Skip to main content
Erschienen in: BMC Medical Research Methodology 1/2012

Open Access 01.12.2012 | Research article

Investigating clinical heterogeneity in systematic reviews: a methodologic review of guidance in the literature

verfasst von: Joel J Gagnier, David Moher, Heather Boon, Joseph Beyene, Claire Bombardier

Erschienen in: BMC Medical Research Methodology | Ausgabe 1/2012

Abstract

Background

While there is some consensus on methods for investigating statistical and methodological heterogeneity, little attention has been paid to clinical aspects of heterogeneity. The objective of this study is to summarize and collate suggested methods for investigating clinical heterogeneity in systematic reviews.

Methods

We searched databases (Medline, EMBASE, CINAHL, Cochrane Library, and CONSORT, to December 2010) and reference lists and contacted experts to identify resources providing suggestions for investigating clinical heterogeneity between controlled clinical trials included in systematic reviews. We extracted recommendations, assessed resources for risk of bias, and collated the recommendations.

Results

One hundred and one resources were collected, including narrative reviews, methodological reviews, statistical methods papers, and textbooks. These resources generally had a low risk of bias, but there was minimal consensus among them. Resources suggested that planned investigations of clinical heterogeneity should be made explicit in the protocol of the review; clinical experts should be included on the review team; a set of clinical covariates should be chosen considering variables from the participant level, intervention level, outcome level, research setting, or others unique to the research question; covariates should have a clear scientific rationale; there should be a sufficient number of trials per covariate; and results of any such investigations should be interpreted with caution.

Conclusions

Though the consensus was minimal, there were many recommendations in the literature for investigating clinical heterogeneity in systematic reviews. Formal recommendations for investigating clinical heterogeneity in systematic reviews of controlled trials are required.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2288-12-111) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

JG developed conceptualized the project, searched for the literature, extracted data, and wrote the manuscript. DM, HB, JB and CB conceptualized the project and edited the manuscript. All authors read and approved the final manuscript.

Background

Systematic reviews sometimes apply statistical techniques to combine data from multiple studies resulting in a meta-analysis. Meta-analyses result in a point estimate, the summary treatment effect, together with a measure of the precision of results (e.g., a 95% confidence interval). These measures of precision represent the degree of variability or heterogeneity in the results among included studies. There are several possible sources of variability or heterogeneity among studies that are included in meta-analyses. Variability in the participants, the types or timing of outcome measurements, and intervention characteristics may be termed clinical heterogeneity; variability in the trial design and quality is typically termed methodological heterogeneity; variability in summary treatment effects between trials is termed statistical heterogeneity [1]. Methodological and clinical sources of heterogeneity contribute to the magnitude and presence of statistical heterogeneity [1].
Methodological heterogeneity hinges on aspects of implementation of the individual trials and how they differ from each other. For example, trials that do not adequately conceal allocation to treatment groups may result in overestimates in the meta-analytic treatment effects [2]. Significant statistical heterogeneity arising from methodological heterogeneity suggests that the studies are not all estimating the same effects due to different degrees of bias.
Clinical heterogeneity arises from differences in participant characteristics (e.g., sex, age, baseline disease severity, ethnicity, comorbidities), types or timing of outcome measurements, and intervention characteristics (e.g., dose and frequency of dose [1]). This heterogeneity can cause significant statistical heterogeneity, inaccurate summary effects and associated conclusions, misleading decision makers and others. As such, systematic reviewers need to consider how best to handle sources of heterogeneity [1]. For example, preplanned subgroup analyses, stratifying for similar characteristics of the intervention and participants, could tease-out important scientific and clinically relevant information [3].
Systematic reviews are frequently recognized as the best available evidence for decisions about health-care management and policy [37]. Results of systematic reviews are often incorporated into clinical practice guidelines [5] and required in funding applications by granting agencies [6]. In spite of all this it appears health-care professionals and policy makers infrequently use systematic reviews to guide decision-making [8].
A limitation of many systematic reviews is that their content and format are frequently not useful to decision makers [8]. For example, while some guidance exists describing what to include in reports of systematic reviews (e.g., the PRISMA statement [9]), characteristics of the intervention that are necessary to apply their findings are infrequently provided [1013]. This has led to some preliminary work on how to extract clinically relevant information from systematic reviews [14]. Furthermore, systematic reviews commonly show substantial heterogeneity in estimated effects (statistical heterogeneity), possibly due to methodological, clinical or unknown features in the included trials [15]. While guidance exists on the assessment and investigation of methodological [1] and statistical heterogeneity [1, 16], little attention has been given to clinical heterogeneity.
We report a systematic review of suggested methods for investigating clinical heterogeneity in systematic reviews of controlled clinical trials. We also provide some guidance for systematic reviewers.

Methods

This project identified resources giving recommendations for investigating clinical heterogeneity in systematic reviews. We extracted their recommendations, assessed their risk for bias, and categorized and described the suggestions.
The following databases were searched: Medline (to October 29, 2010), EMBASE (to Oct 30, 2010), CINAHL (1981 to Oct 30, 2010), Health Technology Assessment (to Oct 29, 2010), the Cochrane Methodology Register (to Oct 29, 2010), and the CONSORT database of methodological papers (to October 30, 2010). A library and information scientist was consulted to create sensitive and specific searches, combining appropriate terms and extracting new terms from relevant studies for each database. The following search terms were used in the various databases and at various stages of the search: heterogeneity, applicability, clinical, assessment, checklist, guideline(s), scale, and criteria. The “adjacent” or “within X words” tools were used for the terms “clinical” and “heterogeneity” for all databases. In addition, we used the PubMed related-links option that identifies indexed studies on similar topics or having similar indexing terms to include a broad range of papers that might be indirectly related to clinical heterogeneity. Appendix A contains details of the electronic searching. One investigator (JG) contacted representatives of the Cochrane Collaboration, the Campbell Collaboration, the Agency for Healthcare Research and Quality (AHRQ) and a selection of experts identified through an initial review of the literature to suggest relevant articles, guidelines, position papers, textbooks or other experts in the area. We also reviewed the Cochrane Handbook, the Campbell Collaboration methods guides, and the AHRQ comparative effectiveness section for any guidance on clinical heterogeneity and searched reference lists of all retrieved resources.
The overall process consisted of a “snowballing” technique of seeking information on the topic, by which we asked experts to refer us to other experts or resources, and so on, until each new resource yielded a negligible return. Several individuals with expertise in the area of systematic reviews (JG, DM, JB, CB) met to identify key textbooks to include out of thier personal knowledge of textbooks in the area. These individuals presented what each felt were key textbooks in the area and then debated the merits of each, finally coming to a consensus-based decision on which to include. In general, these methods allowed us to include a broad array of resources related to investigating clinical heterogeneity in systematic reviews.

Inclusion criteria

Clinical heterogeneity is defined as differences in participant, treatment, or outcome characteristics or research setting. We included any methodological study, systematic review, guideline, textbook, handbook, checklist, scale, or other published guidance document with a focus on assessing, measuring, or generally investigating clinical heterogeneity between or within controlled clinical trials included in systematic reviews. This included quantitative, qualitative, graphical or tabular techniques, suggestions or methods.

Exclusion criteria

Systematic reviews of interventions for efficacy were excluded.

Data extraction

A data extraction form was developed and piloted independently by two individuals (JG, DM) on a random selection of 10 included resources. Extractions were checked for consensus and the form revised according to the feedback provided. One person extracted information for all included studies (JG) regarding why the authors sought to assess clinical heterogeneity; what “criteria” were used to assess clinical heterogeneity; how these were developed; the definition of clinical heterogeneity used by the authors; any graphical, tabular or other display/summary methods; statistical recommendations; reported methods used; empirical validation performed on the “criteria”; examples of implementing the methods; and recommendations on how the assessments are to be used in systematic reviews. All extractions were checked for accuracy by another individual (DM).

Synthesis methods

We thematically grouped the retrieved resources, suggestions or techniques (e.g., statistical versus qualitative recommendations), described the recommendations, highlighted any empirical support cited for each recommendation, and made an overall summary of the recommendations.

Assessment of method validation

Four individuals (JG, DM, JB, CB) met several times to discuss how to rate the variety of resources retrieved. These individuals came to a consensus that there were several classes of resources that did not have any accepted risk-of-bias assessment tools or instruments (e.g., textbooks, narrative reviews, learning guides, expert opinions). Therefore instead, of assessing “risk of bias” of these articles, we chose to determine if specific methods have been validated. Resources were considered validated if they had a clear rationale or reported empirical evidence for that recommendation (e.g., reference to previous empirical work or a test of the method with empirical or simulated data). One individual (JG) assessed the method of validation of each of these included resources.

Results

Our searches identified 2497 unique titles and abstracts; after screening, 101 papers were included in the review [17117]. These resources included statistical papers, methodological reviews, narrative reviews, expert opinions, learning guides, consensus-based guidelines and textbooks. Figure 1 describes details of the search and screening results. The very few disagreements on inclusion were easily resolved through discussion. Sixty-four (64.6%) of the resources (statistical, methodological, consensus guideline resources) were assessed for validation. Forty-one (64.1%) of these references were evaluated as being sufficiently validated.
Table 1 describes some basic characteristics of the included resources. The most common type of resource was statistical papers (42.4%), with narrative reviews/expert opinion papers being the next most common (29.3%). Most of the papers were published in the 2000s (70.1%), and statistical methods for investigating clinical heterogeneity were the most frequent types of suggestions across resources (73.7%). Table 2 reports a list of clinical variables suggested for investigating clinical heterogeneity and the number and types of resources suggesting each. General suggestions of clinically related variables, without identification of specific clinical covariates, were the most common across all included resources. Most suggestions were within distinct categories: participant level (e.g., age), intervention level (e.g., dose), or outcome level (e.g., event type, length of follow-up) covariates. A number of resources (N = 14) reported control event rate/baseline risk as being a covariate worth investigating.
Table 1
Descriptive characteristics of included resources that reported recommendations for investigating clinical heterogeneity in systematic reviews of controlled clinical trials (N = 101)
Descriptive Characteristics
N1
Type of publication
Statistical paper
44
Narrative review or expert opinion
29
Methodological review
14
Consensus-based guideline
9
Textbook
5
Decade of publication
2000s
70
1990s
27
1980s
4
Guidance on statistical methods
75
Clinical variables (general 2 or specific) recommended
39
Process for choosing clinical variables recommended
28
1. The number (N) of resources equals the percentage of resources since we include 101 total resources.
2. The term “general” means that the resource listed the term “patient”, “intervention”, or “outcome” as a category from which to consider covariates without suggesting specific variables.
Table 2
Types of clinical covariates suggested across all resources
General Category
Specific Covariate
Number of Resources Recommending1
Patient level
General2
15
 
