Skip to main content
Erschienen in: BMC Surgery 1/2012

Open Access 01.12.2012 | Research article

Predictors and outcomes of shunt-dependent hydrocephalus in patients with aneurysmal sub-arachnoid hemorrhage

verfasst von: Yi-Min Wang, Yu-Jun Lin, Ming-Jung Chuang, Tsung-Han Lee, Nai-Wen Tsai, Ben-Chung Cheng, Wei-Che Lin, Ben Yu-Jih Su, Tzu-Ming Yang, Wen-Neng Chang, Chih-Cheng Huang, Chia-Te Kung, Lian-Hui Lee, Hung-Chen Wang, Cheng-Hsien Lu

Erschienen in: BMC Surgery | Ausgabe 1/2012

Abstract

Background

Hydrocephalus following spontaneous aneurysmal sub-arachnoid hemorrhage (SAH) is often associated with unfavorable outcome. This study aimed to determine the potential risk factors and outcomes of shunt-dependent hydrocephalus in aneurysmal SAH patients but without hydrocephalus upon arrival at the hospital.

Methods

One hundred and sixty-eight aneurysmal SAH patients were evaluated. Using functional scores, those without hydrocephalus upon arrival at the hospital were compared to those already with hydrocephalus on admission, those who developed it during hospitalization, and those who did not develop it throughout their hospital stay. The Glasgow Coma Score, modified Fisher SAH grade, and World Federation of Neurosurgical Societies grade were determined at the emergency room. Therapeutic outcomes immediately after discharge and 18 months after were assessed using the Glasgow Outcome Score.

Results

Hydrocephalus accounted for 61.9% (104/168) of all episodes, including 82 with initial hydrocephalus on admission and 22 with subsequent hydrocephalus. Both the presence of intra-ventricular hemorrhage on admission and post-operative intra-cerebral hemorrhage were independently associated with shunt-dependent hydrocephalus in patients without hydrocephalus on admission. After a minimum 1.5 years of follow-up, the mean Glasgow outcome score was 3.33 ± 1.40 for patients with shunt-dependent hydrocephalus and 4.21 ± 1.19 for those without.

Conclusions

The presence of intra-ventricular hemorrhage, lower mean Glasgow Coma Scale score, and higher mean scores of the modified Fisher SAH and World Federation of Neurosurgical grading on admission imply risk of shunt-dependent hydrocephalus in patients without initial hydrocephalus. These patients have worse short- and long-term outcomes and longer hospitalization.
Hinweise
Yi-Min Wang, Yu-Jun Lin, Hung-Chen Wang and Cheng-Hsien Lu contributed equally to this work.

Competing interests

All authors declare that they have no competing interests.

Authors’ contributions

All authors have read and approved the final manuscript. YMW and YJL had substantial contributions to conception and design, data acquisition and analysis, drafting the manuscript and revising the manuscript. THL, NTW, BCC, WCL, YJS, CCH, TMY, MJC, WNC, LHL had substantial contributions to conception and design, clinical data analysis. CHL and HCW had substantial contributions to conception and design, data analysis, critical revision and final approval of the revision.

Background

Aneurysmal sub-arachnoid hemorrhage (SAH) still has high mortality and morbidity rates despite modern neurosurgical techniques, new powerful imaging modalities, and care of such patients [1]. An important neurologic complication is hydrocephalus [25], which can be either acute-onset on admission or progressive during the hospital stay [25]. The overall risk of hydrocephalus after aneurysmal SAH varies between 6% to 67% in different series [6, 7] although only 10-20% of them will require permanent CSF diversion [6, 7]. To date, no clinical study has focused specifically on predicting shunt dependency in patients with aneurysmal SAH but without hydrocephalus upon arriving at the hospital, or the outcome of these specific patients for a longer follow-up period. Because of possible benefits of therapeutic intervention, there is a need for better delineation of the potential risk factors and clinical features in this specific sub-group.
This study aimed to analyze the clinical features, neuro-imaging findings, and clinical scores and measurements to determine the potential risk factors predictive of shunt-dependent hydrocephalus in patients with aneurysmal SAH but without hydrocephalus upon arriving at the hospital. The study also compared these patients to those with hydrocephalus at the time of admission, those who developed it during hospitalization, and those who did not develop it after 1.5 years of follow-up.

Methods

Study design

From January 2003 to December 2005, 168 SAH patients admitted to the Department of Neurosurgery at the Chang Gung Memorial Hospital in Kaohsiung were enrolled. Chang Gung Memorial Hospital-Kaohsiung is a 2482-bed acute-care teaching hospital, which is the largest medical center in the southern part of Taiwan providing both primary and tertiary referral care to patients. All patients received complete medical and neurologic examinations, and brain computed tomography (CT) with cerebral angiography. The Chang Gung Memorial Hospital hospital’s Institutional Review Committee on Human Research approved the study (Institutional Review Board numbers: 96-1575B). Neurosurgeons and neuro-radiologists integrated the clinical manifestations and neuro-imaging findings.

