fractures: prospective comparative study evaluating two surgical procedures with investigation for predictive factors of unfavourable outcome. Int Orthop. 2018;43(1):201–7.PubMed
27.
Zurück zum Zitat Costa ML, Achten GJ, et al. Effect of locking plate fixation vs intramedullary nail fixation on 6-month disability among adults with displaced fracture of the distal tibia: the UK FixDT randomized clinical trial. JAMA. 2017;318(18):1767–76.PubMedPubMedCentral Costa ML, Achten GJ, et al. Effect of locking plate fixation vs intramedullary nail fixation on 6-month disability among adults with displaced fracture of the distal tibia: the UK FixDT randomized clinical trial. JAMA. 2017;318(18):1767–76.PubMedPubMedCentral
28.
Zurück zum Zitat Mioc ML, Prejbeanu R, Deleanu B, et al. Extra-articular distal tibia fractures-controversies regarding treatment options. A single-centre prospective comparative study. Int Orthop. 2018;42(4):915–9.PubMed Mioc ML, Prejbeanu R, Deleanu B, et al. Extra-articular distal tibia fractures-controversies regarding treatment options. A single-centre prospective comparative study. Int Orthop. 2018;42(4):915–9.PubMed
29.
Zurück zum Zitat Fader L, Whitaker J, Lopez M, et al. Tibia fractures and NSAIDs. Does it make a difference? A multicenter retrospective study. Injury. 2018;49(12):2290–4.PubMed Fader L, Whitaker J, Lopez M, et al. Tibia fractures and NSAIDs. Does it make a difference? A multicenter retrospective study. Injury. 2018;49(12):2290–4.PubMed
30.
Zurück zum Zitat Pogliacomi F, Schiavi P, Calderazzi F, et al. When is indicated fibular fixation in extra-articular fractures of the distal tibia? Acta Biomed. 2019;89(4):558–63.PubMed Pogliacomi F, Schiavi P, Calderazzi F, et al. When is indicated fibular fixation in extra-articular fractures of the distal tibia? Acta Biomed. 2019;89(4):558–63.PubMed
31.
Zurück zum Zitat Su CA, Nguyen MP, O’Donnell JA, et al. Outcomes of tibia shaft fractures caused by low energy gunshot wounds. Injury. 2019;49(7):1348–52. Su CA, Nguyen MP, O’Donnell JA, et al. Outcomes of tibia shaft fractures caused by low energy gunshot wounds. Injury. 2019;49(7):1348–52.
32.
Zurück zum Zitat Mehta D, Abdou S, Stranix JT, et al. Comparing radiographic progression of bone healing in Gustilo IIIB open tibia fractures treated with muscle versus fasciocutaneous flaps. J Orthop Trauma. 2018;32(8):381–5.PubMed Mehta D, Abdou S, Stranix JT, et al. Comparing radiographic progression of bone healing in Gustilo IIIB open tibia fractures treated with muscle versus fasciocutaneous flaps. J Orthop Trauma. 2018;32(8):381–5.PubMed
33.
Zurück zum Zitat Milenkovic S, Mitkovic M, Mitkovic M. External fixation of segmental tibial shaft fractures. Eur J Trauma Emerg Surg. 2018. Milenkovic S, Mitkovic M, Mitkovic M. External fixation of segmental tibial shaft fractures. Eur J Trauma Emerg Surg. 2018.
34.
Zurück zum Zitat Chang BS, Dang L, Song JH, et al. The effect of fibular fixation in the treatment of compound fractures of distal tibia and fibula. J Clin Orthopaed. 2018;21(06):730–3. Chang BS, Dang L, Song JH, et al. The effect of fibular fixation in the treatment of compound fractures of distal tibia and fibula. J Clin Orthopaed. 2018;21(06):730–3.
35.
Zurück zum Zitat Liu BQ, Ding XJ, Che DX, et al. The effect of fibular fracture fixation on the surgical outcome of distal tibial fractur. Chin J Bone Jnt Injury. 2018;33(12):1315–7. Liu BQ, Ding XJ, Che DX, et al. The effect of fibular fracture fixation on the surgical outcome of distal tibial fractur. Chin J Bone Jnt Injury. 2018;33(12):1315–7.
36.
Zurück zum Zitat Zhang JS, Wang YT. Comparative analysis of clinical effects of intramedullary nail and plate internal fixation for distal tibial fracture. China Pract Med. 2018;13(32):77–9. Zhang JS, Wang YT. Comparative analysis of clinical effects of intramedullary nail and plate internal fixation for distal tibial fracture. China Pract Med. 2018;13(32):77–9.
37.
Zurück zum Zitat Zhang QL, Li ZJ. Application effect of distal tibial locking plate and distal tibial intramedullary nail in the treatment of distal tibiofibular fractures. Clin Res Pract. 2018;3(32):82–3. Zhang QL, Li ZJ. Application effect of distal tibial locking plate and distal tibial intramedullary nail in the treatment of distal tibiofibular fractures. Clin Res Pract. 2018;3(32):82–3.
38.
Zurück zum Zitat Yu JK, Wang J. Comparatives study of minimally invasive percutaneous plate internal fixation and open reduction and plate internal fixation in the treatment of tibial Pilon fracture. Chin J Clin. 2018;46(10):1161–2. Yu JK, Wang J. Comparatives study of minimally invasive percutaneous plate internal fixation and open reduction and plate internal fixation in the treatment of tibial Pilon fracture. Chin J Clin. 2018;46(10):1161–2.
39.
Zurück zum Zitat Jin PF, Wang ZQ, Song HP. Rist factors for nonunion of closed tibial shaft fractures. J North China Univ Sci Technol (Health Sciences Edition). 2018;20(5):378–83. Jin PF, Wang ZQ, Song HP. Rist factors for nonunion of closed tibial shaft fractures. J North China Univ Sci Technol (Health Sciences Edition). 2018;20(5):378–83.
40.
Zurück zum Zitat Ge Y. Clinical effect and biomechanical properties of interlocking intramedullary nail and minimally invasive percutaneous plate internal fixation in the treatment of middle and lower tibial fractures. Chin J Convalescent Med. 2018;27(08):840–1. Ge Y. Clinical effect and biomechanical properties of interlocking intramedullary nail and minimally invasive percutaneous plate internal fixation in the treatment of middle and lower tibial fractures. Chin J Convalescent Med. 2018;27(08):840–1.
41.
Zurück zum Zitat Fang YS. Percutaneous locking compression titanium plate fixation and interlocking intramedullary nail fixation for distal tibial fractures. Med J Comm. 2018;32(03):226–8. Fang YS. Percutaneous locking compression titanium plate fixation and interlocking intramedullary nail fixation for distal tibial fractures. Med J Comm. 2018;32(03):226–8.
42.