Age
7
 
Baseline severity
3
 
Sex/gender
4
 
Ethnicity
2
 
Comorbidities
2
 
Other disease features
2
Intervention level
General
13
 
Dose
8
 
Duration
5
 
Brand
3
 
Co-interventions
3
 
Intensity
3
 
Timing
3
 
Route
2
 
Compliance
2
 
Others unique to the intervention
2
 
Frequency
1
 
Comparator/control
1
Outcome level
General
6
 
Event type
5
 
Length of follow-up
4
 
Outcome measure type
3
 
Outcome definition
3
 
Timing
2
 
Repeated outcome measurements
1
Control event rate / baseline risk
14
Research setting
4
Comparison conditions
3
Early stopping rules
1
Population risk
1
1. The number (N) of resources equals the percentage of resources since we include 101 total resources.
2. The term “general” means that the resource listed the term “patient”, “intervention”, or “outcome” as a category from which to consider covariates without suggesting specific variables.
Table 3 lists recommendations regarding the process of choosing clinical characteristics to investigate. Five or more resources suggested the following: a priori choice of clinical covariates (e.g., in the review protocol); look at forest plots for trials that may contribute to heterogeneity and then look for clinical characteristics therein; proceed with investigation regardless of results of formal testing for statistical heterogeneity; base clinical covariates on a clear scientific rationale (e.g., a pathophysiological argument); investigate a small number of covariates; base each covariate suggestion on an adequate number of trials (e.g., 10 trials was a common suggestion); use caution when interpreting the findings of investigations; consider the results of such investigations as exploratory, hypothesis generating and observational; and consider confounding between covariates.
Table 3
Recommendations regarding the methods of choosing or identifying clinical covariates for investigation and interpretation of the findings
General Category of Recommendation
Specific Recommendation
Number of Resources1
Citations
When to identify covariates in the review process
A priori (e.g., in protocol)
17
76, 92,93,95, 100, 98, 18, 26, 39, 40, 30, 59, 29, 31, 46, 94, 114
How to find important clinical covariates from trial information
Looking at forest plots (variation in point estimates/CI overlap/ adding a vertical line for levels of some clinical variable)
6
92, 98, 93, 97, 98, 94
 
Proceed regardless of formal testing of statistical heterogeneity
5
35, 92, 97, 98, 29
 
Looking at L’Abbe plots
4
98, 45, 93, 98
 
Influence plot
3
98, 54, 85
 
Looking at summary tables
2
92, 24
 
Looking at funnel plots
2
49, 98
 
Use conceptual frameworks to facilitate choice of covariates (i.e., using taxonomies for active ingredients)
2
98, 112
 
I2 (look at the change in statistical heterogeneity by adding subgroups)
2
87, 100
 
Plot of effect size against individual covariates
1
48
 
Using an adaptation of multidimensional scaling (CoPlot)
1
55
 
Plot of normalized z-scores
1
93
 
Radial/Galbraith plot
1
93
 
Frequency distributions
1
98
 
Dose-response graph
1
3?
 
Use P.I.C.O. model to guide choice of characteristics
1
115
 
Use causal mediating processes
1
113
 
Treat strata within trials as separate studies; these subgroups if similar across studies can be combined
1
46
Rationale for choice of covariate
Scientific (e.g., pathophysiological, pharmacologic argument)
10
7,76,92,93, 100, 18, 26, 59, 31, 115
 
Previous research (e.g., large RCT)
3
76, 68, 100
 
Clinical grounds
2
96, 100
 
Indirect evidence
1
59
Personnel
Use of clinical experts
2
21, 115
 
Blind to results of trials
1
35
Number of covariates/trials needed
Small number of covariates
7
92, 95, 100, 18, 26, 31, 94
 
Each covariate investigation should be based on an adequate number of studies (e.g., 10 for every moderator)
6
100, 59, 50, 94, 115
 
Investigators must report actual number of covariates investigated for reader to determine the potential for false-positives
1
115
Number of outcomes to investigate
Restrict investigations to small number of outcomes (e.g., primary)
1
26
 
Limit to central question in the analysis
1
94
Interpretation of results of investigations
Use caution (4 resources note especially with post hoc testing)
12
100, 18, 29, 31, 85, 16, 20, 23, 25, 61, 32, 35
 
Observational only
6
59, 23, 94, 98, 100, 114
 
Exploratory or hypothesis generating only
4
32, 100, 40, 94
 
Consider confounding between covariates
4
100, 50, 115, 59
 
Consider artifactual causes of between-study variation
2
6, 98
 
Consider biases (e.g., misclassification, dilution, selection)
2
93, 115
 
Look at magnitude of the effect and the 95% CI; not just effect and p-value; consider precision of the subgroup effects (e.g., sample sizes in the studies dictate precision of the subgroup effects)
2
100, 115
 
Seek evidence to justify claims of subgroup findings
1
26
 
Identify knowledge gaps in the investigations
1
24
 
Consider effect of variability within studies
1
19
 
Consider if the magnitude is clinically important (i.e., differences in effect between subgroups)
1
100
 
Think through causal relationships, especially directionality
1
113
 
Use caution with variables grouped after randomization
1
23
 
Consider parabolic relationships (i.e., beyond linear regression)
1
115
 
Be cautious not to say there is a consistency of effect if no subgroup effects are found
1
115
Descriptive methods
Perform a narrative synthesis of these investigations
4
115, 98, 27, 100
 
Other: 1. idea webbing, 2. qualitative case descriptions, 3. investigator/methodological/conceptual triangulation
1
98
Use of types of data
Aggregate patient data for trial level covariates
4
23, 25, 118, 46
 
Only group characteristics derived prior to randomization (e.g., stratifying)
2
23, 46
 
Individual patient data for participant level covariates
1
59
 
Individual patient data only for all covariates where possible
1
59
1. The number (N) of resources equals the percentage of resources since we include 101 total resources.
Table 4 summarizes the types of statistical methods suggested for investigating clinical heterogeneity characteristics and the number of resources suggesting each. Many included resources made some mention of statistical methods of investigating aspects of clinical heterogeneity (N = 69/99, 69.7%). Also, many of these resources made general suggestions regarding the use of subgroup analyses (N = 18) and meta-regression (N = 16); however, the majority of these did not offer any specific recommendations. A wide variety of meta-regression techniques were suggested, many of which included simulated evidence or other forms of empirical testing. Several Bayesian approaches were suggested as well as several methods for individual patient data analysis [34, 48, 58, 63, 66, 69, 71, 75, 95]. Four textbooks appeared to be relatively comprehensive in their treatment of statistical recommendations [9395, 114].
Table 4
Statistical suggestions for investigating aspects of clinical heterogeneity
General Category of Statistical Method
Specific Method Suggested
Number of Resources1
Citations
Subgroup analyses
General
18
60, 2324, 25,46, 48, 50, 75, 92, 94, 93, 27, 97, 100, 98, 115, 105, 19
 
Hierarchical testing procedure based on the heterogeneity statistic Q
1
114
 
Combining subgroups across studies (i.e., in stratified studies)
1
114
Moderator Analyses
   
1. ANOVA2 analogue (e.g., a categorical moderator)
 
4
48, 94, 95, 114
2. Meta-regression
General mention
16
19, 60, 6, 24, 2528, 31,32,43, 50, 75, 94, 95, 100, 98, 93, 1325, 418
 
Fixed effects model (general)
4
92, 93, 94, 95
 
Bayesian models (general)
4
66, 71, 124, 95
 
New maximum likelihood method
2
60, 124
 
New weighted least squares model
2
58, 67
 
Random effects model (general)
2
67, 114
 
Random effects model for IPD3
2
58, 61
 
Permutation-based resampling
2
31, 43
 
Other nonparametric (e.g., fractional polynomials, splines)
2
69, 85
 
Mixed effects model
2
38, 114
 
New variance estimators (for covariates)
2
77, 84
 
Methods for measurement of residual errors
2
59, 41
 
Bayesian model in the presence of missing study-level covariate data
1
110
 
Semi-parametric modeling (general)
1
80
 
Fixed effects generalized least squares model
1
68
 
Hierarchical regression models
3
60, 64, 124
 
Random effects model with new variance estimator
1
70
 
Logistic regression with binary outcomes
1
25
 
Interaction term for meta-regression model
1
95
 
Consider nonlinear relationships (e.g., use quadratic or log transformations)
1
48
 
Bayesian model for use in meta-analyses of multiple treatment comparisons
1
111
3. Multivariate analyses
 
1
48
4. Multiple univariate analyses with Bonferroni adjustments
 
1
48
5. Meta-analysis of interaction estimates
 
1
61
6. Model to include the repeated observations (time as a variable) using IPD
 
1
109
7. Z test
 
1
125
Bayesian Approaches
  
1. Hierarchical Bayesian modeling
 
2
44, 48
2. Random effects models
 
1
63
Data Specific Approaches
   
1. IPD analyses
General
5
75, 76, 95, 97, 23
 
Regression
1
61, 46
 
Adding a treatment-covariate interaction term
1
95
2. Combination of IPD & APD4
Two-step models
2
74, 78
 
Multi-level model
2
69, 100
 
Meta-analysis of interaction estimates
1
61
Other Approaches
   
Models for control event rate / baseline risk
General (e.g., control event rate)
10
63, 24, 71, 81, 79, 93, 100, 19, 78, 111
Structural equation modeling (SEM)
Integration of SEM with fixed, random and mixed effects meta-analyses
1
42
Mixed treatment comparisons combined with meta-regression
 
1
72
Combining regression coefficients from separate studies
 
1
64
1. The number (N) of resources equals the percentage of resources since we include 101 total resources; 2. ANOVA = analysis of variance; 3. IPD = individual patient data; 4. APD = aggregate patient data.
Overall, we felt that there was some consensus across the resources regarding planning investigations, the use of clinical expertise, the rationale for choice of covariate, how to think through types of covariates, making a covariate hierarchy, post hoc covariate identification, statistical methods, data sources and interpretation of findings (See Table 5). We summarize the common recommendations that appeared in the literature to offer some preliminary guidance for systematic reviewers in Table 5 and we elaborate on several key areas in the discussion section below.
Table 5
Summary of recommendations for investigating clinical heterogeneity in systematic reviews
Recommendation Category
Recommendation Description
A-priori planning
1. All plans for investigating clinical heterogeneity should be made explicit, a-priori (e.g., in the protocol for the systematic review).
Clinical expertise
2. The review/investigative team should include clinical experts or state a plan for consulting clinical experts during the review protocol development and implementation (e.g., when choosing clinical covariates and when interpreting the findings).
Covariate rationale
3. Clinical covariates should be chosen that have a clearly stated rationale for their importance (e.g., a pathophysiological argument, reference to the results of a previous trial).
Thinking through covariate categories
4. Review teams should think through the following categories to determine if related covariates might logically influence the treatment effect in their particular review: participant level, intervention level, outcome level, research setting, or others unique to their research question.
Covariate hierarchy
5. A logical hierarchy of clinical covariates should be formed and investigated only if there is sufficient rationale and a sufficient number of trials available (10 trials per covariate).
Post hoc covariate identification
6. State any plans to include additional covariates after looking at the data (post hoc) from included studies (e.g., forest plots, radial plots) and how they plan to do this.
Statistical methods
7. Describe a-priori the statistical methods proposed to investigate identified covariates. Refer to accepted texts or published papers in the area to be sure to implement these methods in a valid manner. Include an individual with experience in conducting these analyses.1
Data sources
8. Aggregate patient data: Reasonable for investigating trial level covariates
9. Individual patient data: Consider when investigating participant level covariates (otherwise results are subject to ecologic bias)
Interpretation
10. A. Protocol: Describe how the results of any findings are going to be interpreted and used in the overall synthesis of evidence. B. Review: Consider the observational nature of these investigations; consider confounds and important potential biases; consider magnitude of the effect, confidence intervals and directionality of the effect.
1 We do not provide detailed recommendations for statistical analyses here because of the breath and complexity of this topic. Instead we suggest that one refer to accepted resources and well-trained individuals with expertise in the area.
Sources appearing to be the most comprehensive in their discussion of recommendations for investigating clinical heterogeneity included the Cochrane Handbook[100] and the Centre for Reviews and Dissemination’s Guidance For Undertaking Reviews In Health Care[98] and the AHRQ Comparative effectiveness review methods: clinical heterogeneity[115].

