Skip to main content
Erschienen in: Clinical and Translational Allergy 1/2015

Open Access 01.12.2015 | Review

Pollen Allergies in Humans and their Dogs, Cats and Horses: Differences and Similarities

verfasst von: Erika Jensen-Jarolim, Lukas Einhorn, Ina Herrmann, Johann G Thalhammer, Lucia Panakova

Erschienen in: Clinical and Translational Allergy | Ausgabe 1/2015

Abstract

Both humans and their most important domestic animals harbor IgE and a similar IgE receptor repertoire and expression pattern. The same cell types are also involved in the triggering or regulation of allergies, such as mast cells, eosinophils or T-regulatory cells. Translational clinical studies in domestic animals could therefore help cure animal allergies and at the same time gather knowledge relevant to human patients. Dogs, cats and horses may spontaneously and to different extents develop immediate type symptoms to pollen allergens. The skin, nasal and bronchial reactions, as well as chronic skin lesions due to pollen are in principle comparable to human patients. Pollen of various species most often causes allergic rhinitis in human patients, whereas in dogs it elicits predominantly eczematous lesions (canine atopic dermatitis), in horses recurrent airway obstruction or hives as well as pruritic dermatitis, and in cats bronchial asthma and so-called cutaneous reactive patterns (eosinophilic granuloma complex, head and neck pruritus, symmetric self-induced alopecia). In human allergy-specific IgE detection, skin tests or other allergen provocation tests should be completed. In contrast, in animals IgE and dermal tests are regarded as equally important and may even replace each other. However, for practical and economic reasons intradermal tests are most commonly performed in a specialized practice. As in humans, in dogs, cats and horses allergen immunotherapy leads to significant improvement of the clinical symptoms. The collected evidence suggests that canines, felines and equines, with their spontaneous allergies, are attractive model patients for translational studies.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

EJJ: Study design and writing of the manuscript. LE: Help in writing of the manuscript, design of tables and literature research. IH: Advice in veterinary aspects of allergy, help in literature research, design of tables and writing of the manuscript. JT: Advice in study design and scientific contributions to manuscript writing. LP: Clinical and scientific advice in veterinary aspects of allergy, help in literature research, and writing of the manuscript. All authors read and approved the final manuscript.
Abkürzungen
ALD
Atopic-like dermatitis
ARIA
Allergic Rhinitis and its Impact on Asthma
CAD
Canine atopic dermatitis
COPD
Chronic obstructive pulmonary disease
FAD
Flea allergy dermatitis
FIAD
Food induced allergic dermatitis
IDT
Intradermal skin test
RAO
Recurrent airway obstruction
SCORFAD
SCORing feline allergic dermatitis
SIT
(allergen-) specific immunotherapy
SPT
Skin prick test

Introduction

Human pollen allergy

It is of great interest to compare the sensitization to pollen allergens and subsequent clinical manifestations between human patients and their domestic animals, such as dogs, cats and horses [1]. Generally, the sensitization to pollen allergens is high in Europe and ranges up to almost 70% in allergic human subjects [2]. For standard diagnosis the skin prick test (SPT) is an important cornerstone. In SPT an allergen is brought into the skin only epicutaneously, and a wheal and flare diameter above the positive control, or at 3 mm diameter, are counted as positive. The atopy patch test is a possible alternative [3]. Depending on the geographical exposure, accross Europe a panel of 18 allergens is needed for diagnosis, and there are efforts to standardize the panel of allergens used for diagnosis [4]. The diagnosis in human allergic patients is therefore based on history, skin test and determination of allergen-specific IgE, completed by nasal conjunctival, or pulmonary function tests (Figure 1). Whereas the overwhelming number of tests are still performed with allergen extracts, component-resolved allergy diagnosis is becoming increasingly routine for allergic human (but not animal) patients through single molecule CAP testing or the use of the ImmunoCAP ISAC112 microarray [5], where 28 of the 112 spotted molecules represent pollen allergen molecules.
In human patients rhinitis is the most prominent manifestation of pollen allergy, often in connection to conjunctivitis. Pollen allergies are associated with an oral allergy syndrome in 23% of cases [6]. More importantly, according to the “united airways” principle there is a significant correlation of allergic rhinitis with asthma, prompting the ARIA (Allergic Rhinitis and its Impact on Asthma) –initiative by the World Allergy Organization [7]. In human allergies pollen, in addition to house dust mites, animal dander and mold, play a dominant role. Pollen allergy has a more significant effect on the quality of life in patients than allergy to house dust mites, even up to several years after exposure [8], becoming worse when rhinitis is combined with asthma [9]. Pollen allergy can be effectively treated by allergen immunotherapy, thereby enhancing the quality of life [10].

Review

Pollen allergies in dog, cats and horses - seasonality

Generally, clinical signs of pollen allergy in these species tend to worsen seasonally if combined with other allergies, or in the case of pollen-only allergies, are strictly seasonal. Depending on the severity of clinical signs, a complete diagnostic work-up might be performed within the first season. In patients with a suggestive history and clinical signs of pollen allergy (see below for species-specific differences), the diagnostic work-up consists of ruling out any other differential diagnoses (e.g. parasites, flea allergy, food allergy and other species dependent disorders- e.g. Erythema multiforme in horses with signs of urticaria, or painful disorders in cats with self induced alopecia of the abdominal skin) (Figure 1). After this work-up, allergy testing using intradermal tests or serology (see below) is performed. In patients with known seasonal allergic disease in e.g. second season or even later, allergy testing is usually performed without ruling out other less probable differentials, such as food allergy.

Pollen allergies in the dog (Canis familiaris)

Pollen hypersensitivity is associated with Canine Atopic Dermatitis (CAD), a disease associated with high specific IgE against environmental allergens [11]. Generally, pollen sensitization is believed to be of minor impact in allergic dogs even though classical studies indicated similar nasal congestion symptoms in humans and dogs, for instance to ragweed pollen exposure [12]. The clinical picture differs from that of human rhinitis patients suffering from pollen allergy. In studies on nasal discharges in dogs, allergic rhinitis due to pollen allergens was excluded as a cause [13], rather nasal encounter with molds may play a role [14,15]. Thus according to veterinary practice, the canine allergic patient most often presents with pruritic allergic dermatitis (Figure 2). Here, differential diagnoses to e.g. food-induced allergic dermatitis have to be ruled out first. Either (for practical reasons) intradermal tests or determination of specific serum IgE lead then to the diagnosis of canine atopic dermatitis (Figure 1). Whenever pollen sensitization is diagnosed it may be associated with conjunctivitis in 21% of the dogs [16] and with rhinitis, but it is not associated with asthma [16,17]. The antigen-driven acute and chronic skin inflammation is usually termed CAD by the veterinary dermatologist, is seen independent of a true atopic background in the human sense, but associated with specific IgE [18]. The nomenclature of canine allergic diseases reflects that the skin is the most prominently affected organ: CAD, food induced allergic dermatitis (FIAD), ALD atopic-like dermatitis (ALD), or FAD (Flea Allergy Dermatitis); (asthma and anaphylaxis in dogs are only seen in experimental models, in rare cases anaphylaxis may be drug- or insect venom-induced). Like in humans sensitizations may be associated with an atopic predisposition, which in dogs strongly varies depending on the breed. In a US study 9% of 30.000 investigated dogs showed signs of CAD, among them a series of breeds being at higher risk [19] (Table 1, Figure 3), such as the Labrador [20], Maltese or Shih-Tzu in a Korean study - where in fact sensitizations were mostly found to indoor but not pollen allergens [21]. In a Swiss study, WHWT (White Wine terrier), boxer, French bulldog, Vizsla, bullterrier and Rhodesian ridgeback were at higher risk; additionally, pugs and Dalmatians were over-represented although without significance [22]. Atopic predisposition may also enable early sensitization to outdoor allergens, as was shown in classical [23] and novel dog models where ragweed exposure lead to an asthmatic phenotype [24].
Table 1
Like atopic humans some domestic animals may have a higher genetic risk to develop allergies
Dogs [ 19 - 21 ]
Cats [ 41 ]
Horses [ 60 ]
Retrievers (Labrador, Golden)
Abyssinian cat
Dutch Warmblood
Setters (English, Irish)
Devon rex cat
Morgan
Terriers (Boston, Cairn, Fox, Sealyham, Scottish, West Highland White, Wheaton)
 