Zurück zum Zitat Li J, Jiang C, Zhu YS. Closed reduction with interlocking intramedullary nail and percutaneous minimally invasive locking compression plate in the treatment of tibial fracture. Chin Remedies Clin. 2018;18(6):1009–11. Li J, Jiang C, Zhu YS. Closed reduction with interlocking intramedullary nail and percutaneous minimally invasive locking compression plate in the treatment of tibial fracture. Chin Remedies Clin. 2018;18(6):1009–11.
43.
Zurück zum Zitat Xu YD, Zhang WX, Zhou MW, et al. Minimally invasive locking plate in the treatment of gustilo type II open tibial fractures. Gansu Med J. 2018;37(6):481–3. Xu YD, Zhang WX, Zhou MW, et al. Minimally invasive locking plate in the treatment of gustilo type II open tibial fractures. Gansu Med J. 2018;37(6):481–3.
44.
Zurück zum Zitat Li ZT, Ma SQ, Zhang HB, et al. Comparison of the efficacy of interlocking intramedullary nail and percutaneous locking plate in the treatment of distal tibial extraarticular fractures. J Modern Med Health. 2018;34(11):1703–5. Li ZT, Ma SQ, Zhang HB, et al. Comparison of the efficacy of interlocking intramedullary nail and percutaneous locking plate in the treatment of distal tibial extraarticular fractures. J Modern Med Health. 2018;34(11):1703–5.
45.
Zurück zum Zitat Dailey HL, Wu KA, Wu PS, et al. Tibial fracture nonunion and time to healing after reamed intramedullary nailing: risk factors based on a single-center Review of 1003 patients. J Orthop Trauma. 2018;32(7):263–9. Dailey HL, Wu KA, Wu PS, et al. Tibial fracture nonunion and time to healing after reamed intramedullary nailing: risk factors based on a single-center Review of 1003 patients. J Orthop Trauma. 2018;32(7):263–9.
46.
Zurück zum Zitat Singh A, Jiong Hao JT, Wei DT, et al. Gustilo IIIB open tibial fractures: an analysis of infection and nonunion rates. Indian J Orthop. 2018;52(4):406–10.PubMedPubMedCentral Singh A, Jiong Hao JT, Wei DT, et al. Gustilo IIIB open tibial fractures: an analysis of infection and nonunion rates. Indian J Orthop. 2018;52(4):406–10.PubMedPubMedCentral
47.
Zurück zum Zitat Galal S. Minimally invasive plate osteosynthesis has equal safety to reamed intramedullary nails in treating Gustilo-Anderson type I, II and III-A open tibial shaft fractures. Injury. 2018;49(4):866–70.PubMed Galal S. Minimally invasive plate osteosynthesis has equal safety to reamed intramedullary nails in treating Gustilo-Anderson type I, II and III-A open tibial shaft fractures. Injury. 2018;49(4):866–70.PubMed
48.
Zurück zum Zitat Javdan M, Tahririan MA, Nouri M. The role of fibular fixation in the treatment of combined distal tibia and fibula fracture: a randomized, control trial. Adv Biomed Res. 2017;6:48.PubMedPubMedCentral Javdan M, Tahririan MA, Nouri M. The role of fibular fixation in the treatment of combined distal tibia and fibula fracture: a randomized, control trial. Adv Biomed Res. 2017;6:48.PubMedPubMedCentral
49.
Zurück zum Zitat Auston DA, Meiss J, Serrano R, et al. Percutaneous or open reduction of closed tibial shaft fractures during intramedullary nailing does not increase wound complications, infection or nonunion rates. J Orthop Trauma. 2017;31(4):215–9.PubMed Auston DA, Meiss J, Serrano R, et al. Percutaneous or open reduction of closed tibial shaft fractures during intramedullary nailing does not increase wound complications, infection or nonunion rates. J Orthop Trauma. 2017;31(4):215–9.PubMed
50.
Zurück zum Zitat Zura R, Watson JT, Einhorn T, et al. An inception cohort analysis to predict nonunion in tibia and 17 other fracture locations. Injury. 2017;48(6):1194–203.PubMed Zura R, Watson JT, Einhorn T, et al. An inception cohort analysis to predict nonunion in tibia and 17 other fracture locations. Injury. 2017;48(6):1194–203.PubMed
51.
Zurück zum Zitat Chan DS, Balthrop PM, White B, et al. Does a staged posterior approach have a negative effect on OTA 43c fracture outcomes? J Orthop Trauma. 2017;31(2):90–4.PubMed Chan DS, Balthrop PM, White B, et al. Does a staged posterior approach have a negative effect on OTA 43c fracture outcomes? J Orthop Trauma. 2017;31(2):90–4.PubMed
52.
Zurück zum Zitat Xiong SR, Wu YB, Xiong GS, et al. Minimally invasive treatment of middle and lower tibial fractures with interlocking intramedullary nail and locking plate. Fujian Med J. 2017;39(05):94–6. Xiong SR, Wu YB, Xiong GS, et al. Minimally invasive treatment of middle and lower tibial fractures with interlocking intramedullary nail and locking plate. Fujian Med J. 2017;39(05):94–6.
53.
Zurück zum Zitat Beytemür O, Barış A, Albay C, et al. Comparison of intramedullary nailing and minimal invasive plate osteosynthesis in the treatment of simple intra-articular fractures of the distal tibia (AO-OTA type 43 C1-C2). Acta Orthop Traumatol Turc. 2017;51(1):12–6.PubMed Beytemür O, Barış A, Albay C, et al. Comparison of intramedullary nailing and minimal invasive plate osteosynthesis in the treatment of simple intra-articular fractures of the distal tibia (AO-OTA type 43 C1-C2). Acta Orthop Traumatol Turc. 2017;51(1):12–6.PubMed
54.
Zurück zum Zitat Daolagupu AK, Mudgal A, Agarwala V, et al. A comparative study of intramedullary interlocking nailing and minimally invasive plate osteosynthesis in extra articular distal tibial fractures. Indian J Orthop. 2017;51(3):292–8.PubMedPubMedCentral Daolagupu AK, Mudgal A, Agarwala V, et al. A comparative study of intramedullary interlocking nailing and minimally invasive plate osteosynthesis in extra articular distal tibial fractures. Indian J Orthop. 2017;51(3):292–8.PubMedPubMedCentral
55.
Zurück zum Zitat Garg S, Khanna V, Goyal MP, et al. Comparative prospective study between medial and lateral distal tibial locking compression plates for distal third tibial fractures. Chin J Traumatol. 2017;20(3):151–4.PubMedPubMedCentral Garg S, Khanna V, Goyal MP, et al. Comparative prospective study between medial and lateral distal tibial locking compression plates for distal third tibial fractures. Chin J Traumatol. 2017;20(3):151–4.PubMedPubMedCentral
56.
Zurück zum Zitat Mukherjee S, Arambam MS, Waikhom S, et al. Interlocking nailing versus plating in tibial shaft fractures in adults: a comparative study. J Clin Diagn Res. 2017;11(4):8–13. Mukherjee S, Arambam MS, Waikhom S, et al. Interlocking nailing versus plating in tibial shaft fractures in adults: a comparative study. J Clin Diagn Res. 2017;11(4):8–13.