Discussion

A variety of decisions must be made when performing a systematic review. One such decision is how to deal with obvious differences among and within trials. Though a significant test for the presence of statistical heterogeneity (e.g., Q test) and a large degree of heterogeneity (e.g., I2 > 75%) might obligate a reviewer to look for covariates to explain this variability, a nonsignificant test or a small I2 (e.g., <25%) does not preclude the need to investigate covariate treatment effect interactions [35, 92, 97, 100]. That is, even with low statistical heterogeneity, there may still be factors that influence the size of the treatment effect, especially if there is a strong argument (i.e., pathophysiologic or otherwise) that some variable likely does have such an influence.
Observed or expected heterogeneity of treatment effects can be handled in several ways. The heterogeneity can be ignored and a meta-analysis conducted with a fixed-effects or random-effects model, or one can attempt to explain the heterogeneity through subgroup analyses, meta-regression or other techniques [25]. The latter moves the review away from overall statements of evidence to increasingly clinically applicable results and conclusions as well as new hypotheses for future research [75]. [Anello and Fleiss 28] make a clear distinction between meta-analyses with a goal of arriving at a common summary estimate of effect (“analytic meta-analyses”) and those focused on explaining why the effect sizes vary (“exploratory or causal meta-analyses”). The choice between these depends on the objective of the review, but it is clear that meta-analyses are more applicable to decision making (e.g., clinical, policy) when they are exploratory in nature [14, 28, 53, 75, 99]. The trials included in a systematic review may be so very similar that the summary effect estimate is the most reasonable and applicable metric [114]. But these cases are very rare, and therefore we would expect most questions asked and tested through meta-analytic methods should concern possible reasons for variation in effect [114].
Many resources were found that suggested methods for carrying out investigations of clinical heterogeneity in systematic reviews [17102]. There was great variety in the types of resources identified (statistical papers to commentaries) and in their potential for risk of bias. It was decided early to include any resource, no matter the design, methods, or publication type. For this reason many of the included resources might normally be considered at a high risk of bias (e.g., narrative reviews, expert opinions, learning guides and commentaries) and thus providing suggestions of questionable validity. But it was felt that these types of resources might provide the most valuable information on the subject of clinical heterogeneity. That is, investigating, and in particular choosing which clinical characteristics to investigate, requires clinical expertise, or at a minimum, knowledge of empirical evidence of some covariate of importance. The inclusion of these resources could be viewed as a drawback, but we saw it as a strength of this research. It was these resources that provided most of the suggestions regarding the methods for choosing or identifying clinical covariates to investigate (Table 3). The consensus-based guidelines provided most of the suggestions regarding the process of choosing or identifying clinical covariates, and the statistical papers, as might be expected, covered the majority of the specific statistical suggestions; but the textbooks also offered many suggestions in both areas. There was some consensus across resources, but only a small number of resources included a relatively comprehensive set of recommendations [15, 93, 94, 98]. Therefore, future research should be directed at developing a comprehensive and up to date set of guidelines to aid reviewers in investigating clinical heterogeneity. We summarize the common recommendations that appear in the literature to offer some preliminary guidance for systematic reviewers (Table 5).
We were surprised to see that the term clinical heterogeneity was relatively commonly used and consistently defined. We took our definition from several publications with which we were previously familiar [1, 3]. In some of the resources the term methodological heterogeneity was used synonymously with clinical heterogeneity, or clinical heterogeneity was considered to be one component of methodological heterogeneity. While this was infrequent in the literature, methodological aspects of heterogeneity include but go beyond clinical aspects or reasons for heterogeneity between trials. Thus, when describing reasons for heterogeneity that are related to the participants, intervention, outcomes or settings of the trial, these should be termed clinical aspects of heterogeneity. A consistency of terminology is mandatory for development of thought and investigation in this area. With terminology in place, the discussion can move to our recommendations.
When planning investigations of clinical heterogeneity in systematic reviews of controlled trials one should make such plans explicit, a priori, in the protocol for the review. We would suggest that protocols be published or registered in appropriate databases [118]. Next, it is reasonable and arguably beneficial, when organizing the review team, to include clinical experts or at a minimum, state a plan for consulting clinical experts during particular phases of the review (e.g., when choosing clinical covariates or during interpretation of findings). Furthermore, a set of clinical covariates should be chosen that have a clearly stated rationale for their importance (e.g., pathophysiological argument or reference to the results of a previous large trial). Review teams should think through the following categories to determine if related covariates might logically influence the treatment effect in their particular review: participant level, intervention level, outcome level, research setting, or others unique to the research question. Several resources offered conceptual mapping, idea webbing and causal modeling as possible methods for identifying important covariates and relationships between them [98, 112, 113]. Next, a hierarchy of clinical covariates should be formed and covariates investigated only if there is sufficient rationale and later a sufficient number of trials available. That is, covariates deemed more important than others on the basis of an explicitly stated rationale should be immediately included in such investigations, with other covariates being included when the number of trials is sufficient. A generally accepted rule of thumb is that 10 events per predictor variable (EPV) maintains bias and variability at acceptable levels. This rule derives from 2 simulation studies carried out for logistic and Cox modeling strategies [119121] and has been adapted to meta-regression [1, 114]. Therefore, it has been suggested that for each covariate there should be at least 10 trials to avoid potentially spurious findings [15]. Also, investigators should describe any plans to include additional covariates after looking at the data from included studies (e.g., forest plots). This might include an examination of summary tables or various types of plots [92, 93, 97, 98, 106], and it would be reasonable to include the clinical expert(s) at this stage to aid in the interpretation of the plotted data. Finally, how the results of any findings are going to be interpreted and used in the synthesis methods of the review needs to be explained. Most resources advise caution in interpreting these investigations, noting their exploratory nature, but when there is a clearly stated rationale, especially when derived from previous research, and sufficient trials are included, a priori planned investigations may improve applicability. Also, it was frequently suggested that the interpretation of the results of these investigations should consider confounds and important potential biases, the magnitude of the effect, confidence intervals and the directionality of the effect. Following these recommendations may lead to valid and reliable investigations of clinical heterogeneity and could improve their overall applicability and lead to future research that might test hypothesized subgroup effects.
A wide variety of statistical analyses are available for investigating clinical heterogeneity in systematic reviews of controlled clinical trials, and it is not within the scope of this paper to cover these in detail. Other resources cover this subject very well [15, 93, 95, 100, 114]. The sophistication of techniques is constantly growing, and an updated, precise summary of such methods is needed. Instead we will describe three available options frequently suggested by resources included in our review—subgroup analyses, meta-regression and the analogue to the analysis of variance (ANOVA)—and comment upon methods for exploring control group event rate.
Subgroup analyses involve separating trials into groups on the basis of some characteristic (e.g., intervention dose) and then performing separate meta-analyses for each group. This test provides an effect estimate within subgroups and a significance test for that estimate; it does not provide a test of variation in effect due to covariates. The greater the number of significant tests performed, the greater the likelihood of type 1 errors. There are some suggestions in the literature for how to control for this (e.g., Bonferroni adjustments [48]). To test for differences between subgroups a moderator analysis must be done. Moderator analyses include meta-regression and the analogue to the ANOVA, among other techniques (e.g., Z test [114]). Meta-regression is used to assess the impact of one or more independent variables (e.g., age or intervention dose) upon the dependent variable, the overall treatment effect [62]. Independent variables may be continuous or categorical, the latter expressed as a set of dummy variables with one omitted category. Several modeling strategies are available for performing meta-regression [100, 108, 122]. The results of meta-regression indicate which variables influence the summary treatment effect, how much the summary effect changes with each unit change in the variable and the p-value of this influence. It has been suggested that at least 10 trials per covariate are needed to limit spurious findings, due to the low statistical power of meta-regression, and a nonparametric test has been suggested when this tenet is not fulfilled [30] Also, one needs to consider the problems associated with ecological bias when performing meta-regressions on patient levels variables [40]. Finally, the analogue to the ANOVA examines the difference in the effect between categorical levels of some variable using identical statistical methods as a standard ANOVA [94].
The literature suggests many methods for examining the influence of the control event rate or baseline risk, which is considered an aggregate measure of known (e.g., age and disease severity) and unknown variables [15, 43, 93]. It has been argued that these examinations provide little import to clinical practice since the influence of any possible causative variables is aggregated and therefore the effect of individual covariates is unknown [15]. Also, the influence of the control event rate on the summary affect is affected by regression to the mean, and sophisticated statistical procedures are required to deal with this [15, 43, 93].
Bayesian approaches to meta-regression and hierarchical Bayes modeling, among other areas, appear to be well represented in the literature [66, 71, 95], as well as more general resources for Bayesian meta-analytic techniques [95, 123]. These methods are developing rapidly; therefore, frequent summaries of these important techniques are required as a resource to reviewers.
Finally, we would like to note suggestions in the literature concerning the utility of aggregate patient data (APD) versus individual patient data (IPD). Several resources give general recommendations regarding use of IPD when exploring characteristics that could be considered aspects of clinical heterogeneity [15, 7476, 95, 97]. Some empirical evidence supports these recommendations [40, 66, 124, 125]. When IPD is available, it should be used as a basis to investigate aspects of clinical heterogeneity at the patient level (e.g., demographic characteristics) so as to avoid ecological bias associated with summary APD. It is reasonable to use APD for trial-level covariates (e.g., intervention characteristics) that can be considered aspects of clinical heterogeneity. In addition, there may be opportunities to strategically use APD together with IPD to avoid the significant, and sometimes insurmountable, effort required to collect complete IPD [71].
Finally, in relation to the suggestions above for including clinical expertise in systematic reviews, we feel it is the responsibility of each therapeutic discipline to create a repository of variables to consider when exploring effect variation in systematic reviews. Such warehousing of clinically important covariates would serve as an important resource, allowing systematic reviewers and clinical trialists to explore nuances in treatment effect that might inform clinical decision making, and allowing for increased applicability of findings.

Conclusions

In summary, although many recommendations are available for investigating clinical heterogeneity in systematic reviews of controlled clinical trials, there is a need to develop a comprehensive set of recommendations for how to perform valid, applicable, and appropriate investigations of clinical covariates [7, 14]. This will improve the applicability and utilization of systematic reviews by policy makers, clinicians, and other decision makers and researchers who wish to build on these findings.

Appendix A: Search strategies

1. OVID searches

Medline (1950 to Oct 29th, 2010); Cochrane Methodology Register (Oct 29th, 2010) ; HTA (Oct 29th, 2010); EMBASE (1980 to Oct 30th, 2010)“(((clinical adj5 heterogeneity)) and (assessment or checklist or guideline or guidelines or scale or criteria))”Note: A slight variation in this strategy was used for EMBASE, on the EMBASE specific search engine, for an updated search we performed from January 1st 2009 to October 30th, 2010. This was due to a change in the available electronic resources.