Swedish Warmblood
Bulldog (French)
 
Oldenburg
Boxer
 
Hackney horse
Cocker Spaniel
 
Paso fino
Collie
 
Polish Arabian
Foxhound
 
Arab/Saddlebred cross
Dalmatian
  
Lhasa Apso
  
Maltese
  
Miniature Schnauzer Pug
  
Rhodesian ridgeback
  
Shih-Tzu
  
Shar Peis
  
Vizsla
  
Most important atopic breeds are illustrated in Figure 3.
Pollen allergen sensitization in dogs is evaluated by intradermal skin testing (IDT), injecting the allergen extracts into the shaved skin of the lateral thorax or abdomen [25]. Usually, the animals have therefore to be sedated or anesthetized. Reddishness, wheal and flare reactions of half of the size of the positive control (histamine) are interpreted as specific reaction. Generally, dogs react to pollen from grasses, trees and weeds (Table 2). The results of our literature research show a high variability in prevalence, probably caused by different geographic regions and lifestyle; insufficient data were found for cats and horses.
Table 2
Overview of types of pollen causing atopic/allergic diseases in domestic animals and respective references *)
Species
Dog
Cat
Horse
Grasspollen
   
Orchard
82% [74]
8,3% [77]
 
50% [75]
3-8% [76]
Timothy
76% [74]
  
15-16% [76]
Tree pollen
   
Birch
35% [75]
0% [77]
0% [78]
14,6% [29]
4,1% [77]
5-10% [76]
Ash
71% [74]
  
11,6% [29]
6% [76]
Japanese Ceder
50% [31]
  
Oak
78% [74]
  
12% [29]
14% [79]
7-16% [76]
Weed pollen
   
Ragweed
59% [75]
0% [77]
0% [78]
13,6% [29]
Mugwort
52% [75]
0% [77]
0% [78]
11,9% [29]
9,6% [36]
6-10% [76]
Red Clover
5-10% [76]
  
*) The results show a high variability probably caused by different geographic regions and life style.
In contrast, a human allergist may get the impression that in veterinary practices IgE testing has a lower impact, due to a lack of standardized allergen extracts or reliable anti-dog IgE reagents. Interestingly, the human alpha chain of the high affinity receptor FcεRI is used in a commercial test for the detection of e.g. canine IgE [26]. This is possible due to a 54% amino acid identity and 68% similarity among the human and canine alpha chain and precise knowledge of the amino acids involved in the IgE binding [27]. To the best of our knowledge, the ISAC microarray testing has not been introduced into veterinary allergy diagnosis so far.

Specific sensitizations to pollen in canine versus human studies

In more than 1000 atopic dogs in Australia, a 10 to 25% sensitization to pollen of any kind (grass, tree, weed) was determined by intradermal tests [25]. A more recent cross-sectional study in 651 atopic dogs indicated that sensitization between tree, weed and grass pollen, but not to other allergen sources, were in 94% of cases statistically associated [28]. The authors pointed out that sensitization must clearly be distinguished from clinically relevant sensitization leading to symptoms.
No seasonal, sex or age dependent risk factors were observed in a recent comprehensive study of canine grass pollen sensitization in Western France [29]. Importantly, like in humans, a significant increase in the number of dogs sensitized to grass pollen was observed, namely 14,4% between 1999 and 2002, and 27,7% between 2007 and 2010. More than 80% of the 262 tests were positive for one allergen out of 20-38 extracts tested (among them 4 grass pollen, 8 weed pollen and 17 tree pollen) and 21% for at least one pollen allergen. The diagnosis of the genuine sensitizing allergen may be complicated by cross reactivities. Müller et al. proposed that, although positive reactions among botanically closely related plant allergens may be significantly more common than those among nonrelated allergens, cross reactivity in 30% of the tested dogs was not pronounced enough to warrant testing and desensitization using allergen mixes [25,30].
Exposure to pollen depends on the local plant species, thus geographical differences enable distinct sensitizations. Masuda et al tested 42 Japanese atopic dogs by IDT and determined specific IgE using 26 allergen extracts from 8 allergen sources [31]. Japanese cedar (Cryptomeria japonica) pollen, after house dust mites, was the second most important allergen in this area, with a sensitization prevalence of 50% and a positive IgE reactivity of 16,7% of tested pet dogs. The same sensitization pattern was seen in the Japanese human patients [32], where besides house dust mites, cedar pollen has become an important health challenge [33]. In a more recent approach, the sensitization to single allergen molecules from Japanese cedar pollen were evaluated more precisely in a component-resolved manner in 15 dogs. Besides IgE to Japanese cedar molecules Cry j 1 and Cry j 3, 76% of tested dogs showed IgE to Cry j 6, hence identifying a new major canine allergen [34]. Interestingly, in canine pollen allergy, an oral allergy syndrome to related foods can occur likely due to cross reactivity between cedar pollen and tomato [35], although this has only been reported sporadically. The results from a study in the Bangkok area used a mix of 24 different pollen types in 114 atopic dogs [36], but in this population pollen allergens seem to play a minor role as compared to dust mite, cockroach, ant and other insect allergens. This mirrors the situation in Thai children where the prevalence of grass pollen allergy was below 5% as compared to 50% house dust mite and 23% cockroach sensitization [37].

Clinical treatment: SIT

Interestingly, CAD is regularly and with significant success treated by the veterinary dermatologist through allergen immunotherapy [38]. In fact, the International Task Force on Canine Atopic Dermatitis recommends offering SIT to each canine patient sensitized to environmental allergens including pollen [39]. In human atopic eczema treatment SIT is a controversial topic, but here as well it may improve allergic symptoms even in settings of atopic predisposition [40]. Generally, the dose and frequency of injections in allergic dogs were, at least in 2001, less harmonized than in human allergology [41] and were more recently compared in [42].

Pollen allergies in Cats (Felis catus domestica)

In a recent retrospective study of 45 Australian cats with atopic dermatitis, strong intradermal test reactions were most frequently seen to pollen allergens (61%) [43]. In fact, in pollen-allergic cats the skin is most often affected by pruritic allergic /atopic lesions, but cats may also present with allergic rhinitis, such as the Japanese cat which was diagnosed with cedar pollinosis [44]. Alternatively, cats with asthma may present with spastic coughing, where bronchoalveolar lavage as the next diagnostic step may reveal eosinophilic inflammation (Figure 1). Intradermal tests will lead then to the final diagnosis, whereas IgE determination has a lower impact.
The differential diagnosis in lower airway diseases associated with cough, respiratory distress, or both may be bronchitis or asthma, pneumonia, or neoplasms [45]. Feline asthma is characterized by eosinophilic inflammation and cats have been used as animal models for human asthma [46,47]. One study reported that domestic mixed breeds, Abyssinian and Devon rex cats are predisposed, compared to the population of the dermatology referral service [43]. The comprehensive central registry of all pet animals in Switzerland enabled the statistical evaluation in this study.
Clinical signs of cutaneous hypersensitivities in cats are not pathognomonic and include eosinophilic granuloma complex and self-induced hair-loss, and should be scored by an objective scale (SCORing Feline Allergic Dermatitis; SCORFAD) [48]. The AD in cats is not necessarily connected with the levels of IgE or the diagnosis of specific IgE antibodies in serum [49]. IgE to environmental allergens including pollen can be even found in pathogen-free housed cats [50,51]. When two groups of 10 cats each were intradermally tested, immediate reactivity was reported as IgE- as well as IgG-mediated reaction, but also explained by nonspecific mast cell degranulation [52]. The authors proposed the prior injection of a fluorescent agent in order to enhance the fidelity of interpretation, a procedure connected with substantially higher strain for the animals. Even in early studies specific IgG directed against ryegrass pollen, in addition to flea and house dust mite allergens, was reported and proposed as the second Th2 antibody class of relevance in feline allergy [53]. Rather than pollen, house dust mite allergens are found abundantly in the sleeping places of cats, but are not yet definitely proven to be causative allergens in feline AD or asthma [51].
Itchy inflammatory allergic skin diseases were successfully treated in 100 cats by daily oral immunosuppression with Cyclosporine over a six-week period [54]. Generally, allergen immunotherapy is described for cats, but is not yet standard care in veterinary dermatology. This is possibly due to the fact that the underlying IgE-based diagnosis for identification of the relevant allergen still lacks sufficient specificity [55]. Elimination diets, necessary for ruling out food hypersensitivities in cats and other species with non-seasonal cutaneous hypersensitivities, are usually performed prior to aeroallergen testing. These diets are more difficult to perform in cats than in dogs, so the owner often cannot follow through on one important step in diagnosing allergies. Another reason is that cats usually tolerate glucocorticoids much better than dogs. As mentioned above, Cyclosporine A is also a very useful drug in feline allergic dermatitis, since it is effective and achievable treatment option in these species [56,57].
A study using the human FcεRI alpha chain for detecting feline IgE [26], which has a 56% amino acid identity and 72% homology, resulted in the conclusion that IgE detection did not diagnose feline food or environmental allergies, but was effective in diagnosing insect hypersensitivities [49]. Pilot studies with rush allergen immunotherapy with good tolerability were described in 4 cats [58]. In 81 cats SIT significantly improved the dermatological conditions between 93.6% (linear granuloma) and 60% (self-induced hair loss), with an 86.1% improvement in asthma [59]. Studies on subcutaneous versus mucosal (nasal) allergen immunotherapy or novel adjuvants were done in feline allergic asthma models, including Bermuda grass pollen. The authors reported improvement of the asthma, increase of the IL-4:IFN-gamma ratio and decline of bronchial eosinophils, as well as good tolerability [46]. Reinero et al. reported that in cats allergen immunotherapy may be associated with induction of T-regulatory cells and IL-10, and also cross-protect to non-related allergens, such as Bermuda grass to house dust mite allergens [60].