57.
Zurück zum Zitat Blair JA, Stoops TK, Doarn MC, et al. Infection and nonunion after fasciotomy for compartment syndrome associated with tibia fractures: a matched cohort comparison. J Orthop Trauma. 2016;30(7):392–6.PubMed Blair JA, Stoops TK, Doarn MC, et al. Infection and nonunion after fasciotomy for compartment syndrome associated with tibia fractures: a matched cohort comparison. J Orthop Trauma. 2016;30(7):392–6.PubMed
58.
Zurück zum Zitat Avilucea FR, Sathiyakumar V, Greenberg SE, et al. Open distal tibial shaft fractures: a retrospective comparison of medial plate versus nail fixation. Eur J Trauma Emerg Surg. 2016;42(1):101–6.PubMed Avilucea FR, Sathiyakumar V, Greenberg SE, et al. Open distal tibial shaft fractures: a retrospective comparison of medial plate versus nail fixation. Eur J Trauma Emerg Surg. 2016;42(1):101–6.PubMed
59.
Zurück zum Zitat Barcak E, Collinge CA, Metaphyseal. Distal tibia fractures: a cohort, single-surgeon study comparing outcomes of patients treated with minimally invasive plating versus intramedullary nailing. J Orthop Trauma. 2016;30(5):69–74. Barcak E, Collinge CA, Metaphyseal. Distal tibia fractures: a cohort, single-surgeon study comparing outcomes of patients treated with minimally invasive plating versus intramedullary nailing. J Orthop Trauma. 2016;30(5):69–74.
60.
Zurück zum Zitat Shen J, Xu J, Tang MJ, et al. Extra-articular distal tibia facture (AO-43A): A retrospective study comparing modified MIPPO with IMN. Injury. 2016;47(10):2352–9.PubMed Shen J, Xu J, Tang MJ, et al. Extra-articular distal tibia facture (AO-43A): A retrospective study comparing modified MIPPO with IMN. Injury. 2016;47(10):2352–9.PubMed
61.
Zurück zum Zitat Fang JH, Wu YS, Guo XS, et al. Comparison of 3 minimally invasive methods for distal tibia fractures. Orthopedics. 2016;39(4):27–33. Fang JH, Wu YS, Guo XS, et al. Comparison of 3 minimally invasive methods for distal tibia fractures. Orthopedics. 2016;39(4):27–33.
62.
Zurück zum Zitat Hao LS, Wang XC, Chen J. A retrospective trial of minimally invasive percutaneous plate osteosynthesis versus open reduction internal fixation for treatment of closed distal tibial fractures. J Trad Chin Orthoped Traumatol. 2016;28(10):14–7. Hao LS, Wang XC, Chen J. A retrospective trial of minimally invasive percutaneous plate osteosynthesis versus open reduction internal fixation for treatment of closed distal tibial fractures. J Trad Chin Orthoped Traumatol. 2016;28(10):14–7.
63.
Zurück zum Zitat Hu H, Zhang Z, Li W, et al. Vitiligo: Observation of curative effect of MIPPO technique in treatment of distal tibial fracture. J Clin Med Lit. 2016;3(54):10715–6. Hu H, Zhang Z, Li W, et al. Vitiligo: Observation of curative effect of MIPPO technique in treatment of distal tibial fracture. J Clin Med Lit. 2016;3(54):10715–6.
64.
Zurück zum Zitat Liu JQ, Lu L, Chen XP, et al. Clinical study of minimally invasive percutaneous locking plate internal fixation and traditional open reduction and internal fixation for tibial fracture. Jiangxi Med J. 2016;51(02):149–50. Liu JQ, Lu L, Chen XP, et al. Clinical study of minimally invasive percutaneous locking plate internal fixation and traditional open reduction and internal fixation for tibial fracture. Jiangxi Med J. 2016;51(02):149–50.
65.
Zurück zum Zitat Rao HR, Chen JQ. The clinical observation of minimally invasive percutaneous locking compression plate internal fixation in treatment of distal tibial fractures. J Liaoning Med Univ. 2016;37(02):41–3. Rao HR, Chen JQ. The clinical observation of minimally invasive percutaneous locking compression plate internal fixation in treatment of distal tibial fractures. J Liaoning Med Univ. 2016;37(02):41–3.
66.
Zurück zum Zitat Bai T, Lu L, Gao JJ, et al. Efficacy of second generation tibial intramedullary nail in treatment of distal tibial fracture. Medical J Nat Def Forces Southwest China. 2016;26(10):1119–21. Bai T, Lu L, Gao JJ, et al. Efficacy of second generation tibial intramedullary nail in treatment of distal tibial fracture. Medical J Nat Def Forces Southwest China. 2016;26(10):1119–21.
67.
Zurück zum Zitat Zhao KP, Wang ZH, Li CY. Application of interlocking intramedullary nail and locking plate in middle and lower tibial fracture. Chin J Bone Jnt Injury. 2016;31(10):1096–7. Zhao KP, Wang ZH, Li CY. Application of interlocking intramedullary nail and locking plate in middle and lower tibial fracture. Chin J Bone Jnt Injury. 2016;31(10):1096–7.
68.
Zurück zum Zitat Uchiyama Y, Kobayashi Y, Ebihara G. Retrospective comparison of postoperative infection and bone union between late and immediate intramedullary nailing of Gustilo grades I, II, and IIIA open tibial shaft fractures. Trauma Surg Acute Care Open. 2016;1(1):35. Uchiyama Y, Kobayashi Y, Ebihara G. Retrospective comparison of postoperative infection and bone union between late and immediate intramedullary nailing of Gustilo grades I, II, and IIIA open tibial shaft fractures. Trauma Surg Acute Care Open. 2016;1(1):35.
69.
Zurück zum Zitat Gupta P, Tiwari A, Thora A. Minimally invasive plate osteosynthesis (MIPO) for proximal and distal fractures of the tibia: a biological approach. Malays Orthop J. 2016;10(1):29–37.PubMedPubMedCentral Gupta P, Tiwari A, Thora A. Minimally invasive plate osteosynthesis (MIPO) for proximal and distal fractures of the tibia: a biological approach. Malays Orthop J. 2016;10(1):29–37.PubMedPubMedCentral
70.
Zurück zum Zitat Piątkowski K, Piekarczyk P, Kwiatkowski K, et al. Comparison of different locking plate fixation methods in distal tibia fractures. Int Orthop. 2015;39(11):2245–51.PubMed Piątkowski K, Piekarczyk P, Kwiatkowski K, et al. Comparison of different locking plate fixation methods in distal tibia fractures. Int Orthop. 2015;39(11):2245–51.PubMed
71.