2. CINAHL (EBSCO) (1981 up to October 30th, 2010)

“TX clinical N8 heterogeneity and TX ( assessment OR checklist OR guideline OR guidelines OR scale OR criteria )”

3. CONSORT database of methodological papers (up to Oct 30th, 2010)

Manual search of all citations.
Thompson SG. Why sources of heterogeneity in meta-analysis should be investigated. BMJ. 1994;309:1351–5.
Higgins J, Thompson S, Deeks J, Altman D. Statistical heterogeneity in systematic reviews of clinical trials: a critical appraisal of guidelines and practice. Journal of Health Services & Research Policy. Jan 2002;7(1):51–61.
Schmid CH, Stark PC, Berlin JA, Landais P and Lau J. Meta-regression detected associations between heterogeneous treatment effects and study-level, but not patient-level, factors.  Journal of Clinical Epidemiology. 2004;57:683–97.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

JG developed conceptualized the project, searched for the literature, extracted data, and wrote the manuscript. DM, HB, JB and CB conceptualized the project and edited the manuscript. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
2.
Zurück zum Zitat Pildal J, Hrobjartsson A, Jorgensen KJ, Hilden J, Altman DG, Gotzsche PC: Impact of allocation concealment on conclusions drawn from meta-analyses of randomized trials. Int J Epidemiol. 2007, 36 (4): 847-857. 10.1093/ije/dym087.PubMed Pildal J, Hrobjartsson A, Jorgensen KJ, Hilden J, Altman DG, Gotzsche PC: Impact of allocation concealment on conclusions drawn from meta-analyses of randomized trials. Int J Epidemiol. 2007, 36 (4): 847-857. 10.1093/ije/dym087.PubMed
3.
Zurück zum Zitat Tugwell P, Robinson V, Grimshaw J, Santesso N: Systematic reviews and knowledge translation. Bulletin of the World Health Organization. 2006, 84: 643-651. 10.2471/BLT.05.026658.PubMedPubMedCentral Tugwell P, Robinson V, Grimshaw J, Santesso N: Systematic reviews and knowledge translation. Bulletin of the World Health Organization. 2006, 84: 643-651. 10.2471/BLT.05.026658.PubMedPubMedCentral
4.
Zurück zum Zitat Grimshaw JM, Santesso N, Cumpston M, Mayhew A, McGowan J: Knowledge for knowledge translation: the role of the cochrane collaboration. J Contin Educ Health Prof. 2006, 26: 55-62. 10.1002/chp.51.PubMed Grimshaw JM, Santesso N, Cumpston M, Mayhew A, McGowan J: Knowledge for knowledge translation: the role of the cochrane collaboration. J Contin Educ Health Prof. 2006, 26: 55-62. 10.1002/chp.51.PubMed
8.
Zurück zum Zitat Laupacis A, Strauss S, Systematic reviews, Systematic reviews: Time to address clinical and policy relevance as well as methodological rigor. Ann Int Med. 2007, 147 (4): 273-275.PubMed Laupacis A, Strauss S, Systematic reviews, Systematic reviews: Time to address clinical and policy relevance as well as methodological rigor. Ann Int Med. 2007, 147 (4): 273-275.PubMed
9.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group: Preferred reporting items for systematic review and meta-analyses: the PRISMA statement. PLoS Medicine. 2009, 6 (&): e1000097-PubMedPubMedCentral Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group: Preferred reporting items for systematic review and meta-analyses: the PRISMA statement. PLoS Medicine. 2009, 6 (&): e1000097-PubMedPubMedCentral
10.
Zurück zum Zitat Glasziou P, Meats E, Heneghan C, Shepperd S: What is missing from descriptions of treatment in trials and reviews?. BMJ. 2008, 336: 1472-1474. 10.1136/bmj.39590.732037.47.PubMedPubMedCentral Glasziou P, Meats E, Heneghan C, Shepperd S: What is missing from descriptions of treatment in trials and reviews?. BMJ. 2008, 336: 1472-1474. 10.1136/bmj.39590.732037.47.PubMedPubMedCentral
11.
Zurück zum Zitat Glasziou P, Chalmers I, Altman DG, et al: Taking healthcare interventions from trial to practice. BMJ. 2010, 341: 384-387. Glasziou P, Chalmers I, Altman DG, et al: Taking healthcare interventions from trial to practice. BMJ. 2010, 341: 384-387.
12.
Zurück zum Zitat Chalmers I, Glasziou P: Avoidable waste in the production and reporting of research evidence. Lancet. 2009, 374: 86-89. 10.1016/S0140-6736(09)60329-9.PubMed Chalmers I, Glasziou P: Avoidable waste in the production and reporting of research evidence. Lancet. 2009, 374: 86-89. 10.1016/S0140-6736(09)60329-9.PubMed
13.
Zurück zum Zitat Chalmers I, Glasziou P: Avoidable waste in the production and reporting of research evidence. Obstet Gynecol. 2009, 114 (6): 1341-1345. 10.1097/AOG.0b013e3181c3020d.PubMed Chalmers I, Glasziou P: Avoidable waste in the production and reporting of research evidence. Obstet Gynecol. 2009, 114 (6): 1341-1345. 10.1097/AOG.0b013e3181c3020d.PubMed
14.
Zurück zum Zitat Scott NA, Moga C, Barton P, Rashiq S, Schopflocher D, Taenzer P, Alberta Ambassador Program Team, et al: Creating clinically relevant knowledge from systematic reviews: The challenges of knowledge translation. J Eval Clin Pract. 2007, 13 (4): 681-688. 10.1111/j.1365-2753.2007.00830.x.PubMed Scott NA, Moga C, Barton P, Rashiq S, Schopflocher D, Taenzer P, Alberta Ambassador Program Team, et al: Creating clinically relevant knowledge from systematic reviews: The challenges of knowledge translation. J Eval Clin Pract. 2007, 13 (4): 681-688. 10.1111/j.1365-2753.2007.00830.x.PubMed
15.
Zurück zum Zitat Gagnier JJ, Bombardier C, Boon H, Moher D, Beyene J: An empirical study using permutation-based resampling in meta-regression. Systematic Reviews. 2012, 1: 18-10.1186/2046-4053-1-18.PubMedPubMedCentral Gagnier JJ, Bombardier C, Boon H, Moher D, Beyene J: An empirical study using permutation-based resampling in meta-regression. Systematic Reviews. 2012, 1: 18-10.1186/2046-4053-1-18.PubMedPubMedCentral
16.
Zurück zum Zitat Gagnier JJ, Morgenstern H, Moher D: Recommendations for investigating clinical heterogeneity in systematic reviews and meta-analyses. 2012, Under Review Gagnier JJ, Morgenstern H, Moher D: Recommendations for investigating clinical heterogeneity in systematic reviews and meta-analyses. 2012, Under Review
17.
Zurück zum Zitat Arends LR, Hoes AW, Lubsen J, Grobbee DE, Stijnen T: Baseline risk as predictor of treatment benefit: Three clinical meta-re-analyses. Stat Med. 2000, 19: 3497-3518. 10.1002/1097-0258(20001230)19:24<3497::AID-SIM830>3.0.CO;2-H.PubMed Arends LR, Hoes AW, Lubsen J, Grobbee DE, Stijnen T: Baseline risk as predictor of treatment benefit: Three clinical meta-re-analyses. Stat Med. 2000, 19: 3497-3518. 10.1002/1097-0258(20001230)19:24<3497::AID-SIM830>3.0.CO;2-H.PubMed
18.
Zurück zum Zitat Higgins J, Thompson S, Deeks J, Altman D: Statistical heterogeneity in systematic reviews of clinical trials: a critical appraisal of guidelines and practice. J Health Serv Res Policy. 2002, 7 (1): 51-61. 10.1258/1355819021927674.PubMed Higgins J, Thompson S, Deeks J, Altman D: Statistical heterogeneity in systematic reviews of clinical trials: a critical appraisal of guidelines and practice. J Health Serv Res Policy. 2002, 7 (1): 51-61. 10.1258/1355819021927674.PubMed
19.
Zurück zum Zitat Schmid CH, Lau J, McIntosh MW, Cappelleri JC: An empirical study of the effect of the control rate as a predictor of treatment efficacy in meta-analysis of clinical trials. Stat Med. 1998, 17 (17): 1923-1942. 10.1002/(SICI)1097-0258(19980915)17:17<1923::AID-SIM874>3.0.CO;2-6.PubMed Schmid CH, Lau J, McIntosh MW, Cappelleri JC: An empirical study of the effect of the control rate as a predictor of treatment efficacy in meta-analysis of clinical trials. Stat Med. 1998, 17 (17): 1923-1942. 10.1002/(SICI)1097-0258(19980915)17:17<1923::AID-SIM874>3.0.CO;2-6.PubMed
20.
Zurück zum Zitat Thompson SG: Why sources of heterogeneity in meta-analysis should be investigated. BMJ. 1994, 309 (6965): 1351-1355. 10.1136/bmj.309.6965.1351.PubMedPubMedCentral Thompson SG: Why sources of heterogeneity in meta-analysis should be investigated. BMJ. 1994, 309 (6965): 1351-1355. 10.1136/bmj.309.6965.1351.PubMedPubMedCentral
21.
Zurück zum Zitat van den Ende CHM, Steultjens EMJ, Bouter LM, Dekker J: Clinical heterogeneity was a common problem in Cochrane reviews of physiotherapy and occupational therapy. J Clin Epidemiol. 2006, 59: 914-919. 10.1016/j.jclinepi.2005.12.014.PubMed van den Ende CHM, Steultjens EMJ, Bouter LM, Dekker J: Clinical heterogeneity was a common problem in Cochrane reviews of physiotherapy and occupational therapy. J Clin Epidemiol. 2006, 59: 914-919. 10.1016/j.jclinepi.2005.12.014.PubMed
22.
Zurück zum Zitat Loke YK, Price D, Herxheimer A: Systematic reviews of adverse effects: framework for a structured approach. BMC Med Res Methodol. 2007, 7: 32-10.1186/1471-2288-7-32.PubMedPubMedCentral Loke YK, Price D, Herxheimer A: Systematic reviews of adverse effects: framework for a structured approach. BMC Med Res Methodol. 2007, 7: 32-10.1186/1471-2288-7-32.PubMedPubMedCentral
23.
Zurück zum Zitat Freemantle N, Mason J, Eccles M: Deriving treatment recommendations from evidence within randomized trials. The role and limitation of meta-analysis. Int J Technol Assess Health Care. 1999, 15 (2): 304-315.PubMed Freemantle N, Mason J, Eccles M: Deriving treatment recommendations from evidence within randomized trials. The role and limitation of meta-analysis. Int J Technol Assess Health Care. 1999, 15 (2): 304-315.PubMed
24.
Zurück zum Zitat Huang JQ, Zheng GF, Irvine EJ, Karlberg J: Assessing heterogeneity in meta-analyses of Helicobacter pylori infection-related clinical studies: a critical appraisal. Chin J Dig Dis. 2004, 5 (3): 126-133. 10.1111/j.1443-9573.2004.00169.x.PubMed Huang JQ, Zheng GF, Irvine EJ, Karlberg J: Assessing heterogeneity in meta-analyses of Helicobacter pylori infection-related clinical studies: a critical appraisal. Chin J Dig Dis. 2004, 5 (3): 126-133. 10.1111/j.1443-9573.2004.00169.x.PubMed