Do horses (Equus caballus domesticus) suffer from pollen allergies?

In fact, horses do develop respiratory and skin diseases (urticaria, atopic eczema) due to allergens. Equine IgE can be detected by in vitro diagnosis. In this case the human alpha chain can also be used due to its 64% amino acid identity and 76% homology to the equine counterpart as evaluated by our own BLAST search. Moreover, in horses allergen immunotherapy is regularly done [61]. Intradermal allergy tests or serum IgE tests may be chosen for further work-up and diagnosis for either skin or respiratory allergy (Figure 1).
Again, several breeds can be called atopic and therefore are more prone to allergies; in one study, Dutch warmbloods, Morgans, Swedish Warmbloods, Oldenburgs, Hackney horses, Paso finos, Polish Arabians and Arabian/Saddlebred cross were overrepresented [62] (Table 1, Figure 3). In equine allergic respiratory disease the symptoms may range from rhinitis and asthma to chronic dry cough and emphysema [63], indicating that numerous immediate-type, delayed-immune complex or cellular hyperreactivities can be causative in acute recurrent airway obstruction (RAO) or chronic obstructive pulmonary disease (COPD). For diagnosing RAO a lung function test is helpful. Positive correlations between symptom severity and exogenous factors such as climatic conditions, rainfall and seasonal pollen counts have been observed [64]. Although recurrent obstruction may be clearly associated with the pollen season, the terminology is ‘obstructive pulmonary disease’, not asthma [65].
Additionally, pruritic skin diseases as well as recurrent urticaria may be observed in atopic horses. Furthermore, atopic dermatitis in equines is becoming a more commonly recognized disease, especially due to newer diagnostic methods and treatment options. It is interpreted in horses as an inherited predisposition to form specific antibodies to environmental allergens such as pollens of grasses, weeds and trees, but also to mold and dust. Clinical signs are pruritus and secondary intense self-trauma, crusting, alopecia with chronic lesions including lichenification and hyperpigmentation. Affected areas are often the ears, face, ventrum and legs. The clinical signs are similar to those caused by insect hypersensitivity and it is extremely common to have both diseases in the same horse [66].
Diagnosis of hypersensitivity in horses can be made based on clinical symptoms, ruling out other differential diagnoses (e.g. parasites, food hypersensitivities and insect hypersensitivities especially in the dermatologic patients), and by serology with specific IgE diagnosis and intradermal testing (Figure 1). It is substantial to differentiate between asthma and recurrent airway obstruction (RAO), as for the latter the contribution of IgE or IgG is still a matter of debate. In a recent study “reaginic” antibodies of the IgE and IgG class were described as participating in the pathophysiology of asthma and RAO [66], but also delayed type reactions were reported [67]. Equine RAO studies mostly identified Aspergillus as a prominent allergen and include today component-resolved diagnosis [67,68]. It may be anticipated that a similar pathophysiological principle, IgE and IgG, will possibly account for pollen allergy. Later studies suggest that better diagnostic tools could improve the fidelity of equine allergy diagnosis. In an approach with 64 horses specific reactivity could be found to grass pollen allergens when antisera to peptides from equine IgE were used [69].
Heaves is a recurrent neutrophilic lung disease in horses with clinical similarity to asthma [70] but likely caused by molds from airborne dust and not by pollen [71]. Interestingly, an enhanced apoptosis rate in CD4 and CD8 T-cells are seen in horses affected by RAO [72].
SIT can be performed in horses. For instance, 54 horses suffering from atopic skin diseases including urticaria and pruritus were treated with SIT successfully [62]. Although 75% of horse owners decided to discontinue after a period of between 6 months and 8 years, approximately half of the discontinued horses profited from the therapy and stayed free from recurrence of clinical signs. The antigens used were extracts from Arizona cypress pollen, red cedar pollen, in addition to sheep epithelia, box elder, house dust mix, Dermatophagoides farinae, Dermatophagoides pteronyssinus, horsefly, flea, Culicoides, black ant, corn, grain mill dust and grain smut. Of the 27 horses that were reported to benefit from SIT, 13 horses had their SIT formulated based on the results of IDT, nine had their SIT based on a serum test, and five had both an IDT and a serum test. A chi-square analysis used to compare the success proportions of SIT between skin tests, serum tests and both showed no statistical difference between the three groups.

Conclusions

Pollen allergens in human allergic patients are mainly responsible for rhinitis and asthma, whereas in canines they predominantly cause canine atopic dermatitis, in cats rhinitis, asthma and dermatitis, and in horses recurrent urticaria, pruritic dermatitis and recurrent airway obstruction (in the latter species not called asthma). Generally, allergenic pollens that cause human disease are relevant for our domestic animals, at least for dogs (Table 2). The human and veterinary diagnosis differs slightly depending on the species, but clinical pictures are similar (Figures 1 and 2). Several breeds are at a significantly higher risk of developing allergic diseases (Table 1, Figure 3). IgE testing with extracts or molecules represents an indispensable cornerstone in human allergy diagnosis, but has not yet reached the same high fidelity in IgE testing of allergic dogs, cats and horses. This may be due to distinct pathomechanisms or a lack of optimized diagnostic tools. Therefore, in animals intradermal tests rather than epidermal prick tests are important tools for allergy diagnosis. In animals, but not in human allergic patients, the IgE test and intradermal test are regarded equal and may replace each other [73]. Allergen immunotherapy is a reliable instrument to reduce clinical symptoms both in humans and their allergic domestic animals.