Zurück zum Zitat Sun KF, Feng WW, Yang GZ, et al. A clinical study on comparing result of tibial shaft fractures using reamed intramedullary nail by close reduction versus limited open reduction. J Qiqihar Univ Med. 2015;36(34):5159–61. Sun KF, Feng WW, Yang GZ, et al. A clinical study on comparing result of tibial shaft fractures using reamed intramedullary nail by close reduction versus limited open reduction. J Qiqihar Univ Med. 2015;36(34):5159–61.
72.
Zurück zum Zitat Sun JQ. Minimally invasive percutaneous plate internal fixation for tibial fracture. Chin J Modern Drug Appl. 2015;9(2):133–4. Sun JQ. Minimally invasive percutaneous plate internal fixation for tibial fracture. Chin J Modern Drug Appl. 2015;9(2):133–4.
73.
Zurück zum Zitat Ma N, Rao ZT, Zhang JS. Selection of operation mode in treating high energy tibial pilon fractures and analysis of treatment effect related factors. Chin J Gen Pract. 2015;13(01):36–8. Ma N, Rao ZT, Zhang JS. Selection of operation mode in treating high energy tibial pilon fractures and analysis of treatment effect related factors. Chin J Gen Pract. 2015;13(01):36–8.
74.
Zurück zum Zitat Huang H, Chen Y, Liang Y, et al. A comparative analysis of closed reduction and open reduction interlocking intramedullary nail fixation for tibial shaft fracture. J Youjiang Med Univ Nationalities. 2015;37(01):73–4. Huang H, Chen Y, Liang Y, et al. A comparative analysis of closed reduction and open reduction interlocking intramedullary nail fixation for tibial shaft fracture. J Youjiang Med Univ Nationalities. 2015;37(01):73–4.
75.
Zurück zum Zitat Huang PZ, Huang XY, Yang WD, et al. Application of minimally invasive percutaneous internal fixation for distal tibial extraarticular fractures. Chin J Trad Med Traumatol Orthoped. 2015;23(02):51–2. Huang PZ, Huang XY, Yang WD, et al. Application of minimally invasive percutaneous internal fixation for distal tibial extraarticular fractures. Chin J Trad Med Traumatol Orthoped. 2015;23(02):51–2.
76.
Zurück zum Zitat Zhang YH. Clinical analysis of two different internal fixation methods for tibial plateau fractures. Henan J Surg. 2015;21(01):103–4. Zhang YH. Clinical analysis of two different internal fixation methods for tibial plateau fractures. Henan J Surg. 2015;21(01):103–4.
77.
Zurück zum Zitat Luo BX. The effect of minimally invasive internal fixation technology and open reduction plate internal fixation in the treatment of distal tibial fracture. Chin Comm Doctors. 2015;31(5):43–4. Luo BX. The effect of minimally invasive internal fixation technology and open reduction plate internal fixation in the treatment of distal tibial fracture. Chin Comm Doctors. 2015;31(5):43–4.
78.
Zurück zum Zitat Wang B, Wang ZZ, Zhang F. Comparison of locking compression plate and anatomic plate internal fixation for Pilon fracture. Chin J Tiss Eng Res. 2015;19(13):2091–5. Wang B, Wang ZZ, Zhang F. Comparison of locking compression plate and anatomic plate internal fixation for Pilon fracture. Chin J Tiss Eng Res. 2015;19(13):2091–5.
79.
Zurück zum Zitat Cui LH, Chang ZP. Observation on the effect of interlocking intramedullary nail and MIPPO in the treatment of middle and lower tibial fracture. J Bethune Med Sci. 2015;13(02):176–7. Cui LH, Chang ZP. Observation on the effect of interlocking intramedullary nail and MIPPO in the treatment of middle and lower tibial fracture. J Bethune Med Sci. 2015;13(02):176–7.
80.
Zurück zum Zitat Meng YH, Huang JQ, Ma P, et al. Treatment of distal tibial shaft fracture with LCP and MIPPO. Chin Orthopaed J Clin Basic Res. 2015;7(2):104–7. Meng YH, Huang JQ, Ma P, et al. Treatment of distal tibial shaft fracture with LCP and MIPPO. Chin Orthopaed J Clin Basic Res. 2015;7(2):104–7.
81.
Zurück zum Zitat Gong Y. Treatment of distal tibial extraarticular fracture with intramedullary nail and plate internal fixation. Chin J Clin Rational Drug Use. 2015;8(10):128. Gong Y. Treatment of distal tibial extraarticular fracture with intramedullary nail and plate internal fixation. Chin J Clin Rational Drug Use. 2015;8(10):128.
82.
Zurück zum Zitat Lian HK, Huang JC. Effectiveness comparison of different operative treatment of closed fracture of tibial shaft. Chin J Reparative Reconstructive Surg. 2015;29(9):1067–71. Lian HK, Huang JC. Effectiveness comparison of different operative treatment of closed fracture of tibial shaft. Chin J Reparative Reconstructive Surg. 2015;29(9):1067–71.
83.
Zurück zum Zitat Meena RC, Meena UK, Gupta GL. Intramedullary nailing versus proximal plating in the management of closed extra-articular proximal tibial fracture: a randomized controlled trial. J Orthop Traumatol. 2015;16(3):203–8.PubMedPubMedCentral Meena RC, Meena UK, Gupta GL. Intramedullary nailing versus proximal plating in the management of closed extra-articular proximal tibial fracture: a randomized controlled trial. J Orthop Traumatol. 2015;16(3):203–8.PubMedPubMedCentral
84.
Zurück zum Zitat Sathiyakumar V, Thakore RV, Ihejirika RC, et al. Distal tibia fractures and medial plating: factors influencing re-operation. Int Orthop. 2014;38(7):1483–8.PubMedPubMedCentral Sathiyakumar V, Thakore RV, Ihejirika RC, et al. Distal tibia fractures and medial plating: factors influencing re-operation. Int Orthop. 2014;38(7):1483–8.PubMedPubMedCentral
85.
Zurück zum Zitat Li Y, Jiang X, Guo Q, et al. Treatment of distal tibial shaft fractures by three different surgical methods: a randomized, prospective study. Int Orthop. 2014;38(6):1261–7.PubMedPubMedCentral Li Y, Jiang X, Guo Q, et al. Treatment of distal tibial shaft fractures by three different surgical methods: a randomized, prospective study. Int Orthop. 2014;38(6):1261–7.PubMedPubMedCentral
86.
Zurück zum Zitat Dai QH. Discussion on the treatment methods and effects of 42 cases of tibial fracture. Contemp Med. 2014;20(29):96–7. Dai QH. Discussion on the treatment methods and effects of 42 cases of tibial fracture. Contemp Med. 2014;20(29):96–7.
87.
Zurück zum Zitat Wu ZH. Clinical value of interlocking intramedullary nail in minimally invasive treatment of tibial shaft fracture. Contemp Med. 2014;20(30):70–1. Wu ZH. Clinical value of interlocking intramedullary nail in minimally invasive treatment of tibial shaft fracture. Contemp Med. 2014;20(30):70–1.
88.