25.
Zurück zum Zitat Lau J, Ioannidis JP, Schmid CH: Quantitative synthesis in systematic reviews. Ann Intern Med. 1997, 127 (9): 820-826.PubMed Lau J, Ioannidis JP, Schmid CH: Quantitative synthesis in systematic reviews. Ann Intern Med. 1997, 127 (9): 820-826.PubMed
26.
Zurück zum Zitat Bender R, Bunce C, Clarke M, et al: Attention should be given to multiplicity issues in systematic reviews. J Clin Epidemiol. 2008, 61 (9): 857-865. 10.1016/j.jclinepi.2008.03.004.PubMed Bender R, Bunce C, Clarke M, et al: Attention should be given to multiplicity issues in systematic reviews. J Clin Epidemiol. 2008, 61 (9): 857-865. 10.1016/j.jclinepi.2008.03.004.PubMed
27.
Zurück zum Zitat van Tulder M, Furlan A, Bombardier C, Bouter L: Updated method guidelines for systematic reviews in the Cochrane collaboration back review group. Spine. 2003, 28 (12): 1290-1299.PubMed van Tulder M, Furlan A, Bombardier C, Bouter L: Updated method guidelines for systematic reviews in the Cochrane collaboration back review group. Spine. 2003, 28 (12): 1290-1299.PubMed
28.
Zurück zum Zitat Anello C, Fleiss JL: Exploratory or analytic meta-analysis: should we distinguish between them?. J Clin Epidemiol. 1995, 48 (1): 109-116. 10.1016/0895-4356(94)00084-4. discussion 117-108PubMed Anello C, Fleiss JL: Exploratory or analytic meta-analysis: should we distinguish between them?. J Clin Epidemiol. 1995, 48 (1): 109-116. 10.1016/0895-4356(94)00084-4. discussion 117-108PubMed
29.
Zurück zum Zitat Simmonds MC, Higgins JP, Stewart LA, Tierney JF, Clarke MJ, Thompson SG: Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clin Trials. 2005, 2 (3): 209-217. 10.1191/1740774505cn087oa.PubMed Simmonds MC, Higgins JP, Stewart LA, Tierney JF, Clarke MJ, Thompson SG: Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clin Trials. 2005, 2 (3): 209-217. 10.1191/1740774505cn087oa.PubMed
30.
Zurück zum Zitat Maxwell L, Santesso N, Tugwell PS, Wells GA, Judd M, Buchbinder R: Method guidelines for Cochrane Musculoskeletal Group systematic reviews. J Rheumatol. 2006, 33 (11): 2304-2311.PubMed Maxwell L, Santesso N, Tugwell PS, Wells GA, Judd M, Buchbinder R: Method guidelines for Cochrane Musculoskeletal Group systematic reviews. J Rheumatol. 2006, 33 (11): 2304-2311.PubMed
31.
Zurück zum Zitat Higgins JP, Thompson SG: Controlling the risk of spurious findings from meta-regression. Stat Med. 2004, 23 (11): 1663-1682. 10.1002/sim.1752.PubMed Higgins JP, Thompson SG: Controlling the risk of spurious findings from meta-regression. Stat Med. 2004, 23 (11): 1663-1682. 10.1002/sim.1752.PubMed
32.
Zurück zum Zitat Song F, Sheldon TA, Sutton AJ, Abrams KR, Jones DR: Methods for exploring heterogeneity in meta-analysis. Eval Health Prof. 2001, 24 (2): 126-151.PubMed Song F, Sheldon TA, Sutton AJ, Abrams KR, Jones DR: Methods for exploring heterogeneity in meta-analysis. Eval Health Prof. 2001, 24 (2): 126-151.PubMed
33.
Zurück zum Zitat Glenton C, Underland V, Kho M, Pennick V, Oxman AD: Summaries of findings, descriptions of interventions, and information about adverse effects would make reviews more informative. J Clin Epidemiol. 2006, 59 (8): 770-778. 10.1016/j.jclinepi.2005.12.011.PubMed Glenton C, Underland V, Kho M, Pennick V, Oxman AD: Summaries of findings, descriptions of interventions, and information about adverse effects would make reviews more informative. J Clin Epidemiol. 2006, 59 (8): 770-778. 10.1016/j.jclinepi.2005.12.011.PubMed
34.
Zurück zum Zitat Dohoo I, Stryhn H, Sanchez J: Evaluation of underlying risk as a source of heterogeneity in meta-analyses: a simulation study of Bayesian and frequentist implementations of three models. Prev Vet Med. 2007, 81 (1–3): 38-55.PubMed Dohoo I, Stryhn H, Sanchez J: Evaluation of underlying risk as a source of heterogeneity in meta-analyses: a simulation study of Bayesian and frequentist implementations of three models. Prev Vet Med. 2007, 81 (1–3): 38-55.PubMed
35.
Zurück zum Zitat Hall JA, Rosenthal R: Interpreting and evaluating meta-analysis. Eval Health Prof. 1995, 18 (4): 393-407. 10.1177/016327879501800404.PubMed Hall JA, Rosenthal R: Interpreting and evaluating meta-analysis. Eval Health Prof. 1995, 18 (4): 393-407. 10.1177/016327879501800404.PubMed
36.
Zurück zum Zitat Gerbarg ZB, Horwitz RI: Resolving conflicting clinical trials: guidelines for meta-analysis. J Clin Epidemiol. 1988, 41 (5): 503-509. 10.1016/0895-4356(88)90053-4.PubMed Gerbarg ZB, Horwitz RI: Resolving conflicting clinical trials: guidelines for meta-analysis. J Clin Epidemiol. 1988, 41 (5): 503-509. 10.1016/0895-4356(88)90053-4.PubMed
37.
Zurück zum Zitat DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials. 1986, 7 (3): 177-188. 10.1016/0197-2456(86)90046-2.PubMed DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials. 1986, 7 (3): 177-188. 10.1016/0197-2456(86)90046-2.PubMed
38.
Zurück zum Zitat St-Pierre NR: Invited review: Integrating quantitative findings from multiple studies using mixed model methodology. J Dairy Sci. 2001, 84 (4): 741-755. 10.3168/jds.S0022-0302(01)74530-4.PubMed St-Pierre NR: Invited review: Integrating quantitative findings from multiple studies using mixed model methodology. J Dairy Sci. 2001, 84 (4): 741-755. 10.3168/jds.S0022-0302(01)74530-4.PubMed
39.
Zurück zum Zitat Cook DJ, Sackett DL, Spitzer WO: Methodologic guidelines for systematic reviews of randomized control trials in health care from the Potsdam Consultation on Meta-Analysis. J Clin Epidemiol. 1995, 48 (1): 167-171. 10.1016/0895-4356(94)00172-M.PubMed Cook DJ, Sackett DL, Spitzer WO: Methodologic guidelines for systematic reviews of randomized control trials in health care from the Potsdam Consultation on Meta-Analysis. J Clin Epidemiol. 1995, 48 (1): 167-171. 10.1016/0895-4356(94)00172-M.PubMed
40.
Zurück zum Zitat Berlin JA, Santanna J, Schmid CH, Szczech LA, Feldman HI: Individual patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head. Stat Med. 2002, 21 (3): 371-387. 10.1002/sim.1023.PubMed Berlin JA, Santanna J, Schmid CH, Szczech LA, Feldman HI: Individual patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head. Stat Med. 2002, 21 (3): 371-387. 10.1002/sim.1023.PubMed
41.
Zurück zum Zitat Walter SD: Variation in baseline risk as an explanation of heterogeneity in meta-analysis. Stat Med. 1997, 16 (24): 2883-2900. 10.1002/(SICI)1097-0258(19971230)16:24<2883::AID-SIM825>3.0.CO;2-B.PubMed Walter SD: Variation in baseline risk as an explanation of heterogeneity in meta-analysis. Stat Med. 1997, 16 (24): 2883-2900. 10.1002/(SICI)1097-0258(19971230)16:24<2883::AID-SIM825>3.0.CO;2-B.PubMed
42.
Zurück zum Zitat Cheung MW: A model for integrating fixed-, random-, and mixed-effects meta-analyses into structural equation modeling. Psychol Methods. 2008, 13 (3): 182-202.PubMed Cheung MW: A model for integrating fixed-, random-, and mixed-effects meta-analyses into structural equation modeling. Psychol Methods. 2008, 13 (3): 182-202.PubMed
43.
Zurück zum Zitat Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F: Systematic reviews of trials and other studies. Health Technol Assess. 1998, 2 (19): 1-276.PubMed Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F: Systematic reviews of trials and other studies. Health Technol Assess. 1998, 2 (19): 1-276.PubMed
44.
Zurück zum Zitat Rosenthal R, DiMatteo MR: Meta-analysis: recent developments in quantitative methods for literature reviews. Annu Rev Psychol. 2001, 52: 59-82. 10.1146/annurev.psych.52.1.59.PubMed Rosenthal R, DiMatteo MR: Meta-analysis: recent developments in quantitative methods for literature reviews. Annu Rev Psychol. 2001, 52: 59-82. 10.1146/annurev.psych.52.1.59.PubMed
45.
Zurück zum Zitat Song F: Exploring heterogeneity in meta-analysis: is the L'Abbe plot useful?. J Clin Epidemiol. 1999, 52 (8): 725-730. 10.1016/S0895-4356(99)00066-9.PubMed Song F: Exploring heterogeneity in meta-analysis: is the L'Abbe plot useful?. J Clin Epidemiol. 1999, 52 (8): 725-730. 10.1016/S0895-4356(99)00066-9.PubMed
46.
Zurück zum Zitat Reade MC, Delaney A, Bailey MJ, Angus DC: Bench-to-bedside review: Avoiding pitfalls in critical care meta-analysis–funnel plots, risk estimates, types of heterogeneity, baseline risk and the ecologic fallacy. Crit Care. 2008, 12 (4): 220-10.1186/cc6941.PubMedPubMedCentral Reade MC, Delaney A, Bailey MJ, Angus DC: Bench-to-bedside review: Avoiding pitfalls in critical care meta-analysis–funnel plots, risk estimates, types of heterogeneity, baseline risk and the ecologic fallacy. Crit Care. 2008, 12 (4): 220-10.1186/cc6941.PubMedPubMedCentral
47.
Zurück zum Zitat Xu H, Platt RW, Luo ZC, Wei S, Fraser WD: Exploring heterogeneity in meta-analyses: needs, resources and challenges. Paediatr Perinat Epidemiol. 2008, 22 (Suppl 1): 18-28.PubMed Xu H, Platt RW, Luo ZC, Wei S, Fraser WD: Exploring heterogeneity in meta-analyses: needs, resources and challenges. Paediatr Perinat Epidemiol. 2008, 22 (Suppl 1): 18-28.PubMed
48.
Zurück zum Zitat Olkin I: Diagnostic statistical procedures in medical meta-analyses. Stat Med. 1999, 18 (17–18): 2331-2341.PubMed Olkin I: Diagnostic statistical procedures in medical meta-analyses. Stat Med. 1999, 18 (17–18): 2331-2341.PubMed
49.
Zurück zum Zitat Sterne JA, Egger M, Smith GD: Systematic reviews in health care: Investigating and dealing with publication and other biases in meta-analysis. BMJ. 2001, 323 (7304): 101-105. 10.1136/bmj.323.7304.101.PubMedPubMedCentral Sterne JA, Egger M, Smith GD: Systematic reviews in health care: Investigating and dealing with publication and other biases in meta-analysis. BMJ. 2001, 323 (7304): 101-105. 10.1136/bmj.323.7304.101.PubMedPubMedCentral