Acknowledgements

We thank Ms. Amelia Wein for proofreading. Further, we are much obliged to Mr. Michael Bernkopf for pictures of three dog breeds, and Mrs. Sibylle Gref for providing pictures of Devon cats. Further we would like to thank all those who provided great animal pictures under the public domains and w:de:Creative Commons license on www.​pixabay.​com and http://​commons.​wikimedia.​org/​ which enabled us to compose Figure 3.
This work was supported by grants from the Austrian Science Fund FWF: SFB F4606-B19 and MCCA W1248-B13.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

EJJ: Study design and writing of the manuscript. LE: Help in writing of the manuscript, design of tables and literature research. IH: Advice in veterinary aspects of allergy, help in literature research, design of tables and writing of the manuscript. JT: Advice in study design and scientific contributions to manuscript writing. LP: Clinical and scientific advice in veterinary aspects of allergy, help in literature research, and writing of the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Schafer T, Merkl J, Klemm E, Wichmann HE, Ring J. We and our pets: allergic together? Acta Vet Hung. 2008;56:153–61.CrossRefPubMed Schafer T, Merkl J, Klemm E, Wichmann HE, Ring J. We and our pets: allergic together? Acta Vet Hung. 2008;56:153–61.CrossRefPubMed
2.
Zurück zum Zitat Bousquet PJ, Burbach G, Heinzerling LM, Edenharter G, Bachert C, Bindslev-Jensen C, et al. GA2LEN skin test study III: minimum battery of test inhalent allergens needed in epidemiological studies in patients. Allergy. 2009;64:1656–62.CrossRefPubMed Bousquet PJ, Burbach G, Heinzerling LM, Edenharter G, Bachert C, Bindslev-Jensen C, et al. GA2LEN skin test study III: minimum battery of test inhalent allergens needed in epidemiological studies in patients. Allergy. 2009;64:1656–62.CrossRefPubMed
3.
Zurück zum Zitat Necas M. Atopy patch testing with airborne allergens. Acta Dermatovenerol Alp Panonica Adriat. 2013;22:39–42. Necas M. Atopy patch testing with airborne allergens. Acta Dermatovenerol Alp Panonica Adriat. 2013;22:39–42.
4.
Zurück zum Zitat Heinzerling L, Frew AJ, Bindslev-Jensen C, Bonini S, Bousquet J, Bresciani M, et al. Standard skin prick testing and sensitization to inhalant allergens across Europe–a survey from the GALEN network. Allergy. 2005;60:1287–300.CrossRefPubMed Heinzerling L, Frew AJ, Bindslev-Jensen C, Bonini S, Bousquet J, Bresciani M, et al. Standard skin prick testing and sensitization to inhalant allergens across Europe–a survey from the GALEN network. Allergy. 2005;60:1287–300.CrossRefPubMed
5.
Zurück zum Zitat Canonica GW, Ansotegui IJ, Pawankar R, Schmid-Grendelmeier P, van Hage M, Baena-Cagnani CE, et al. A WAO - ARIA - GA(2)LEN consensus document on molecular-based allergy diagnostics. World Allergy Organ J. 2013;6:17.CrossRefPubMedCentralPubMed Canonica GW, Ansotegui IJ, Pawankar R, Schmid-Grendelmeier P, van Hage M, Baena-Cagnani CE, et al. A WAO - ARIA - GA(2)LEN consensus document on molecular-based allergy diagnostics. World Allergy Organ J. 2013;6:17.CrossRefPubMedCentralPubMed
6.
Zurück zum Zitat Dondi A, Tripodi S, Panetta V, Asero R, Businco AD, Bianchi A, et al. Pollen-induced allergic rhinitis in 1360 Italian children: comorbidities and determinants of severity. Pediatr Allergy Immunol. 2013;24:742–51.CrossRefPubMed Dondi A, Tripodi S, Panetta V, Asero R, Businco AD, Bianchi A, et al. Pollen-induced allergic rhinitis in 1360 Italian children: comorbidities and determinants of severity. Pediatr Allergy Immunol. 2013;24:742–51.CrossRefPubMed
7.
Zurück zum Zitat Bousquet J, Schunemann HJ, Samolinski B, Demoly P, Baena-Cagnani CE, Bachert C, et al. Allergic Rhinitis and its Impact on Asthma (ARIA): achievements in 10 years and future needs. J Allergy Clin Immunol. 2012;130:1049–62.CrossRefPubMed Bousquet J, Schunemann HJ, Samolinski B, Demoly P, Baena-Cagnani CE, Bachert C, et al. Allergic Rhinitis and its Impact on Asthma (ARIA): achievements in 10 years and future needs. J Allergy Clin Immunol. 2012;130:1049–62.CrossRefPubMed
8.
Zurück zum Zitat Kiotseridis H, Cilio CM, Bjermer L, Tunsater A, Jacobsson H, Dahl A. Grass pollen allergy in children and adolescents-symptoms, health related quality of life and the value of pollen prognosis. Clin Transl Allergy. 2013;3:19.CrossRefPubMedCentralPubMed Kiotseridis H, Cilio CM, Bjermer L, Tunsater A, Jacobsson H, Dahl A. Grass pollen allergy in children and adolescents-symptoms, health related quality of life and the value of pollen prognosis. Clin Transl Allergy. 2013;3:19.CrossRefPubMedCentralPubMed
9.
Zurück zum Zitat Delgado J, Davila ID, Dominguez-Ortega J, Quirce S, Marti-Guadano E, Valero A. Quality of life in patients with respiratory allergy is influenced by the causative allergen. J Investig Allergol Clin Immunol. 2013;23:309–14.PubMed Delgado J, Davila ID, Dominguez-Ortega J, Quirce S, Marti-Guadano E, Valero A. Quality of life in patients with respiratory allergy is influenced by the causative allergen. J Investig Allergol Clin Immunol. 2013;23:309–14.PubMed
10.
Zurück zum Zitat Petersen KD, Kronborg C, Larsen JN, Dahl R, Gyrd-Hansen D. Patient related outcomes in a real life prospective follow up study: Allergen immunotherapy increase quality of life and reduce sick days. World Allergy Organ J. 2013;6:15.CrossRefPubMedCentralPubMed Petersen KD, Kronborg C, Larsen JN, Dahl R, Gyrd-Hansen D. Patient related outcomes in a real life prospective follow up study: Allergen immunotherapy increase quality of life and reduce sick days. World Allergy Organ J. 2013;6:15.CrossRefPubMedCentralPubMed
11.
Zurück zum Zitat Halliwell R. Revised nomenclature for veterinary allergy. Vet Immunol Immunopathol. 2006;114:207–8.CrossRefPubMed Halliwell R. Revised nomenclature for veterinary allergy. Vet Immunol Immunopathol. 2006;114:207–8.CrossRefPubMed
12.
Zurück zum Zitat Tiniakov RL, Tiniakova OP, McLeod RL, Hey JA, Yeates DB. Canine model of nasal congestion and allergic rhinitis. J Appl Physiol (1985). 2003;94:1821–8.CrossRef Tiniakov RL, Tiniakova OP, McLeod RL, Hey JA, Yeates DB. Canine model of nasal congestion and allergic rhinitis. J Appl Physiol (1985). 2003;94:1821–8.CrossRef
13.
Zurück zum Zitat Plickert HD, Tichy A, Hirt RA. Characteristics of canine nasal discharge related to intranasal diseases: a retrospective study of 105 cases. J Small Anim Pract. 2014;55:145–52.CrossRefPubMed Plickert HD, Tichy A, Hirt RA. Characteristics of canine nasal discharge related to intranasal diseases: a retrospective study of 105 cases. J Small Anim Pract. 2014;55:145–52.CrossRefPubMed
14.
Zurück zum Zitat Barrs VR, van Doorn TM, Houbraken J, Kidd SE, Martin P, Pinheiro MD, et al. Aspergillus felis sp. nov., an emerging agent of invasive aspergillosis in humans, cats, and dogs. PLoS One. 2013;8:e64871.CrossRefPubMedCentralPubMed Barrs VR, van Doorn TM, Houbraken J, Kidd SE, Martin P, Pinheiro MD, et al. Aspergillus felis sp. nov., an emerging agent of invasive aspergillosis in humans, cats, and dogs. PLoS One. 2013;8:e64871.CrossRefPubMedCentralPubMed