Zurück zum Zitat Li ZZ. Clinical study of 60 cases of distal tibial comminuted fracture treated with compression plate. Guide China Med. 2014;12(34):119–20. Li ZZ. Clinical study of 60 cases of distal tibial comminuted fracture treated with compression plate. Guide China Med. 2014;12(34):119–20.
89.
Zurück zum Zitat Ren Y, Hu CN, Chen QK, et al. Selective analysis of the tibia in the lower segment of unstable fractures of two minimally invasive internal fixation Formula. J Pract Orthopaed. 2014;20(8):715–9. Ren Y, Hu CN, Chen QK, et al. Selective analysis of the tibia in the lower segment of unstable fractures of two minimally invasive internal fixation Formula. J Pract Orthopaed. 2014;20(8):715–9.
90.
Zurück zum Zitat Luan HX, Mao J, Luan FJ. The effect of tourniquet for intramedullary nail in the treatment of tibial shaft fracture. Chin Comm Doctors. 2014;30(18):53–4. Luan HX, Mao J, Luan FJ. The effect of tourniquet for intramedullary nail in the treatment of tibial shaft fracture. Chin Comm Doctors. 2014;30(18):53–4.
91.
Zurück zum Zitat Zhang WJ, Teng Y, Li Q, et al. Minimally invasive percutaneous plate osteosythesis for treatment of tibial shaft fractures. Chin J Bone Jnt Injury. 2014;29(10):1003–5. Zhang WJ, Teng Y, Li Q, et al. Minimally invasive percutaneous plate osteosythesis for treatment of tibial shaft fractures. Chin J Bone Jnt Injury. 2014;29(10):1003–5.
92.
Zurück zum Zitat Heng WX, Wang S. Percutaneous minimally invasive plate fixation treatment of tibia fracture clinical observation. J Med Theory Pract. 2014;27(20):2682–3. Heng WX, Wang S. Percutaneous minimally invasive plate fixation treatment of tibia fracture clinical observation. J Med Theory Pract. 2014;27(20):2682–3.
93.
Zurück zum Zitat Yavuz U, Sökücü S, Demir B, et al. Comparison of intramedullary nail and plate fixation in distal tibia diaphyseal fractures close to the mortise. Ulus Travma Acil Cerrahi Derg. 2014;20(3):189–93.PubMed Yavuz U, Sökücü S, Demir B, et al. Comparison of intramedullary nail and plate fixation in distal tibia diaphyseal fractures close to the mortise. Ulus Travma Acil Cerrahi Derg. 2014;20(3):189–93.PubMed
94.
Zurück zum Zitat Lack WD, Starman JS, Seymour R, et al. Any cortical bridging predicts healing of tibial shaft fractures. J Bone Joint Surg Am. 2014;96(13):1066–72.PubMed Lack WD, Starman JS, Seymour R, et al. Any cortical bridging predicts healing of tibial shaft fractures. J Bone Joint Surg Am. 2014;96(13):1066–72.PubMed
95.
Zurück zum Zitat Berlusconi M, Busnelli L, Chiodini F, et al. To fix or not to fix? The role of fibular fixation in distal shaft fractures of the leg. Injury. 2014;45(2):408–11.PubMed Berlusconi M, Busnelli L, Chiodini F, et al. To fix or not to fix? The role of fibular fixation in distal shaft fractures of the leg. Injury. 2014;45(2):408–11.PubMed
96.
Zurück zum Zitat Huang Q. Closed reduction and internal fixation with interlocking intramedullary nail for tibial fracture. Asia Pac Trad Med. 2013;9(9):126–7. Huang Q. Closed reduction and internal fixation with interlocking intramedullary nail for tibial fracture. Asia Pac Trad Med. 2013;9(9):126–7.
97.
Zurück zum Zitat Gong M. Clinical observation of 52 cases of lower tibial fracture treated by percutaneous minimally invasive locking compression plate. Seek Med Ask Med. 2013;11(6):149–50. Gong M. Clinical observation of 52 cases of lower tibial fracture treated by percutaneous minimally invasive locking compression plate. Seek Med Ask Med. 2013;11(6):149–50.
98.
Zurück zum Zitat Lu YM. Analysis of the effect of plate and interlocking intramedullary nail in the treatment of distal tibial fracture. Hebei Med J. 2013;35(8):1183–4. Lu YM. Analysis of the effect of plate and interlocking intramedullary nail in the treatment of distal tibial fracture. Hebei Med J. 2013;35(8):1183–4.
99.
Zurück zum Zitat Yu XD, Xue F, Chen QB. Comparison of the efficacy of MIPPO and interlocking intramedullary nail in the treatment of distal and middle tibial fractures. J Pract Orthopaed. 2013;19(6):560–2. Yu XD, Xue F, Chen QB. Comparison of the efficacy of MIPPO and interlocking intramedullary nail in the treatment of distal and middle tibial fractures. J Pract Orthopaed. 2013;19(6):560–2.
100.
Zurück zum Zitat Clement ND, Beauchamp NJ, Duckworth AD, et al. The outcome of tibial diaphyseal fractures in the elderly. Bone Joint J. 2013;95(9):1255–62.PubMed Clement ND, Beauchamp NJ, Duckworth AD, et al. The outcome of tibial diaphyseal fractures in the elderly. Bone Joint J. 2013;95(9):1255–62.PubMed
101.
Zurück zum Zitat Sitnik AA, Beletsky AV. Minimally invasive percutaneous plate fixation of tibia fractures: results in 80 patients. Clin Orthop Relat Res. 2013;471(9):2783–9.PubMedPubMedCentral Sitnik AA, Beletsky AV. Minimally invasive percutaneous plate fixation of tibia fractures: results in 80 patients. Clin Orthop Relat Res. 2013;471(9):2783–9.PubMedPubMedCentral
102.
Zurück zum Zitat Yusof NM, Khalid KA, Zulkifly AH, et al. Factors associated with the outcome of open tibial fractures. Malays J Med Sci. 2013;20(5):47–53.PubMedPubMedCentral Yusof NM, Khalid KA, Zulkifly AH, et al. Factors associated with the outcome of open tibial fractures. Malays J Med Sci. 2013;20(5):47–53.PubMedPubMedCentral
103.
Zurück zum Zitat Bishop JA, Dikos GD, Mickelson D, et al. Open reduction and intramedullary nail fixation of closed tibial fractures. Orthopedics. 2012;35(11):1631–4. Bishop JA, Dikos GD, Mickelson D, et al. Open reduction and intramedullary nail fixation of closed tibial fractures. Orthopedics. 2012;35(11):1631–4.
104.
Zurück zum Zitat Lin ZF, Yang YH, Xiong WH. Correlation of union of lower tibial fractures with selection of terapies. Asia Pac Trad Med. 2012;8(7):61–3. Lin ZF, Yang YH, Xiong WH. Correlation of union of lower tibial fractures with selection of terapies. Asia Pac Trad Med. 2012;8(7):61–3.