50.
Zurück zum Zitat Lipsey MW, Wilson DB: The way in which intervention studies have "personality" and why it is important to meta-analysis. Eval Health Prof. 2001, 24 (3): 236-254.PubMed Lipsey MW, Wilson DB: The way in which intervention studies have "personality" and why it is important to meta-analysis. Eval Health Prof. 2001, 24 (3): 236-254.PubMed
51.
Zurück zum Zitat Moher D, Jadad AR, Klassen TP: Guides for reading and interpreting systematic reviews: III. How did the authors synthesize the data and make their conclusions?. Arch Pediatr Adolesc Med. 1998, 152 (9): 915-920.PubMed Moher D, Jadad AR, Klassen TP: Guides for reading and interpreting systematic reviews: III. How did the authors synthesize the data and make their conclusions?. Arch Pediatr Adolesc Med. 1998, 152 (9): 915-920.PubMed
52.
Zurück zum Zitat Schmid JE, Koch GG, LaVange LM: An overview of statistical issues and methods of meta-analysis. J Biopharm Stat. 1991, 1 (1): 103-120. 10.1080/10543409108835008.PubMed Schmid JE, Koch GG, LaVange LM: An overview of statistical issues and methods of meta-analysis. J Biopharm Stat. 1991, 1 (1): 103-120. 10.1080/10543409108835008.PubMed
53.
Zurück zum Zitat Berlin JA: Invited commentary: benefits of heterogeneity in meta-analysis of data from epidemiologic studies. Am J Epidemiol. 1995, 142 (4): 383-387.PubMed Berlin JA: Invited commentary: benefits of heterogeneity in meta-analysis of data from epidemiologic studies. Am J Epidemiol. 1995, 142 (4): 383-387.PubMed
54.
Zurück zum Zitat Malling HJ, Thomsen AB, Andersen JS: Heterogeneity can impair the results of Cochrane meta-analyses despite accordance with statistical guidelines. Allergy. 2008, 63 (12): 1643-1645. 10.1111/j.1398-9995.2008.01908.x.PubMed Malling HJ, Thomsen AB, Andersen JS: Heterogeneity can impair the results of Cochrane meta-analyses despite accordance with statistical guidelines. Allergy. 2008, 63 (12): 1643-1645. 10.1111/j.1398-9995.2008.01908.x.PubMed
55.
Zurück zum Zitat Bravata DM, Shojania KG, Olkin I, Raveh A: CoPlot: a tool for visualizing multivariate data in medicine. Stat Med. 2008, 27 (12): 2234-2247. 10.1002/sim.3078.PubMed Bravata DM, Shojania KG, Olkin I, Raveh A: CoPlot: a tool for visualizing multivariate data in medicine. Stat Med. 2008, 27 (12): 2234-2247. 10.1002/sim.3078.PubMed
56.
Zurück zum Zitat Baujat B, Mahe C, Pignon JP, Hill C: A graphical method for exploring heterogeneity in meta-analyses: application to a meta-analysis of 65 trials. Stat Med. 2002, 21 (18): 2641-2652. 10.1002/sim.1221.PubMed Baujat B, Mahe C, Pignon JP, Hill C: A graphical method for exploring heterogeneity in meta-analyses: application to a meta-analysis of 65 trials. Stat Med. 2002, 21 (18): 2641-2652. 10.1002/sim.1221.PubMed
57.
Zurück zum Zitat Higgins JP, Whitehead A: Borrowing strength from external trials in a meta-analysis. Stat Med. 1996, 15 (24): 2733-2749. 10.1002/(SICI)1097-0258(19961230)15:24<2733::AID-SIM562>3.0.CO;2-0.PubMed Higgins JP, Whitehead A: Borrowing strength from external trials in a meta-analysis. Stat Med. 1996, 15 (24): 2733-2749. 10.1002/(SICI)1097-0258(19961230)15:24<2733::AID-SIM562>3.0.CO;2-0.PubMed
58.
Zurück zum Zitat Michiels S, Baujat B, Mahe C, Sargent DJ, Pignon JP: Random effects survival models gave a better understanding of heterogeneity in individual patient data meta-analyses. J Clin Epidemiol. 2005, 58 (3): 238-245. 10.1016/j.jclinepi.2004.08.013.PubMed Michiels S, Baujat B, Mahe C, Sargent DJ, Pignon JP: Random effects survival models gave a better understanding of heterogeneity in individual patient data meta-analyses. J Clin Epidemiol. 2005, 58 (3): 238-245. 10.1016/j.jclinepi.2004.08.013.PubMed
59.
Zurück zum Zitat Thompson SG, Sharp SJ: Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med. 1999, 18 (20): 2693-2708. 10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V.PubMed Thompson SG, Sharp SJ: Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med. 1999, 18 (20): 2693-2708. 10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V.PubMed
60.
Zurück zum Zitat Smith CT, Williamson PR, Marson AG: Investigating heterogeneity in an individual patient data meta-analysis of time to event outcomes. Stat Med. 2005, 24 (9): 1307-1319. 10.1002/sim.2050.PubMed Smith CT, Williamson PR, Marson AG: Investigating heterogeneity in an individual patient data meta-analysis of time to event outcomes. Stat Med. 2005, 24 (9): 1307-1319. 10.1002/sim.2050.PubMed
61.
Zurück zum Zitat Simmonds MC, Higgins JP: Covariate heterogeneity in meta-analysis: criteria for deciding between meta-regression and individual patient data. Stat Med. 2007, 26 (15): 2982-2999. 10.1002/sim.2768.PubMed Simmonds MC, Higgins JP: Covariate heterogeneity in meta-analysis: criteria for deciding between meta-regression and individual patient data. Stat Med. 2007, 26 (15): 2982-2999. 10.1002/sim.2768.PubMed
62.
Zurück zum Zitat Thompson SG, Higgins JP: How should meta-regression analyses be undertaken and interpreted?. Stat Med. 2002, 21 (11): 1559-1573. 10.1002/sim.1187.PubMed Thompson SG, Higgins JP: How should meta-regression analyses be undertaken and interpreted?. Stat Med. 2002, 21 (11): 1559-1573. 10.1002/sim.1187.PubMed
63.
Zurück zum Zitat Thompson SG, Smith TC, Sharp SJ: Investigating underlying risk as a source of heterogeneity in meta-analysis. Stat Med. 1997, 16 (23): 2741-2758. 10.1002/(SICI)1097-0258(19971215)16:23<2741::AID-SIM703>3.0.CO;2-0.PubMed Thompson SG, Smith TC, Sharp SJ: Investigating underlying risk as a source of heterogeneity in meta-analysis. Stat Med. 1997, 16 (23): 2741-2758. 10.1002/(SICI)1097-0258(19971215)16:23<2741::AID-SIM703>3.0.CO;2-0.PubMed
64.
Zurück zum Zitat Frost C, Clarke R, Beacon H: Use of hierarchical models for meta-analysis: experience in the metabolic ward studies of diet and blood cholesterol. Stat Med. 1999, 18 (13): 1657-1676. 10.1002/(SICI)1097-0258(19990715)18:13<1657::AID-SIM155>3.0.CO;2-M.PubMed Frost C, Clarke R, Beacon H: Use of hierarchical models for meta-analysis: experience in the metabolic ward studies of diet and blood cholesterol. Stat Med. 1999, 18 (13): 1657-1676. 10.1002/(SICI)1097-0258(19990715)18:13<1657::AID-SIM155>3.0.CO;2-M.PubMed
65.
Zurück zum Zitat Naylor CD: Two cheers for meta-analysis: problems and opportunities in aggregating results of clinical trials. Cmaj. 1988, 138 (10): 891-895.PubMedPubMedCentral Naylor CD: Two cheers for meta-analysis: problems and opportunities in aggregating results of clinical trials. Cmaj. 1988, 138 (10): 891-895.PubMedPubMedCentral
66.
Zurück zum Zitat Schmid CH, Stark PC, Berlin JA, Landais P, Lau J: Meta-regression detected associations between heterogeneous treatment effects and study-level, but not patient-level, factors. J Clin Epidemiol. 2004, 57 (7): 683-697. 10.1016/j.jclinepi.2003.12.001.PubMed Schmid CH, Stark PC, Berlin JA, Landais P, Lau J: Meta-regression detected associations between heterogeneous treatment effects and study-level, but not patient-level, factors. J Clin Epidemiol. 2004, 57 (7): 683-697. 10.1016/j.jclinepi.2003.12.001.PubMed
67.
Zurück zum Zitat Higgins JP, Whitehead A, Turner RM, Omar RZ, Thompson SG: Meta-analysis of continuous outcome data from individual patients. Stat Med. 2001, 20 (15): 2219-2241. 10.1002/sim.918.PubMed Higgins JP, Whitehead A, Turner RM, Omar RZ, Thompson SG: Meta-analysis of continuous outcome data from individual patients. Stat Med. 2001, 20 (15): 2219-2241. 10.1002/sim.918.PubMed
68.
Zurück zum Zitat Berkey CS, Anderson JJ, Hoaglin DC: Multiple-outcome meta-analysis of clinical trials. Stat Med. 1996, 15 (5): 537-557. 10.1002/(SICI)1097-0258(19960315)15:5<537::AID-SIM176>3.0.CO;2-S.PubMed Berkey CS, Anderson JJ, Hoaglin DC: Multiple-outcome meta-analysis of clinical trials. Stat Med. 1996, 15 (5): 537-557. 10.1002/(SICI)1097-0258(19960315)15:5<537::AID-SIM176>3.0.CO;2-S.PubMed
69.
Zurück zum Zitat Thompson SG, Turner RM, Warn DE: Multilevel models for meta-analysis, and their application to absolute risk differences. Stat Methods Med Res. 2001, 10 (6): 375-392. 10.1191/096228001682157616.PubMed Thompson SG, Turner RM, Warn DE: Multilevel models for meta-analysis, and their application to absolute risk differences. Stat Methods Med Res. 2001, 10 (6): 375-392. 10.1191/096228001682157616.PubMed
70.
Zurück zum Zitat Berkey CS, Hoaglin DC, Mosteller F, Colditz GA: A random-effects regression model for meta-analysis. Stat Med. 1995, 14 (4): 395-411. 10.1002/sim.4780140406.PubMed Berkey CS, Hoaglin DC, Mosteller F, Colditz GA: A random-effects regression model for meta-analysis. Stat Med. 1995, 14 (4): 395-411. 10.1002/sim.4780140406.PubMed
71.
Zurück zum Zitat Warn DE, Thompson SG, Spiegelhalter DJ: Bayesian random effects meta-analysis of trials with binary outcomes: methods for the absolute risk difference and relative risk scales. Stat Med. 2002, 21 (11): 1601-1623. 10.1002/sim.1189.PubMed Warn DE, Thompson SG, Spiegelhalter DJ: Bayesian random effects meta-analysis of trials with binary outcomes: methods for the absolute risk difference and relative risk scales. Stat Med. 2002, 21 (11): 1601-1623. 10.1002/sim.1189.PubMed
72.
Zurück zum Zitat Nixon RM, Bansback N, Brennan A: Using mixed treatment comparisons and meta-regression to perform indirect comparisons to estimate the efficacy of biologic treatments in rheumatoid arthritis. Stat Med. 2007, 26 (6): 1237-1254. 10.1002/sim.2624.PubMed Nixon RM, Bansback N, Brennan A: Using mixed treatment comparisons and meta-regression to perform indirect comparisons to estimate the efficacy of biologic treatments in rheumatoid arthritis. Stat Med. 2007, 26 (6): 1237-1254. 10.1002/sim.2624.PubMed
73.