15.
Zurück zum Zitat Mercier E, Peters IR, Billen F, Battaille G, Clercx C, Day MJ, et al. Potential role of Alternaria and Cladosporium species in canine lymphoplasmacytic rhinitis. J Small Anim Pract. 2013;54:179–83.CrossRefPubMed Mercier E, Peters IR, Billen F, Battaille G, Clercx C, Day MJ, et al. Potential role of Alternaria and Cladosporium species in canine lymphoplasmacytic rhinitis. J Small Anim Pract. 2013;54:179–83.CrossRefPubMed
16.
Zurück zum Zitat Favrot C, Steffan J, Seewald W, Picco F. A prospective study on the clinical features of chronic canine atopic dermatitis and its diagnosis. Vet Dermatol. 2010;21:23–31.CrossRefPubMed Favrot C, Steffan J, Seewald W, Picco F. A prospective study on the clinical features of chronic canine atopic dermatitis and its diagnosis. Vet Dermatol. 2010;21:23–31.CrossRefPubMed
17.
Zurück zum Zitat Furiani N, Scarampella F, Martino PA, Panzini I, Fabbri E, Ordeix L. Evaluation of the bacterial microflora of the conjunctival sac of healthy dogs and dogs with atopic dermatitis. Vet Dermatol. 2011;22:490–6.CrossRefPubMed Furiani N, Scarampella F, Martino PA, Panzini I, Fabbri E, Ordeix L. Evaluation of the bacterial microflora of the conjunctival sac of healthy dogs and dogs with atopic dermatitis. Vet Dermatol. 2011;22:490–6.CrossRefPubMed
18.
Zurück zum Zitat Halliwell RE, DeBoer DJ. The ACVD task force on canine atopic dermatitis (III): the role of antibodies in canine atopic dermatitis. Vet Immunol Immunopathol. 2001;81:159–67.CrossRefPubMed Halliwell RE, DeBoer DJ. The ACVD task force on canine atopic dermatitis (III): the role of antibodies in canine atopic dermatitis. Vet Immunol Immunopathol. 2001;81:159–67.CrossRefPubMed
19.
Zurück zum Zitat Lund EM, Armstrong PJ, Kirk CA, Kolar LM, Klausner JS. Health status and population characteristics of dogs and cats examined at private veterinary practices in the United States. J Am Vet Med Assoc. 1999;214:1336–41.PubMed Lund EM, Armstrong PJ, Kirk CA, Kolar LM, Klausner JS. Health status and population characteristics of dogs and cats examined at private veterinary practices in the United States. J Am Vet Med Assoc. 1999;214:1336–41.PubMed
20.
Zurück zum Zitat Owczarek-Lipska M, Lauber B, Molitor V, Meury S, Kierczak M, Tengvall K, et al. Two loci on chromosome 5 are associated with serum IgE levels in Labrador retrievers. PLoS One. 2012;7:e39176.CrossRefPubMedCentralPubMed Owczarek-Lipska M, Lauber B, Molitor V, Meury S, Kierczak M, Tengvall K, et al. Two loci on chromosome 5 are associated with serum IgE levels in Labrador retrievers. PLoS One. 2012;7:e39176.CrossRefPubMedCentralPubMed
21.
Zurück zum Zitat Kim HJ, Kang MH, Park HM. Common allergens of atopic dermatitis in dogs: comparative findings based on intradermal tests. J Vet Sci. 2011;12:287–90.CrossRefPubMedCentralPubMed Kim HJ, Kang MH, Park HM. Common allergens of atopic dermatitis in dogs: comparative findings based on intradermal tests. J Vet Sci. 2011;12:287–90.CrossRefPubMedCentralPubMed
22.
Zurück zum Zitat Picco F, Zini E, Nett C, Naegeli C, Bigler B, Rufenacht S, et al. A prospective study on canine atopic dermatitis and food-induced allergic dermatitis in Switzerland. Vet Dermatol. 2008;19:150–5.CrossRefPubMed Picco F, Zini E, Nett C, Naegeli C, Bigler B, Rufenacht S, et al. A prospective study on canine atopic dermatitis and food-induced allergic dermatitis in Switzerland. Vet Dermatol. 2008;19:150–5.CrossRefPubMed
23.
Zurück zum Zitat Mapp C, Hartiala J, Frick OL, Shields RL, Gold WM. Airway responsiveness to inhaled antigen, histamine, and methacholine in inbred, ragweed-sensitized dogs. Am Rev Respir Dis. 1985;132:292–8.PubMed Mapp C, Hartiala J, Frick OL, Shields RL, Gold WM. Airway responsiveness to inhaled antigen, histamine, and methacholine in inbred, ragweed-sensitized dogs. Am Rev Respir Dis. 1985;132:292–8.PubMed
24.
Zurück zum Zitat Royer CM, Rudolph K, Barrett EG. The neonatal susceptibility window for inhalant allergen sensitization in the atopically predisposed canine asthma model. Immunology. 2013;138:361–9.CrossRefPubMedCentralPubMed Royer CM, Rudolph K, Barrett EG. The neonatal susceptibility window for inhalant allergen sensitization in the atopically predisposed canine asthma model. Immunology. 2013;138:361–9.CrossRefPubMedCentralPubMed
25.
Zurück zum Zitat Mueller RS, Bettenay SV, Tideman L. Aero-allergens in canine atopic dermatitis in southeastern Australia based on 1000 intradermal skin tests. Aust Vet J. 2000;78:392–9.CrossRefPubMed Mueller RS, Bettenay SV, Tideman L. Aero-allergens in canine atopic dermatitis in southeastern Australia based on 1000 intradermal skin tests. Aust Vet J. 2000;78:392–9.CrossRefPubMed
26.
Zurück zum Zitat Stedman K, Lee K, Hunter S, Rivoire B, McCall C, Wassom D. Measurement of canine IgE using the alpha chain of the human high affinity IgE receptor. Vet Immunol Immunopathol. 2001;78:349–55.CrossRefPubMed Stedman K, Lee K, Hunter S, Rivoire B, McCall C, Wassom D. Measurement of canine IgE using the alpha chain of the human high affinity IgE receptor. Vet Immunol Immunopathol. 2001;78:349–55.CrossRefPubMed
27.
Zurück zum Zitat Ye H, Housden JE, Hunter M, Sabban S, Helm BA. Identification of amino acid residues involved in the interaction of canine IgE with canine and human FcepsilonRIalpha. Mol Immunol. 2014;57:111–8.CrossRefPubMed Ye H, Housden JE, Hunter M, Sabban S, Helm BA. Identification of amino acid residues involved in the interaction of canine IgE with canine and human FcepsilonRIalpha. Mol Immunol. 2014;57:111–8.CrossRefPubMed
28.
Zurück zum Zitat Buckley L, Schmidt V, McEwan N, Nuttall T. Cross-reaction and co-sensitization among related and unrelated allergens in canine intradermal tests. Vet Dermatol. 2013;24:422–7.CrossRefPubMed Buckley L, Schmidt V, McEwan N, Nuttall T. Cross-reaction and co-sensitization among related and unrelated allergens in canine intradermal tests. Vet Dermatol. 2013;24:422–7.CrossRefPubMed
29.
Zurück zum Zitat Roussel AJ, Bruet V, Bourdeau PJ. Characterisation of dog sensitisation to grass pollen in western France from 1999 to 2010. Vet Rec. 2013;172:686.CrossRefPubMed Roussel AJ, Bruet V, Bourdeau PJ. Characterisation of dog sensitisation to grass pollen in western France from 1999 to 2010. Vet Rec. 2013;172:686.CrossRefPubMed
30.
Zurück zum Zitat Mueller RS, Chapman PL. Cross reactivity of airborne allergens based on 1000 intradermal test results. Aust Vet J. 2004;82:351–4.CrossRefPubMed Mueller RS, Chapman PL. Cross reactivity of airborne allergens based on 1000 intradermal test results. Aust Vet J. 2004;82:351–4.CrossRefPubMed
31.