105.
Zurück zum Zitat Zhang H, Ye CH, Yu H, et al. Case-control study on different fixation methods for the treatment of tibial fractures in 96 patients. China J Orthop Traumatol. 2012;25(3):198–201. Zhang H, Ye CH, Yu H, et al. Case-control study on different fixation methods for the treatment of tibial fractures in 96 patients. China J Orthop Traumatol. 2012;25(3):198–201.
106.
Zurück zum Zitat Jia QT. Comparing limited incision intramedullary nail with locking compression titanium plate in the treatment of tibial fracture. Henan J Surg. 2012;18(2):41–2. Jia QT. Comparing limited incision intramedullary nail with locking compression titanium plate in the treatment of tibial fracture. Henan J Surg. 2012;18(2):41–2.
107.
Zurück zum Zitat Zhou JL, Pei BY. Comparison of surgical methods for multiple tibial fractures. Shanxi Med J. 2012;41(4):381–3. Zhou JL, Pei BY. Comparison of surgical methods for multiple tibial fractures. Shanxi Med J. 2012;41(4):381–3.
108.
Zurück zum Zitat Rouhani A, Elmi A, Akbari Aghdam H, et al. The role of fibular fixation in the treatment of tibia diaphysis distal third fractures. Orthop Traumatol Surg Res. 2012;98(8):868–72.PubMed Rouhani A, Elmi A, Akbari Aghdam H, et al. The role of fibular fixation in the treatment of tibia diaphysis distal third fractures. Orthop Traumatol Surg Res. 2012;98(8):868–72.PubMed
109.
Zurück zum Zitat Vallier HA, Cureton BA, Patterson BM. Randomized, prospective comparison of plate versus intramedullary nail fixation for distal tibia shaft fractures. J Orthop Trauma. 2011;25(12):736–41.PubMed Vallier HA, Cureton BA, Patterson BM. Randomized, prospective comparison of plate versus intramedullary nail fixation for distal tibia shaft fractures. J Orthop Trauma. 2011;25(12):736–41.PubMed
110.
Zurück zum Zitat Zhu DK. Analysis of the reaming interlocking intramedullary nail for treatment of 84 tibial fractures. Chin Foreign Med Res. 2011;9(7):15–6. Zhu DK. Analysis of the reaming interlocking intramedullary nail for treatment of 84 tibial fractures. Chin Foreign Med Res. 2011;9(7):15–6.
111.
Zurück zum Zitat Zhao DL, Zhang W, Zhao HY, et al. Closed reduction, percutaneous locking plate and interlocking intramedullary nail in the treatment of middle and lower tibial shaft fractures. China Modern Doctor. 2011;49(19):42–3. Zhao DL, Zhang W, Zhao HY, et al. Closed reduction, percutaneous locking plate and interlocking intramedullary nail in the treatment of middle and lower tibial shaft fractures. China Modern Doctor. 2011;49(19):42–3.
112.
Zurück zum Zitat Liu F, Zhang ZR. Treatment of tibial fracture and analysis of its curative effect. Jilin Med J. 2011;32(36):7753–4. Liu F, Zhang ZR. Treatment of tibial fracture and analysis of its curative effect. Jilin Med J. 2011;32(36):7753–4.
113.
Zurück zum Zitat Enninghorst N, McDougall D, Hunt JJ, et al. Open tibia fractures: timely debridement leaves injury severity as the only determinant of poor outcome. J Trauma. 2011;70(2):352–6.PubMed Enninghorst N, McDougall D, Hunt JJ, et al. Open tibia fractures: timely debridement leaves injury severity as the only determinant of poor outcome. J Trauma. 2011;70(2):352–6.PubMed
114.
Zurück zum Zitat Xu JQ, Zhang SM, Chen FW, et al. Delayed union and nonunion of tibial fracture treated with interlocking intramedullary nail. Chin J Misdiagnostics. 2009;9(19):4611–2. Xu JQ, Zhang SM, Chen FW, et al. Delayed union and nonunion of tibial fracture treated with interlocking intramedullary nail. Chin J Misdiagnostics. 2009;9(19):4611–2.
115.
Zurück zum Zitat Li ZG, He SC, Zhu RX. Treatment of 127 cases of distal tibial fracture. Acta Medicinae Sinica. 2009;22(2):272–3. Li ZG, He SC, Zhu RX. Treatment of 127 cases of distal tibial fracture. Acta Medicinae Sinica. 2009;22(2):272–3.
116.
Zurück zum Zitat Mahmudi N. Comparison of open reduction and closed reduction with interlocking intramedullary nail in the treatment of tibiofibular shaft fractures. J Xinjiang Med Univ. 2009;32(10):1496–7. Mahmudi N. Comparison of open reduction and closed reduction with interlocking intramedullary nail in the treatment of tibiofibular shaft fractures. J Xinjiang Med Univ. 2009;32(10):1496–7.
117.
Zurück zum Zitat Deng HP, Lin GS, Wang ZY, et al. Comparative study of two different methods of reduction and internal fixation for surgical treatment of distal tibial fractures. J Clin Orthopaedic. 2009;12(6):658–60. Deng HP, Lin GS, Wang ZY, et al. Comparative study of two different methods of reduction and internal fixation for surgical treatment of distal tibial fractures. J Clin Orthopaedic. 2009;12(6):658–60.
118.
Zurück zum Zitat Dong JH, Han JM. Surgical treatment of tibia and fibula fracture in 128 cases. Shaanxi Med J. 2009;38(7):845–6. Dong JH, Han JM. Surgical treatment of tibia and fibula fracture in 128 cases. Shaanxi Med J. 2009;38(7):845–6.
119.
Zurück zum Zitat Fu KL. Treatment of open fracture of middle tibia with steel plate and interlocking intramedullary nail. J Med Forum. 2009;30(9):56–8. Fu KL. Treatment of open fracture of middle tibia with steel plate and interlocking intramedullary nail. J Med Forum. 2009;30(9):56–8.
120.
Zurück zum Zitat Zhou L, Duan H, Yuan XF, et al. Clinical effect comparison of interlocking intramedullary nail and compression plate in the treatment of tibial fracture. Med Pharm Yunnan. 2009;30(1):74–5. Zhou L, Duan H, Yuan XF, et al. Clinical effect comparison of interlocking intramedullary nail and compression plate in the treatment of tibial fracture. Med Pharm Yunnan. 2009;30(1):74–5.
121.
Zurück zum Zitat Lang YZ. Therapeutic effect of two surgical methods for type III A open fracture of tibia and fibula: Shanxi Medical University; 2009. Lang YZ. Therapeutic effect of two surgical methods for type III A open fracture of tibia and fibula: Shanxi Medical University; 2009.
122.
Zurück zum Zitat Wu C, Tan L, Wang YX. Comparison of percutaneous plate and external fixator for treating the open distal tibial fractures. J Clin Orthopaed. 2009;12(1):43–5. Wu C, Tan L, Wang YX. Comparison of percutaneous plate and external fixator for treating the open distal tibial fractures. J Clin Orthopaed. 2009;12(1):43–5.