Zurück zum Zitat Koopman L, van der Heijden GJ, Glasziou PP, Grobbee DE, Rovers MM: A systematic review of analytical methods used to study subgroups in (individual patient data) meta-analyses. J Clin Epidemiol. 2007, 60 (10): 1002-1009.PubMed Koopman L, van der Heijden GJ, Glasziou PP, Grobbee DE, Rovers MM: A systematic review of analytical methods used to study subgroups in (individual patient data) meta-analyses. J Clin Epidemiol. 2007, 60 (10): 1002-1009.PubMed
74.
Zurück zum Zitat Riley RD, Lambert PC, Staessen JA, et al: Meta-analysis of continuous outcomes combining individual patient data and aggregate data. Stat Med. 2008, 27 (11): 1870-1893. 10.1002/sim.3165.PubMed Riley RD, Lambert PC, Staessen JA, et al: Meta-analysis of continuous outcomes combining individual patient data and aggregate data. Stat Med. 2008, 27 (11): 1870-1893. 10.1002/sim.3165.PubMed
75.
Zurück zum Zitat Thompson SG, Higgins JP: Treating individuals 4: can meta-analysis help target interventions at individuals most likely to benefit?. Lancet. 2005, 365 (9456): 341-346.PubMed Thompson SG, Higgins JP: Treating individuals 4: can meta-analysis help target interventions at individuals most likely to benefit?. Lancet. 2005, 365 (9456): 341-346.PubMed
76.
Zurück zum Zitat Trikalinos TA, Ioannidis JP: Predictive modeling and heterogeneity of baseline risk in meta-analysis of individual patient data. J Clin Epidemiol. 2001, 54 (3): 245-252. 10.1016/S0895-4356(00)00311-5.PubMed Trikalinos TA, Ioannidis JP: Predictive modeling and heterogeneity of baseline risk in meta-analysis of individual patient data. J Clin Epidemiol. 2001, 54 (3): 245-252. 10.1016/S0895-4356(00)00311-5.PubMed
77.
Zurück zum Zitat Knapp G, Hartung J: Improved tests for a random effects meta-regression with a single covariate. Stat Med. 2003, 22 (17): 2693-2710. 10.1002/sim.1482.PubMed Knapp G, Hartung J: Improved tests for a random effects meta-regression with a single covariate. Stat Med. 2003, 22 (17): 2693-2710. 10.1002/sim.1482.PubMed
78.
Zurück zum Zitat van Houwelingen HC, Arends LR, Stijnen T: Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med. 2002, 21 (4): 589-624. 10.1002/sim.1040.PubMed van Houwelingen HC, Arends LR, Stijnen T: Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med. 2002, 21 (4): 589-624. 10.1002/sim.1040.PubMed
79.
Zurück zum Zitat Sharp SJ, Thompson SG: Analysing the relationship between treatment effect and underlying risk in meta-analysis: comparison and development of approaches. Stat Med. 2000, 19 (23): 3251-3274. 10.1002/1097-0258(20001215)19:23<3251::AID-SIM625>3.0.CO;2-2.PubMed Sharp SJ, Thompson SG: Analysing the relationship between treatment effect and underlying risk in meta-analysis: comparison and development of approaches. Stat Med. 2000, 19 (23): 3251-3274. 10.1002/1097-0258(20001215)19:23<3251::AID-SIM625>3.0.CO;2-2.PubMed
80.
Zurück zum Zitat Ghidey W, Lesaffre E, Stijnen T: Semi-parametric modelling of the distribution of the baseline risk in meta-analysis. Stat Med. 2007, 26 (30): 5434-5444. 10.1002/sim.3066.PubMed Ghidey W, Lesaffre E, Stijnen T: Semi-parametric modelling of the distribution of the baseline risk in meta-analysis. Stat Med. 2007, 26 (30): 5434-5444. 10.1002/sim.3066.PubMed
81.
Zurück zum Zitat Cook RJ, Walter SD: A logistic model for trend in 2 x 2 x kappa tables with applications to meta-analyses. Biometrics. 1997, 53 (1): 352-357. 10.2307/2533120.PubMed Cook RJ, Walter SD: A logistic model for trend in 2 x 2 x kappa tables with applications to meta-analyses. Biometrics. 1997, 53 (1): 352-357. 10.2307/2533120.PubMed
82.
Zurück zum Zitat Chang BH, Waternaux C, Lipsitz S: Meta-analysis of binary data: which within study variance estimate to use?. Stat Med. 2001, 20 (13): 1947-1956. 10.1002/sim.823.PubMed Chang BH, Waternaux C, Lipsitz S: Meta-analysis of binary data: which within study variance estimate to use?. Stat Med. 2001, 20 (13): 1947-1956. 10.1002/sim.823.PubMed
83.
Zurück zum Zitat Davey Smith G, Egger M, Phillips AN: Meta-analysis. Beyond the grand mean?. BMJ. 1997, 315 (7122): 1610-1614. 10.1136/bmj.315.7122.1610.PubMedPubMedCentral Davey Smith G, Egger M, Phillips AN: Meta-analysis. Beyond the grand mean?. BMJ. 1997, 315 (7122): 1610-1614. 10.1136/bmj.315.7122.1610.PubMedPubMedCentral
84.
Zurück zum Zitat Sidik K, Jonkman JN: A note on variance estimation in random effects meta-regression. J Pharm Stat. 2005, 15: 823-838. Sidik K, Jonkman JN: A note on variance estimation in random effects meta-regression. J Pharm Stat. 2005, 15: 823-838.
85.
Zurück zum Zitat Sutton A: Recent development in meta-analysis. Stat Med. 2008, 27: 625-650. 10.1002/sim.2934.PubMed Sutton A: Recent development in meta-analysis. Stat Med. 2008, 27: 625-650. 10.1002/sim.2934.PubMed
86.
Zurück zum Zitat Bagnardi V, Quatto P, Corrao G: Flexible meta-regression functions for modelling aggregate dose-response data, with an application to alcohol and mortality. Am J Epidemiol. 2004, 159 (11): 1077-1086. 10.1093/aje/kwh142.PubMed Bagnardi V, Quatto P, Corrao G: Flexible meta-regression functions for modelling aggregate dose-response data, with an application to alcohol and mortality. Am J Epidemiol. 2004, 159 (11): 1077-1086. 10.1093/aje/kwh142.PubMed
87.
Zurück zum Zitat Higgins JP, Thompson SG, Deeks JJ, Altman DG: Measuring inconsistency in meta-analyses. BMJ. 2007, 327: 557-560. Higgins JP, Thompson SG, Deeks JJ, Altman DG: Measuring inconsistency in meta-analyses. BMJ. 2007, 327: 557-560.
88.
Zurück zum Zitat Ioannidis JP: Interpretation of test of heterogeneity and bias in meta-analysis. J Eval Clin Pract. 2008, 14: 951-957. 10.1111/j.1365-2753.2008.00986.x.PubMed Ioannidis JP: Interpretation of test of heterogeneity and bias in meta-analysis. J Eval Clin Pract. 2008, 14: 951-957. 10.1111/j.1365-2753.2008.00986.x.PubMed
89.
Zurück zum Zitat Glasziou PP, Sanders SL: Investigating causes of heterogeneity in systematic reviews. Stat Med. 2002, 21: 1503-11. 10.1002/sim.1183.PubMed Glasziou PP, Sanders SL: Investigating causes of heterogeneity in systematic reviews. Stat Med. 2002, 21: 1503-11. 10.1002/sim.1183.PubMed
90.
Zurück zum Zitat Hatala R, Wyer P, Guyatt G, for the Evidence-Based Medicine Teaching Tips Working Group: Tips for learners of evidence-based medicine: 4. Assessing heterogeneity of primary studies in systematic reviews and whether to combine their results. CMAJ. 2005, 172 (5): 661-665.PubMedPubMedCentral Hatala R, Wyer P, Guyatt G, for the Evidence-Based Medicine Teaching Tips Working Group: Tips for learners of evidence-based medicine: 4. Assessing heterogeneity of primary studies in systematic reviews and whether to combine their results. CMAJ. 2005, 172 (5): 661-665.PubMedPubMedCentral
91.
Zurück zum Zitat Bailey KR: Inter-study differences: How should they influence the interpretation and analysis of results?. Stat Med. 1987, 6: 351-358. 10.1002/sim.4780060327.PubMed Bailey KR: Inter-study differences: How should they influence the interpretation and analysis of results?. Stat Med. 1987, 6: 351-358. 10.1002/sim.4780060327.PubMed
92.
Zurück zum Zitat Khalid S, Khan RK, Kleijnen J, Antes G: Systematic Reviews to Support Evidence-based Medicine: How to Apply Findings of Health-Care Research. 2003, London: Royal Society of Medicine Press Ltd Khalid S, Khan RK, Kleijnen J, Antes G: Systematic Reviews to Support Evidence-based Medicine: How to Apply Findings of Health-Care Research. 2003, London: Royal Society of Medicine Press Ltd
93.
Zurück zum Zitat Sutton AJ, Jones DR, Sheldon TA, Song F: Methods for Meta-analysis in Medical Research. 2000, Chichester: John Wiley & Sons, Ltd Sutton AJ, Jones DR, Sheldon TA, Song F: Methods for Meta-analysis in Medical Research. 2000, Chichester: John Wiley & Sons, Ltd
94.
Zurück zum Zitat Littell JC, Corcoran J, Pillai VK: Systematic Reviews and Meta-Analysis. 2008, Oxford: Oxford University Press Littell JC, Corcoran J, Pillai VK: Systematic Reviews and Meta-Analysis. 2008, Oxford: Oxford University Press
95.
Zurück zum Zitat Whitehead A: Meta-Analysis of Controlled Clinical Trials. 2002, Chichester: John Wiley & Sons, Ltd Whitehead A: Meta-Analysis of Controlled Clinical Trials. 2002, Chichester: John Wiley & Sons, Ltd
96.
Zurück zum Zitat Furlan AD, Pennick V, Bombarider C, van Tulder M, from the Editorial Board of the Cochrane Back Review Group: 2009 Updated method guidelines for systematic reviews in the Cochrane back review group. Spine. 2009, 34 (18): 1929-1941. 10.1097/BRS.0b013e3181b1c99f.PubMed Furlan AD, Pennick V, Bombarider C, van Tulder M, from the Editorial Board of the Cochrane Back Review Group: 2009 Updated method guidelines for systematic reviews in the Cochrane back review group. Spine. 2009, 34 (18): 1929-1941. 10.1097/BRS.0b013e3181b1c99f.PubMed
97.
Zurück zum Zitat National Health and Medical Research Council: How to Review the Evidence: Systematic Identification and Review of the Scientific Literature. 2000, Australia: Commonwealth of Australia National Health and Medical Research Council: How to Review the Evidence: Systematic Identification and Review of the Scientific Literature. 2000, Australia: Commonwealth of Australia
98.
Zurück zum Zitat Centre for Reviews and Dissemination: CRD’s Guidance for Undertaking Reviews in Health Care. 2009, York: CRD Centre for Reviews and Dissemination: CRD’s Guidance for Undertaking Reviews in Health Care. 2009, York: CRD
99.
Zurück zum Zitat Oxman AD, Guyatt GH: A consumer's guide to subgroup analyses. Ann Intern Med. 1992, 116 (1): 78-84.PubMed Oxman AD, Guyatt GH: A consumer's guide to subgroup analyses. Ann Intern Med. 1992, 116 (1): 78-84.PubMed
100.
101.