Zurück zum Zitat Masuda K, Sakaguchi M, Fujiwara S, Kurata K, Yamashita K, Odagiri T, et al. Positive reactions to common allergens in 42 atopic dogs in Japan. Vet Immunol Immunopathol. 2000;73:193–204.CrossRefPubMed Masuda K, Sakaguchi M, Fujiwara S, Kurata K, Yamashita K, Odagiri T, et al. Positive reactions to common allergens in 42 atopic dogs in Japan. Vet Immunol Immunopathol. 2000;73:193–204.CrossRefPubMed
32.
Zurück zum Zitat Kusunoki T, Korematsu S, Harazaki M, Ito M. Hosoi S: [Recent pollen sensitization and its possible involvement in allergic diseases among children in a pediatric allergy clinic]. Arerugi. 1999;48:1166–71.PubMed Kusunoki T, Korematsu S, Harazaki M, Ito M. Hosoi S: [Recent pollen sensitization and its possible involvement in allergic diseases among children in a pediatric allergy clinic]. Arerugi. 1999;48:1166–71.PubMed
33.
Zurück zum Zitat Fujieda S, Kurono Y, Okubo K, Ichimura K, Enomoto T, Kawauchi H, et al. Examination, diagnosis and classification for Japanese allergic rhinitis: Japanese guideline. Auris Nasus Larynx. 2012;39:553–6.CrossRefPubMed Fujieda S, Kurono Y, Okubo K, Ichimura K, Enomoto T, Kawauchi H, et al. Examination, diagnosis and classification for Japanese allergic rhinitis: Japanese guideline. Auris Nasus Larynx. 2012;39:553–6.CrossRefPubMed
34.
Zurück zum Zitat Kubota S, Miyaji K, Shimo Y, Shimakura H, Takase Y, Okamoto N, et al. IgE reactivity to a Cry j 3, an allergen of Japanese cedar (Cryptomeria japonica) pollen in dogs with canine atopic dermatitis. Vet Immunol Immunopathol. 2012;149:132–5.CrossRefPubMed Kubota S, Miyaji K, Shimo Y, Shimakura H, Takase Y, Okamoto N, et al. IgE reactivity to a Cry j 3, an allergen of Japanese cedar (Cryptomeria japonica) pollen in dogs with canine atopic dermatitis. Vet Immunol Immunopathol. 2012;149:132–5.CrossRefPubMed
35.
Zurück zum Zitat Fujimura M, Ohmori K, Masuda K, Tsujimoto H, Sakaguchi M. Oral allergy syndrome induced by tomato in a dog with Japanese cedar (Cryptomeria japonica) pollinosis. J Vet Med Sci. 2002;64:1069–70.CrossRefPubMed Fujimura M, Ohmori K, Masuda K, Tsujimoto H, Sakaguchi M. Oral allergy syndrome induced by tomato in a dog with Japanese cedar (Cryptomeria japonica) pollinosis. J Vet Med Sci. 2002;64:1069–70.CrossRefPubMed
36.
Zurück zum Zitat Chanthick C, Anaman S, Buathet K. The prevalence of positive intradermal allergy tests in 114 dogs with atopic dermatitis in the Bangkok metropolis, Thailand. Vet Immunol Immunopathol. 2008;126:256–62.CrossRefPubMed Chanthick C, Anaman S, Buathet K. The prevalence of positive intradermal allergy tests in 114 dogs with atopic dermatitis in the Bangkok metropolis, Thailand. Vet Immunol Immunopathol. 2008;126:256–62.CrossRefPubMed
37.
Zurück zum Zitat Yuenyongviwat A, Koonrangsesomboon D, Sangsupawanich P. Recent 5-year trends of asthma severity and allergen sensitization among children in southern Thailand. Asian Pac J Allergy Immunol. 2013;31:242–6.CrossRefPubMed Yuenyongviwat A, Koonrangsesomboon D, Sangsupawanich P. Recent 5-year trends of asthma severity and allergen sensitization among children in southern Thailand. Asian Pac J Allergy Immunol. 2013;31:242–6.CrossRefPubMed
38.
Zurück zum Zitat Hobi S, Mueller RS. Efficacy and safety of rush immunotherapy with alum-precipitated allergens in canine atopic dermatitis. Tierarztl Prax Ausg K Kleintiere Heimtiere. 2014;42:167–73.PubMed Hobi S, Mueller RS. Efficacy and safety of rush immunotherapy with alum-precipitated allergens in canine atopic dermatitis. Tierarztl Prax Ausg K Kleintiere Heimtiere. 2014;42:167–73.PubMed
39.
Zurück zum Zitat Olivry T, DeBoer DJ, Favrot C, Jackson HA, Mueller RS, Nuttall T, et al. International Task Force on Canine Atopic D: Treatment of canine atopic dermatitis: 2010 clinical practice guidelines from the International Task Force on Canine Atopic Dermatitis. Vet Dermatol. 2010;21:233–48.CrossRefPubMed Olivry T, DeBoer DJ, Favrot C, Jackson HA, Mueller RS, Nuttall T, et al. International Task Force on Canine Atopic D: Treatment of canine atopic dermatitis: 2010 clinical practice guidelines from the International Task Force on Canine Atopic Dermatitis. Vet Dermatol. 2010;21:233–48.CrossRefPubMed
40.
Zurück zum Zitat Darsow U. Allergen-specific immunotherapy for atopic eczema: updated. Curr Opin Allergy Clin Immunol. 2012;12:665–9.CrossRefPubMed Darsow U. Allergen-specific immunotherapy for atopic eczema: updated. Curr Opin Allergy Clin Immunol. 2012;12:665–9.CrossRefPubMed
41.
Zurück zum Zitat Griffin CE, Hillier A. The ACVD task force on canine atopic dermatitis (XXIV): allergen-specific immunotherapy. Vet Immunol Immunopathol. 2001;81:363–83.CrossRefPubMed Griffin CE, Hillier A. The ACVD task force on canine atopic dermatitis (XXIV): allergen-specific immunotherapy. Vet Immunol Immunopathol. 2001;81:363–83.CrossRefPubMed
42.
Zurück zum Zitat Loewenstein C, Mueller RS. A review of allergen-specific immunotherapy in human and veterinary medicine. Vet Dermatol. 2009;20:84–98.CrossRefPubMed Loewenstein C, Mueller RS. A review of allergen-specific immunotherapy in human and veterinary medicine. Vet Dermatol. 2009;20:84–98.CrossRefPubMed
43.
Zurück zum Zitat Ravens PA, Xu BJ, Vogelnest LJ. Feline atopic dermatitis: a retrospective study of 45 cases (2001-2012). Vet Dermatol. 2014;25:95–102.CrossRefPubMed Ravens PA, Xu BJ, Vogelnest LJ. Feline atopic dermatitis: a retrospective study of 45 cases (2001-2012). Vet Dermatol. 2014;25:95–102.CrossRefPubMed
44.
Zurück zum Zitat Masuda K, Kurata K, Sakaguchi M, Yamashita K, Hasegawa A, Ohno K, et al. Seasonal rhinitis in a cat sensitized to Japanese cedar (Cryptomeria japonica) pollen. J Vet Med Sci. 2001;63:79–81.CrossRefPubMed Masuda K, Kurata K, Sakaguchi M, Yamashita K, Hasegawa A, Ohno K, et al. Seasonal rhinitis in a cat sensitized to Japanese cedar (Cryptomeria japonica) pollen. J Vet Med Sci. 2001;63:79–81.CrossRefPubMed
45.
Zurück zum Zitat Johnson LR, Vernau W. Bronchoscopic findings in 48 cats with spontaneous lower respiratory tract disease (2002-2009). J Vet Intern Med. 2011;25:236–43.CrossRefPubMed Johnson LR, Vernau W. Bronchoscopic findings in 48 cats with spontaneous lower respiratory tract disease (2002-2009). J Vet Intern Med. 2011;25:236–43.CrossRefPubMed
46.
Zurück zum Zitat Lee-Fowler TM, Cohn LA, DeClue AE, Spinka CM, Reinero CR. Evaluation of subcutaneous versus mucosal (intranasal) allergen-specific rush immunotherapy in experimental feline asthma. Vet Immunol Immunopathol. 2009;129:49–56.CrossRefPubMed Lee-Fowler TM, Cohn LA, DeClue AE, Spinka CM, Reinero CR. Evaluation of subcutaneous versus mucosal (intranasal) allergen-specific rush immunotherapy in experimental feline asthma. Vet Immunol Immunopathol. 2009;129:49–56.CrossRefPubMed
47.
Zurück zum Zitat Reinero CR, Cohn LA, Delgado C, Spinka CM, Schooley EK, DeClue AE. Adjuvanted rush immunotherapy using CpG oligodeoxynucleotides in experimental feline allergic asthma. Vet Immunol Immunopathol. 2008;121:241–50.CrossRefPubMed Reinero CR, Cohn LA, Delgado C, Spinka CM, Schooley EK, DeClue AE. Adjuvanted rush immunotherapy using CpG oligodeoxynucleotides in experimental feline allergic asthma. Vet Immunol Immunopathol. 2008;121:241–50.CrossRefPubMed