123.
Zurück zum Zitat Li QM, Chen MJ, Deng JT, et al. Clinical observation of three fixation methods for tibial fracture. China J Orthop Traumatol. 2009;21(1):48–9. Li QM, Chen MJ, Deng JT, et al. Clinical observation of three fixation methods for tibial fracture. China J Orthop Traumatol. 2009;21(1):48–9.
124.
Zurück zum Zitat Yokoyama K, Itoman M, Uchino M, et al. Immediate versus delayed intramedullary nailing for open fractures of the tibial shaft: a multivariate analysis of factors affecting deep infection and fracture healing. Indian J Orthop. 2008;42(4):410–9.PubMedPubMedCentral Yokoyama K, Itoman M, Uchino M, et al. Immediate versus delayed intramedullary nailing for open fractures of the tibial shaft: a multivariate analysis of factors affecting deep infection and fracture healing. Indian J Orthop. 2008;42(4):410–9.PubMedPubMedCentral
125.
Zurück zum Zitat Aderinto J, Keating JF. Intramedullary nailing of fractures of the tibia in diabetics. J Bone Joint Surg (Br). 2008;90(5):638–42. Aderinto J, Keating JF. Intramedullary nailing of fractures of the tibia in diabetics. J Bone Joint Surg (Br). 2008;90(5):638–42.
126.
Zurück zum Zitat Lu HY, Shen RQ, Huang CM. Treatment of 256 cases of tibiofibular fracture. J Pract Orthopaed. 2007;10:627–31. Lu HY, Shen RQ, Huang CM. Treatment of 256 cases of tibiofibular fracture. J Pract Orthopaed. 2007;10:627–31.
127.
Zurück zum Zitat Hu GZ, Jin AM, Liu NF, et al. The curative effect analysis of interlocking intramedullary nail for the treatment of tibia fracture. Chin J Trad Med Traumatol Orthoped. 2007;7:14–6. Hu GZ, Jin AM, Liu NF, et al. The curative effect analysis of interlocking intramedullary nail for the treatment of tibia fracture. Chin J Trad Med Traumatol Orthoped. 2007;7:14–6.
128.
Zurück zum Zitat Zeng CJ. Therapeutic effect analysis of three treatment methods for tibial fracture. Pract Prev Med. 2006;4:1007–8. Zeng CJ. Therapeutic effect analysis of three treatment methods for tibial fracture. Pract Prev Med. 2006;4:1007–8.
129.
Zurück zum Zitat Zhang YL, Wang YS, Zhang SQ. Comparison of three treatment methods for tibial fracture. Guangdong Med J. 2006;10:1516–8. Zhang YL, Wang YS, Zhang SQ. Comparison of three treatment methods for tibial fracture. Guangdong Med J. 2006;10:1516–8.
130.
Zurück zum Zitat Zhao XZ, Yuan XQ, Feng Q. Treatment experience of 78 cases of tibiofibular diaphyseal fracture. J Yanan Univ (Medical Sciences). 2006;2:37–67. Zhao XZ, Yuan XQ, Feng Q. Treatment experience of 78 cases of tibiofibular diaphyseal fracture. J Yanan Univ (Medical Sciences). 2006;2:37–67.
131.
Zurück zum Zitat Zhu GH. Comparison on efficacy of interlocking intramedullary nail and compression plate in treating tibial shaft fractures. J Elinical Res. 2005;10:1418–20. Zhu GH. Comparison on efficacy of interlocking intramedullary nail and compression plate in treating tibial shaft fractures. J Elinical Res. 2005;10:1418–20.
132.
Zurück zum Zitat Harris I, Lyons M. Reoperation rate in diaphyseal tibia fractures. ANZ J Surg. 2005;75(12):1041–4.PubMed Harris I, Lyons M. Reoperation rate in diaphyseal tibia fractures. ANZ J Surg. 2005;75(12):1041–4.PubMed
133.
Zurück zum Zitat Cole PA, Zlowodzki M, Kregor PJ. Treatment of proximal tibia fractures using the less invasive stabilization system: surgical experience and early clinical results in 77 fractures. J Orthop Trauma. 2004;18(8):528–35.PubMed Cole PA, Zlowodzki M, Kregor PJ. Treatment of proximal tibia fractures using the less invasive stabilization system: surgical experience and early clinical results in 77 fractures. J Orthop Trauma. 2004;18(8):528–35.PubMed
134.
Zurück zum Zitat Bonnevialle P, Cariven P, Bonnevialle N, et al. Segmental tibia fractures: a critical retrospective analysis of 49 cases. Rev Chir Orthop Reparatrice Appar Mot. 2003;89(5):423–32.PubMed Bonnevialle P, Cariven P, Bonnevialle N, et al. Segmental tibia fractures: a critical retrospective analysis of 49 cases. Rev Chir Orthop Reparatrice Appar Mot. 2003;89(5):423–32.PubMed
135.
Zurück zum Zitat Harvey EJ, Agel J, Selznick HS, et al. Deleterious effect of smoking on healing of open tibia-shaft fractures. Am J Orthop (Belle Mead NJ). 2002;31(9):518–21. Harvey EJ, Agel J, Selznick HS, et al. Deleterious effect of smoking on healing of open tibia-shaft fractures. Am J Orthop (Belle Mead NJ). 2002;31(9):518–21.
136.
Zurück zum Zitat Keating JF, O'Brien PI, Blachut PA, et al. Reamed interlocking intramedullary nailing of open fractures of the tibia. Clin Orthop Relat Res. 1997;338:182–91. Keating JF, O'Brien PI, Blachut PA, et al. Reamed interlocking intramedullary nailing of open fractures of the tibia. Clin Orthop Relat Res. 1997;338:182–91.
137.
Zurück zum Zitat Zura R, Xiong Z, Einhorn T, et al. Epidemiology of fracture nonunion in 18 human bones. Jama Surg. 2016;151(11):e162775.PubMed Zura R, Xiong Z, Einhorn T, et al. Epidemiology of fracture nonunion in 18 human bones. Jama Surg. 2016;151(11):e162775.PubMed
138.
Zurück zum Zitat Goldner WS, Stoner JA, Thompson J, et al. Prevalence of vitamin D insufficiency and deficiency in morbidly obese patients: a comparison with non-obese controls. Obes Surg. 2008;18(2):145–50.PubMed Goldner WS, Stoner JA, Thompson J, et al. Prevalence of vitamin D insufficiency and deficiency in morbidly obese patients: a comparison with non-obese controls. Obes Surg. 2008;18(2):145–50.PubMed
139.
Zurück zum Zitat Chakkalakal DA. Alcohol-induced bone loss and deficient bone repair. Alcohol Clin Exp Res. 2005;29(12):2077–90.PubMed Chakkalakal DA. Alcohol-induced bone loss and deficient bone repair. Alcohol Clin Exp Res. 2005;29(12):2077–90.PubMed
140.