Zurück zum Zitat Imperiale TF: Meta-analysis: when and how. Hepatology. 1999, 29 (6 Suppl): 26S-31S.PubMed Imperiale TF: Meta-analysis: when and how. Hepatology. 1999, 29 (6 Suppl): 26S-31S.PubMed
102.
Zurück zum Zitat Shekelle PG, Morton SC: Principles of metaanalysis. J Rheumatol. 2000, 27 (1): 251-252. discussion 252-53PubMed Shekelle PG, Morton SC: Principles of metaanalysis. J Rheumatol. 2000, 27 (1): 251-252. discussion 252-53PubMed
103.
Zurück zum Zitat Nagin DS, Odgers CL: Group-based trajectory modeling in clinical research. Annu Rev Clin Pscyhol. 2010, 6: 109-138. 10.1146/annurev.clinpsy.121208.131413. Nagin DS, Odgers CL: Group-based trajectory modeling in clinical research. Annu Rev Clin Pscyhol. 2010, 6: 109-138. 10.1146/annurev.clinpsy.121208.131413.
104.
Zurück zum Zitat Virgile G, Conto AA, Moja L, Gensini GL, Gusinu R: Heterogeneity and meta-analyses: do study results truly differ?. Intern Emerg Med. 2009, 4: 423-427. 10.1007/s11739-009-0296-6. Virgile G, Conto AA, Moja L, Gensini GL, Gusinu R: Heterogeneity and meta-analyses: do study results truly differ?. Intern Emerg Med. 2009, 4: 423-427. 10.1007/s11739-009-0296-6.
105.
Zurück zum Zitat Skipka G, Bender R: Intervention effects in the case of heterogeneity between three subgroups: Assessment within the framework of systematic reviews. Methods Inf Med. 2010, 49: 613-617. 10.3414/ME09-02-0054.PubMed Skipka G, Bender R: Intervention effects in the case of heterogeneity between three subgroups: Assessment within the framework of systematic reviews. Methods Inf Med. 2010, 49: 613-617. 10.3414/ME09-02-0054.PubMed
106.
Zurück zum Zitat Groenwold RHH, Rovers MM, Lubsen J, van der Heijden JMG: Subgroup effects despite homogenous heterogeneity test results. BMC Medical Research Methodology. 2010, 10: 43-10.1186/1471-2288-10-43.PubMedPubMedCentral Groenwold RHH, Rovers MM, Lubsen J, van der Heijden JMG: Subgroup effects despite homogenous heterogeneity test results. BMC Medical Research Methodology. 2010, 10: 43-10.1186/1471-2288-10-43.PubMedPubMedCentral
107.
Zurück zum Zitat Lockwood CM, DeFrancesco CA, Elliot DL, Beresford SAA, Toobert DJ: Mediation analyses: Applications in nutrition research and reading the literature. J Am Diet Assoc. 2010, 110: 753-763. 10.1016/j.jada.2010.02.005.PubMedPubMedCentral Lockwood CM, DeFrancesco CA, Elliot DL, Beresford SAA, Toobert DJ: Mediation analyses: Applications in nutrition research and reading the literature. J Am Diet Assoc. 2010, 110: 753-763. 10.1016/j.jada.2010.02.005.PubMedPubMedCentral
108.
Zurück zum Zitat Baker W, White M, Cappelleri JC, Kluger J, Colman CI: Understanding heterogeneity in meta-analysis: the role of meta-regression. Int J Clin Pract. 2009, 63 (10): 1426-1434. 10.1111/j.1742-1241.2009.02168.x.PubMed Baker W, White M, Cappelleri JC, Kluger J, Colman CI: Understanding heterogeneity in meta-analysis: the role of meta-regression. Int J Clin Pract. 2009, 63 (10): 1426-1434. 10.1111/j.1742-1241.2009.02168.x.PubMed
109.
Zurück zum Zitat Jones AP, Riley RD, Williamson PR, Whitehead A: Meta-analysis of individual patient data versus aggregate data from longitudinal clinical trials. Clin Trials. 2009, 6: 16-27. 10.1177/1740774508100984.PubMed Jones AP, Riley RD, Williamson PR, Whitehead A: Meta-analysis of individual patient data versus aggregate data from longitudinal clinical trials. Clin Trials. 2009, 6: 16-27. 10.1177/1740774508100984.PubMed
110.
Zurück zum Zitat Hemming K, Hutton JL, Maguire MJ, Marson AG: Meta-regression with partial information on summary trial or patient characteristics. Stat Med. 2008, 29: 1312-1324. Hemming K, Hutton JL, Maguire MJ, Marson AG: Meta-regression with partial information on summary trial or patient characteristics. Stat Med. 2008, 29: 1312-1324.
111.
Zurück zum Zitat Salanti G, Marinho V, Higgins JPT: A case study of multiple-treatments meta-analysis demonstrates covariates should be considered. J Clin Epidemiol. 2009, 62: 857-864. 10.1016/j.jclinepi.2008.10.001.PubMed Salanti G, Marinho V, Higgins JPT: A case study of multiple-treatments meta-analysis demonstrates covariates should be considered. J Clin Epidemiol. 2009, 62: 857-864. 10.1016/j.jclinepi.2008.10.001.PubMed
112.
Zurück zum Zitat Glasziou P, Chalmers I, Altman DG, Bastian H, Boutron I, Brice A, et al: Taking healthcare interventions from trial to practice. BMJ. 2010, 341: c3852-10.1136/bmj.c3852.PubMed Glasziou P, Chalmers I, Altman DG, Bastian H, Boutron I, Brice A, et al: Taking healthcare interventions from trial to practice. BMJ. 2010, 341: c3852-10.1136/bmj.c3852.PubMed
113.
Zurück zum Zitat Shadish WR: Meta-analysis and the exploration of causal mediating processes: A primer of examples, methods, and issues. Psychol Methods. 1996, 1: 47-65. Shadish WR: Meta-analysis and the exploration of causal mediating processes: A primer of examples, methods, and issues. Psychol Methods. 1996, 1: 47-65.
114.
Zurück zum Zitat Borenstein MA, Hedges LV, Higgins JPT, Rothstein HR: Introduction to Meta-Analysis. 2009, New Jersey: John Wiley and Sons Borenstein MA, Hedges LV, Higgins JPT, Rothstein HR: Introduction to Meta-Analysis. 2009, New Jersey: John Wiley and Sons
116.
Zurück zum Zitat McIntosh MW: The population risk as an explanatory variable in research synthesis of clinical trials. Stats Med. 1996, 15: 1713-1728. 10.1002/(SICI)1097-0258(19960830)15:16<1713::AID-SIM331>3.0.CO;2-D. McIntosh MW: The population risk as an explanatory variable in research synthesis of clinical trials. Stats Med. 1996, 15: 1713-1728. 10.1002/(SICI)1097-0258(19960830)15:16<1713::AID-SIM331>3.0.CO;2-D.
117.
Zurück zum Zitat Boutitie F, Gueyffier F, Pocock SJ, Biossel JP: Assessing treatment-time interaction in clinical trials with time to event data: A meta-analysis of hypertension trials. Stat Med. 1998, 17: 2883-2903. 10.1002/(SICI)1097-0258(19981230)17:24<2883::AID-SIM900>3.0.CO;2-L.PubMed Boutitie F, Gueyffier F, Pocock SJ, Biossel JP: Assessing treatment-time interaction in clinical trials with time to event data: A meta-analysis of hypertension trials. Stat Med. 1998, 17: 2883-2903. 10.1002/(SICI)1097-0258(19981230)17:24<2883::AID-SIM900>3.0.CO;2-L.PubMed
118.
Zurück zum Zitat Booth A, Clarke M, Ghersi D, MOher D, Petticrew M, Stewart L: An international registry of systematic-review protocols. Lancet. 2011, 377 (9760): 108-109. 10.1016/S0140-6736(10)60903-8.PubMed Booth A, Clarke M, Ghersi D, MOher D, Petticrew M, Stewart L: An international registry of systematic-review protocols. Lancet. 2011, 377 (9760): 108-109. 10.1016/S0140-6736(10)60903-8.PubMed
119.
Zurück zum Zitat Concato J, Peduzzi P, Holfold TR, et al: Importance of events per independent variable in proportional hazards analysis. I. Background, goals, and general strategy. J Clin Epidemiol. 1995, 48: 1495-1501. 10.1016/0895-4356(95)00510-2.PubMed Concato J, Peduzzi P, Holfold TR, et al: Importance of events per independent variable in proportional hazards analysis. I. Background, goals, and general strategy. J Clin Epidemiol. 1995, 48: 1495-1501. 10.1016/0895-4356(95)00510-2.PubMed
120.
Zurück zum Zitat Peduzzi P, Concato J, Feinstein AR, et al: Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin Epidemiol. 1995, 48: 1503-1510. 10.1016/0895-4356(95)00048-8.PubMed Peduzzi P, Concato J, Feinstein AR, et al: Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin Epidemiol. 1995, 48: 1503-1510. 10.1016/0895-4356(95)00048-8.PubMed
121.
Zurück zum Zitat Peduzzi P, Concato J, Kemper E, et al: A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996, 49: 1373-1379. 10.1016/S0895-4356(96)00236-3.PubMed Peduzzi P, Concato J, Kemper E, et al: A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996, 49: 1373-1379. 10.1016/S0895-4356(96)00236-3.PubMed
122.
Zurück zum Zitat Harrell FE: Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. 2001, New York: Springer Harrell FE: Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. 2001, New York: Springer
123.
Zurück zum Zitat Spiegelhalter DJ, Myles JP, Jones DR, Abrams KR: Bayesian methods in health technology assessment: A review. Health Technol Assess. 2000, 4: 1-130.PubMed Spiegelhalter DJ, Myles JP, Jones DR, Abrams KR: Bayesian methods in health technology assessment: A review. Health Technol Assess. 2000, 4: 1-130.PubMed
124.
Zurück zum Zitat Smith CT, Williamson PR, Marson AG: An overview of methods and empirical comparison of aggregate data and individual patient data results for investigating heterogeneity in meta-analysis to time-to-event data. J Eval Clin Pract. 2002, 55: 86-94. Smith CT, Williamson PR, Marson AG: An overview of methods and empirical comparison of aggregate data and individual patient data results for investigating heterogeneity in meta-analysis to time-to-event data. J Eval Clin Pract. 2002, 55: 86-94.
125.
Zurück zum Zitat Lambert PC, Sutton AJ, Jones ADR: A comparison of patient-level covariates in meta-regression with individual patient data meta-analysis. J Clin Epidemiol. 2002, 55: 86-94. 10.1016/S0895-4356(01)00414-0.PubMed Lambert PC, Sutton AJ, Jones ADR: A comparison of patient-level covariates in meta-regression with individual patient data meta-analysis. J Clin Epidemiol. 2002, 55: 86-94. 10.1016/S0895-4356(01)00414-0.PubMed
Metadaten
Titel
Investigating clinical heterogeneity in systematic reviews: a methodologic review of guidance in the literature
verfasst von
Joel J Gagnier
David Moher
Heather Boon
Joseph Beyene
Claire Bombardier
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
BMC Medical Research Methodology / Ausgabe 1/2012
Elektronische ISSN: 1471-2288
DOI
https://doi.org/10.1186/1471-2288-12-111

Weitere Artikel der Ausgabe 1/2012

BMC Medical Research Methodology 1/2012 Zur Ausgabe