48.
Zurück zum Zitat Steffan J, Olivry T, Forster SL, Seewald W. Responsiveness and validity of the SCORFAD, an extent and severity scale for feline hypersensitivity dermatitis. Vet Dermatol. 2012;23:410–e477.CrossRefPubMed Steffan J, Olivry T, Forster SL, Seewald W. Responsiveness and validity of the SCORFAD, an extent and severity scale for feline hypersensitivity dermatitis. Vet Dermatol. 2012;23:410–e477.CrossRefPubMed
49.
Zurück zum Zitat Belova S, Wilhelm S, Linek M, Beco L, Fontaine J, Bergvall K, et al. Factors affecting allergen-specific IgE serum levels in cats. Can J Vet Res. 2012;76:45–51.PubMedCentralPubMed Belova S, Wilhelm S, Linek M, Beco L, Fontaine J, Bergvall K, et al. Factors affecting allergen-specific IgE serum levels in cats. Can J Vet Res. 2012;76:45–51.PubMedCentralPubMed
50.
Zurück zum Zitat Loft KE, Pedersen K. The presence of pollen and house dust mite allergen-specific IgE in serum of 15 SPF cats and prevalence of house dust mite allergens (Dermatophagoides pteronyssinus 1, Dermatophagoides farinae 1, and mite group 2) in their microenvironment. Vet Dermatol. 2007;18:184. Loft KE, Pedersen K. The presence of pollen and house dust mite allergen-specific IgE in serum of 15 SPF cats and prevalence of house dust mite allergens (Dermatophagoides pteronyssinus 1, Dermatophagoides farinae 1, and mite group 2) in their microenvironment. Vet Dermatol. 2007;18:184.
51.
Zurück zum Zitat Loft KE, Rosser Jr EJ. Group 1 and 2 Dermatophagoides house dust mite allergens in the microenvironment of cats. Vet Dermatol. 2010;21:152–8.CrossRefPubMed Loft KE, Rosser Jr EJ. Group 1 and 2 Dermatophagoides house dust mite allergens in the microenvironment of cats. Vet Dermatol. 2010;21:152–8.CrossRefPubMed
52.
Zurück zum Zitat Schleifer SG, Willemse T. Evaluation of skin test reactivity to environmental allergens in healthy cats and cats with atopic dermatitis. Am J Vet Res. 2003;64:773–8.CrossRefPubMed Schleifer SG, Willemse T. Evaluation of skin test reactivity to environmental allergens in healthy cats and cats with atopic dermatitis. Am J Vet Res. 2003;64:773–8.CrossRefPubMed
53.
Zurück zum Zitat Foster AP, O’Dair HA, DeBoer DJ. Allergen-specific IgG antibodies in cats with allergic skin disease. Res Vet Sci. 1997;63:239–43.CrossRefPubMed Foster AP, O’Dair HA, DeBoer DJ. Allergen-specific IgG antibodies in cats with allergic skin disease. Res Vet Sci. 1997;63:239–43.CrossRefPubMed
54.
Zurück zum Zitat King S, Favrot C, Messinger L, Nuttall T, Steffan J, Forster S, et al. A randomized double-blinded placebo-controlled study to evaluate an effective ciclosporin dose for the treatment of feline hypersensitivity dermatitis. Vet Dermatol. 2012;23:440–e484.CrossRefPubMed King S, Favrot C, Messinger L, Nuttall T, Steffan J, Forster S, et al. A randomized double-blinded placebo-controlled study to evaluate an effective ciclosporin dose for the treatment of feline hypersensitivity dermatitis. Vet Dermatol. 2012;23:440–e484.CrossRefPubMed
55.
Zurück zum Zitat Reinero CR. Feline immunoglobulin E: historical perspective, diagnostics and clinical relevance. Vet Immunol Immunopathol. 2009;132:13–20.CrossRefPubMed Reinero CR. Feline immunoglobulin E: historical perspective, diagnostics and clinical relevance. Vet Immunol Immunopathol. 2009;132:13–20.CrossRefPubMed
56.
Zurück zum Zitat Wisselink MA, Willemse T. The efficacy of cyclosporine A in cats with presumed atopic dermatitis: a double blind, randomised prednisolone-controlled study. Vet J. 2009;180:55–9.CrossRefPubMed Wisselink MA, Willemse T. The efficacy of cyclosporine A in cats with presumed atopic dermatitis: a double blind, randomised prednisolone-controlled study. Vet J. 2009;180:55–9.CrossRefPubMed
57.
Zurück zum Zitat Ganz EC, Griffin CE, Keys DA, Flatgard TA. Evaluation of methylprednisolone and triamcinolone for the induction and maintenance treatment of pruritus in allergic cats: a double-blinded, randomized, prospective study. Vet Dermatol. 2012;23:387–e372.CrossRefPubMed Ganz EC, Griffin CE, Keys DA, Flatgard TA. Evaluation of methylprednisolone and triamcinolone for the induction and maintenance treatment of pruritus in allergic cats: a double-blinded, randomized, prospective study. Vet Dermatol. 2012;23:387–e372.CrossRefPubMed
58.
Zurück zum Zitat Trimmer AM, Griffin CE, Boord MJ, Rosenkrantz WS. Rush allergen specific immunotherapy protocol in feline atopic dermatitis: a pilot study of four cats. Vet Dermatol. 2005;16:324–9.CrossRefPubMed Trimmer AM, Griffin CE, Boord MJ, Rosenkrantz WS. Rush allergen specific immunotherapy protocol in feline atopic dermatitis: a pilot study of four cats. Vet Dermatol. 2005;16:324–9.CrossRefPubMed
59.
Zurück zum Zitat Halliwell RE. Efficacy of hyposensitization in feline allergic diseases based upon results of in vitro testing for allergen-specific immunoglobulin E. J Am Anim Hosp Assoc. 1997;33:282–8.CrossRefPubMed Halliwell RE. Efficacy of hyposensitization in feline allergic diseases based upon results of in vitro testing for allergen-specific immunoglobulin E. J Am Anim Hosp Assoc. 1997;33:282–8.CrossRefPubMed
60.
Zurück zum Zitat Reinero C, Lee-Fowler T, Chang CH, Cohn L, Declue A. Beneficial cross-protection of allergen-specific immunotherapy on airway eosinophilia using unrelated or a partial repertoire of allergen(s) implicated in experimental feline asthma. Vet J. 2012;192:412–6.CrossRefPubMed Reinero C, Lee-Fowler T, Chang CH, Cohn L, Declue A. Beneficial cross-protection of allergen-specific immunotherapy on airway eosinophilia using unrelated or a partial repertoire of allergen(s) implicated in experimental feline asthma. Vet J. 2012;192:412–6.CrossRefPubMed
61.
62.
Zurück zum Zitat Stepnik CT, Outerbridge CA, White SD, Kass PH. Equine atopic skin disease and response to allergen-specific immunotherapy: a retrospective study at the University of California-Davis (1991-2008). Vet Dermatol. 2012;23:29–35.CrossRefPubMed Stepnik CT, Outerbridge CA, White SD, Kass PH. Equine atopic skin disease and response to allergen-specific immunotherapy: a retrospective study at the University of California-Davis (1991-2008). Vet Dermatol. 2012;23:29–35.CrossRefPubMed
63.
Zurück zum Zitat Francqueville M. Sabbah A: [Allergic rhinitis in the horse: first case]. Allerg Immunol (Paris). 1990;22:56–60. Francqueville M. Sabbah A: [Allergic rhinitis in the horse: first case]. Allerg Immunol (Paris). 1990;22:56–60.
64.
Zurück zum Zitat Ward MP, Couetil LL. Climatic and aeroallergen risk factors for chronic obstructive pulmonary disease in horses. Am J Vet Res. 2005;66:818–24.CrossRefPubMed Ward MP, Couetil LL. Climatic and aeroallergen risk factors for chronic obstructive pulmonary disease in horses. Am J Vet Res. 2005;66:818–24.CrossRefPubMed
65.