Zurück zum Zitat Simon AM, Manigrasso MB, O'Connor JP. Cyclo-oxygenase 2 function is essential for bone fracture healing. J Bone Miner Res. 2002;17(6):963–76.PubMed Simon AM, Manigrasso MB, O'Connor JP. Cyclo-oxygenase 2 function is essential for bone fracture healing. J Bone Miner Res. 2002;17(6):963–76.PubMed
141.
Zurück zum Zitat Vuolteenaho K, Moilanen T, Moilanen E, et al. Non-steroidal anti-inflammatory drugs, cyclooxygenase-2 and the bone healing process. Basic Clin Pharmacol Toxicol. 2008;102(1):10–4.PubMed Vuolteenaho K, Moilanen T, Moilanen E, et al. Non-steroidal anti-inflammatory drugs, cyclooxygenase-2 and the bone healing process. Basic Clin Pharmacol Toxicol. 2008;102(1):10–4.PubMed
142.
Zurück zum Zitat Bhattacharyya T, Levin R, Vrahas MS, et al. Nonsteroidal antiinflammatory drugs and nonunion of humeral shaft fractures. Arthritis Rheum. 2005;53(3):364–7.PubMed Bhattacharyya T, Levin R, Vrahas MS, et al. Nonsteroidal antiinflammatory drugs and nonunion of humeral shaft fractures. Arthritis Rheum. 2005;53(3):364–7.PubMed
143.
Zurück zum Zitat Kumar A, Charlebois SJ, Cain EL, et al. Effect of fibular plate fixation on rotational stability of simulated distal tibial fractures treated with intramedullary nailing. J Bone Joint Surg Am. 2003;85(4):604–8.PubMed Kumar A, Charlebois SJ, Cain EL, et al. Effect of fibular plate fixation on rotational stability of simulated distal tibial fractures treated with intramedullary nailing. J Bone Joint Surg Am. 2003;85(4):604–8.PubMed
144.
Zurück zum Zitat Strauss EJ, Alfonso D, Kummer FJ, et al. The effect of concurrent fibular fracture on the fixation of distal tibia fractures: a laboratory comparison of intramedullary nails with locked plates. J Orthop Trauma. 2007;21(3):172–7.PubMed Strauss EJ, Alfonso D, Kummer FJ, et al. The effect of concurrent fibular fracture on the fixation of distal tibia fractures: a laboratory comparison of intramedullary nails with locked plates. J Orthop Trauma. 2007;21(3):172–7.PubMed
145.
Zurück zum Zitat Taylor BC, Hartley BR, Formaini N, et al. Necessity for fibular fixation associated with distal tibia fractures. Injury. 2015;46(12):2438–42.PubMed Taylor BC, Hartley BR, Formaini N, et al. Necessity for fibular fixation associated with distal tibia fractures. Injury. 2015;46(12):2438–42.PubMed
146.
Zurück zum Zitat Pintore E, Maffulli N, Petricciuolo F. Interlocking nailing for fractures of the femur and tibia. Injury. 1992;23(6):381–6.PubMed Pintore E, Maffulli N, Petricciuolo F. Interlocking nailing for fractures of the femur and tibia. Injury. 1992;23(6):381–6.PubMed
147.
Zurück zum Zitat Sayana MK, Davis BJ, Kapoor B, et al. Fracture strain and stability with additional locking screws in intramedullary nailing: a biomechanical study. J Trauma. 2006;60(5):1053–7.PubMed Sayana MK, Davis BJ, Kapoor B, et al. Fracture strain and stability with additional locking screws in intramedullary nailing: a biomechanical study. J Trauma. 2006;60(5):1053–7.PubMed
148.
Zurück zum Zitat Li H, Yu D, Wu S, et al. Multiple Comparisons of the Efficacy and Safety for Seven Treatments in Tibia Shaft Fracture Patients. Front Pharmacol. 2019;10:197.PubMedPubMedCentral Li H, Yu D, Wu S, et al. Multiple Comparisons of the Efficacy and Safety for Seven Treatments in Tibia Shaft Fracture Patients. Front Pharmacol. 2019;10:197.PubMedPubMedCentral
149.
Zurück zum Zitat Ebraheim NA, Evans B, Liu X, et al. Comparison of intramedullary nail, plate, and external fixation in the treatment of distal tibia nonunions. Int Orthop. 2017;41(9):1925–34.PubMed Ebraheim NA, Evans B, Liu X, et al. Comparison of intramedullary nail, plate, and external fixation in the treatment of distal tibia nonunions. Int Orthop. 2017;41(9):1925–34.PubMed
150.
Zurück zum Zitat Andalib A, Sheikhbahaei E, Andalib Z, et al. Effectiveness of minimally invasive plate osteosynthesis (MIPO) on comminuted tibial or femoral fractures. Arch Bone Jt Surg. 2017;5(5):290–5.PubMedPubMedCentral Andalib A, Sheikhbahaei E, Andalib Z, et al. Effectiveness of minimally invasive plate osteosynthesis (MIPO) on comminuted tibial or femoral fractures. Arch Bone Jt Surg. 2017;5(5):290–5.PubMedPubMedCentral
151.
Zurück zum Zitat Osti L, Del Buono A, Maffulli N. Application of pulsed electromagnetic fields after microfractures to the knee: a mid-term study. Int Orthop. 2015;39(7):1289–94.PubMed Osti L, Del Buono A, Maffulli N. Application of pulsed electromagnetic fields after microfractures to the knee: a mid-term study. Int Orthop. 2015;39(7):1289–94.PubMed
152.
Zurück zum Zitat Gougoulias N, Khanna A, Maffulli N. Open tibial fractures in the paediatric population: a systematic review of the literature. Br Med Bull. 2009;91:75–85.PubMed Gougoulias N, Khanna A, Maffulli N. Open tibial fractures in the paediatric population: a systematic review of the literature. Br Med Bull. 2009;91:75–85.PubMed
Metadaten
Titel
Prevalence and influencing factors of nonunion in patients with tibial fracture: systematic review and meta-analysis
verfasst von
Ruifeng Tian
Fang Zheng
Wei Zhao
Yuhui Zhang
Jinping Yuan
Bowen Zhang
Liangman Li
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Journal of Orthopaedic Surgery and Research / Ausgabe 1/2020
Elektronische ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-020-01904-2

Weitere Artikel der Ausgabe 1/2020

Journal of Orthopaedic Surgery and Research 1/2020 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

TEP mit Roboterhilfe führt nicht zu größerer Zufriedenheit

15.05.2024 Knie-TEP Nachrichten

Der Einsatz von Operationsrobotern für den Einbau von Totalendoprothesen des Kniegelenks hat die Präzision der Eingriffe erhöht. Für die postoperative Zufriedenheit der Patienten scheint das aber unerheblich zu sein, wie eine Studie zeigt.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.