Zurück zum Zitat Dixon PM, McGorum B. Pasture-associated seasonal respiratory disease in two horses. Vet Rec. 1990;126:9–12.PubMed Dixon PM, McGorum B. Pasture-associated seasonal respiratory disease in two horses. Vet Rec. 1990;126:9–12.PubMed
66.
Zurück zum Zitat Griffin C. Equine skin diseases that every practitioner should know about. In: 27th Annual Congress of the ESVD-ECVD; Salzburg, Austria. 2014. Griffin C. Equine skin diseases that every practitioner should know about. In: 27th Annual Congress of the ESVD-ECVD; Salzburg, Austria. 2014.
67.
Zurück zum Zitat Tahon L, Baselgia S, Gerber V, Doherr MG, Straub R, Robinson NE, et al. In vitro allergy tests compared to intradermal testing in horses with recurrent airway obstruction. Vet Immunol Immunopathol. 2009;127:85–93.CrossRefPubMed Tahon L, Baselgia S, Gerber V, Doherr MG, Straub R, Robinson NE, et al. In vitro allergy tests compared to intradermal testing in horses with recurrent airway obstruction. Vet Immunol Immunopathol. 2009;127:85–93.CrossRefPubMed
68.
Zurück zum Zitat Scharrenberg A, Gerber V, Swinburne JE, Wilson AD, Klukowska-Rotzler J, Laumen E, et al. IgE, IgGa, IgGb and IgG(T) serum antibody levels in offspring of two sires affected with equine recurrent airway obstruction. Anim Genet. 2010;41 Suppl 2:131–7.CrossRefPubMed Scharrenberg A, Gerber V, Swinburne JE, Wilson AD, Klukowska-Rotzler J, Laumen E, et al. IgE, IgGa, IgGb and IgG(T) serum antibody levels in offspring of two sires affected with equine recurrent airway obstruction. Anim Genet. 2010;41 Suppl 2:131–7.CrossRefPubMed
69.
Zurück zum Zitat Kalina WV, Pettigrew HD, Gershwin LJ. IgE ELISA using antisera derived from epsilon chain antigenic peptides detects allergen-specific IgE in allergic horses. Vet Immunol Immunopathol. 2003;92:137–47.CrossRefPubMed Kalina WV, Pettigrew HD, Gershwin LJ. IgE ELISA using antisera derived from epsilon chain antigenic peptides detects allergen-specific IgE in allergic horses. Vet Immunol Immunopathol. 2003;92:137–47.CrossRefPubMed
70.
Zurück zum Zitat Aharonson-Raz K, Lohmann KL, Townsend HG, Marques F, Singh B. Pulmonary intravascular macrophages as proinflammatory cells in heaves, an asthma-like equine disease. Am J Physiol Lung Cell Mol Physiol. 2012;303:L189–198.CrossRefPubMed Aharonson-Raz K, Lohmann KL, Townsend HG, Marques F, Singh B. Pulmonary intravascular macrophages as proinflammatory cells in heaves, an asthma-like equine disease. Am J Physiol Lung Cell Mol Physiol. 2012;303:L189–198.CrossRefPubMed
71.
72.
Zurück zum Zitat Moran G, Folch H, Henriquez C, Ortloff A, Barria M. Reaginic antibodies from horses with recurrent airway obstruction produce mast cell stimulation. Vet Res Commun. 2012;36:251–8.CrossRefPubMed Moran G, Folch H, Henriquez C, Ortloff A, Barria M. Reaginic antibodies from horses with recurrent airway obstruction produce mast cell stimulation. Vet Res Commun. 2012;36:251–8.CrossRefPubMed
73.
Zurück zum Zitat Zur G, White SD, Ihrke PJ, Kass PH, Toebe N. Canine atopic dermatitis: a retrospective study of 169 cases examined at the University of California, Davis, 1992-1998. Part II. Response to hyposensitization. Vet Dermatol. 2002;13:103–11.CrossRefPubMed Zur G, White SD, Ihrke PJ, Kass PH, Toebe N. Canine atopic dermatitis: a retrospective study of 169 cases examined at the University of California, Davis, 1992-1998. Part II. Response to hyposensitization. Vet Dermatol. 2002;13:103–11.CrossRefPubMed
74.
Zurück zum Zitat Nesbitt GH. Canine allergic inhalant dermatitis: a review of 230 cases. J Am Vet Med Assoc. 1978;172:55–60.PubMed Nesbitt GH. Canine allergic inhalant dermatitis: a review of 230 cases. J Am Vet Med Assoc. 1978;172:55–60.PubMed
75.
Zurück zum Zitat Nesbitt GH, Kedan GS, Cacciolo P. Canine atopy. Ethiology and diagnosis. Compendium on Continuing Education Practice Vet. 1984;6:73–85. Nesbitt GH, Kedan GS, Cacciolo P. Canine atopy. Ethiology and diagnosis. Compendium on Continuing Education Practice Vet. 1984;6:73–85.
76.
Zurück zum Zitat Sture GH, Halliwell RE, Thoday KL, van den Broek AH, Henfrey JI, Lloyd DH, et al. Canine atopic disease: the prevalence of positive intradermal skin tests at two sites in the north and south of Great Britain. Vet Immunol Immunopathol. 1995;44:293–308.CrossRefPubMed Sture GH, Halliwell RE, Thoday KL, van den Broek AH, Henfrey JI, Lloyd DH, et al. Canine atopic disease: the prevalence of positive intradermal skin tests at two sites in the north and south of Great Britain. Vet Immunol Immunopathol. 1995;44:293–308.CrossRefPubMed
77.
Zurück zum Zitat Stursberg U. Felines Asthma und chronische Bronchitis: Untersuchungen zu Anamnese, Allergiediagnostik und Therapie mit Propentofyllin. Tierärztliche Fakultät: LMU München; 2010. Stursberg U. Felines Asthma und chronische Bronchitis: Untersuchungen zu Anamnese, Allergiediagnostik und Therapie mit Propentofyllin. Tierärztliche Fakultät: LMU München; 2010.
78.
Zurück zum Zitat Kolm-Stark G, Wagner R. Intradermal skin testing in Icelandic horses in Austria. Equine Vet J. 2002;34:405–10.CrossRefPubMed Kolm-Stark G, Wagner R. Intradermal skin testing in Icelandic horses in Austria. Equine Vet J. 2002;34:405–10.CrossRefPubMed
79.
Zurück zum Zitat Temizel EM, Aytug N. Intradermal Testing Results and Clinical Features in Dogs with Atopic Dermatitis in Turkey. J Biol Environ Sci. 2011;5:87–9. Temizel EM, Aytug N. Intradermal Testing Results and Clinical Features in Dogs with Atopic Dermatitis in Turkey. J Biol Environ Sci. 2011;5:87–9.
Metadaten
Titel
Pollen Allergies in Humans and their Dogs, Cats and Horses: Differences and Similarities
verfasst von
Erika Jensen-Jarolim
Lukas Einhorn
Ina Herrmann
Johann G Thalhammer
Lucia Panakova
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Clinical and Translational Allergy / Ausgabe 1/2015
Elektronische ISSN: 2045-7022
DOI
https://doi.org/10.1186/s13601-015-0059-6

Weitere Artikel der Ausgabe 1/2015

Clinical and Translational Allergy 1/2015 Zur Ausgabe

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Betalaktam-Allergie: praxisnahes Vorgehen beim Delabeling

16.05.2024 Pädiatrische Allergologie Nachrichten

Die große Mehrheit der vermeintlichen Penicillinallergien sind keine. Da das „Etikett“ Betalaktam-Allergie oft schon in der Kindheit erworben wird, kann ein frühzeitiges Delabeling lebenslange Vorteile bringen. Ein Team von Pädiaterinnen und Pädiatern aus Kanada stellt vor, wie sie dabei vorgehen.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Eingreifen von Umstehenden rettet vor Erstickungstod

15.05.2024 Fremdkörperaspiration Nachrichten

Wer sich an einem Essensrest verschluckt und um Luft ringt, benötigt vor allem rasche Hilfe. Dass Umstehende nur in jedem zweiten Erstickungsnotfall bereit waren, diese zu leisten, ist das ernüchternde Ergebnis einer Beobachtungsstudie aus Japan. Doch es gibt auch eine gute Nachricht.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.