Diagnostic criteria of spontaneous aneurysmal sub-arachnoid hemorrhage

All of the patients received brain CT scans soon after arrival at the emergency room, and follow-up brain CT post-surgery. Emergency brain CT scans were done if there was clinical deterioration, including acute-onset focal neurologic deficits, seizures or status epilepticus, or progressively disturbed consciousness and post-neurosurgical procedures.
In the study hospital, it was routine practice to arrange cerebral angiograms immediately after hospitalization. A ruptured, angiographically verified aneurysm was the cause of the SAH in all patients. Patients initially treated in other hospitals but subsequently transferred for further therapy were also included in the study and their initial clinical and laboratory data at the previous hospital were used for analysis. Patients were excluded if: 1) the initial angiogram was negative for SAH; 2) they suffered from non-aneurysmal SAH, such as traumatic SAH; 3) they were comatose or were considered unlikely to survive for more than one week; and 4) there were pre-existing neurologic deficits.

Clinical assessment

Hydrocephalus was judged retrospectively by a dilated temporal horn of the ventricle without obvious brain atrophy and/or an Evan’s ratio >0.3 on initial CT scan. The Evan’s ratio was the ratio of the ventricular width of the bilateral frontal horn to the maximum bi-parietal diameter [8]. Furthermore, shunt-dependent hydrocephalus was defined as clinical symptoms of hydrocephalus (i.e., decreased mental status, axial rigidity, and incontinence) with radiographic evidence of enlarged ventricles or high opening pressure on repeated lumbar punctures requiring the insertion of a ventriculo-peritoneal (VP) shunt [2, 3].
The characteristics and circumstances, and complications following underlying SAH or treatment were documented. The diagnosis of acute symptomatic cerebral infarction following aneurysmal SAH was based on both new-onset cerebral infarctions (on follow-up brain CT) and the presence of acute neurologic deficits causally related to the cerebral infarction. Patients were considered to have multiple infarctions if at least two locations with infarctions were found. Re-bleeding was defined as sudden deterioration of the clinical state accompanied by new or increased blood on brain CT scan [9]. Symptomatic vasospasm was defined as both the development of focal neurologic signs or deterioration in conscious state and evidence of vasospasm or presence of stenotic flow velocity shown by trans-cranial color-coded sonography through cerebral angiogram, CT angiography, or magnetic resonance angiography [10, 11]. All diagnoses of hydrocephalus, re-bleeding, and vasospasm were based on brain CT evidence.
The Glasgow Coma Score (GCS) [12], modified Fisher SAH grade [13], and World Federation of Neurosurgical Societies (WFNS) grade [14] were determined by neurosurgeons upon the patient’s arrival at the emergency room. Evaluation of therapeutic outcome both immediately after discharge and 18 months after used Glasgow Outcome Score (GOS). The follow-up period was terminated by death or by the end of the study (June 2007). The outpatient department followed-up most patients after discharge as part of standard care, while others were interviewed by telephone to identify neurologic outcome.

Statistical analysis

Three separate series of statistical analyses were performed. First, to compare demographic data among patients who already had hydrocephalus at the time of admission, those who developed it during hospitalization and those who did not have it during the hospital stay, categorical variables were assessed by Chi-square test, and continuous variables were logarithmically transformed to improve normality and compared using one-way ANOVA for parametric data, followed by Scheffe’s multiple comparison for post-hoc test for significant pairwise differences.
Second, risk factors of shunt-dependent hydrocephalus in patients with aneurysmal SAH but without hydrocephalus upon arrival were analyzed. Baseline clinical data, including gender, clinical manifestations, and neuro-imaging findings between those with and those without shunt-dependent hydrocephalus were analyzed by Chi-square test or Fisher’s exact test, where appropriate. The mean ages, mean systolic and diastolic pressure, and mean hospitalization days between the two patient groups were analyzed by Student’s t-test. The GCS at the time of admission, GOS at the time of discharge and 18 months after discharge, mean modified Fisher SAH grade, and mean WFNS grade between the two patient groups were analyzed by the Wilcoxon rank sum test.
Lastly, stepwise logistic regression was used to evaluate the relationships between clinical factors and the presence of shunt-dependent hydrocephalus, with adjustments for other potential confounding factors. All of the statistical analyses was conducted using the SAS software package, version 9.1 (2002, SAS Statistical Institute, Cary, North Carolina).

Results

Baseline characteristics of the study patients

Of the 168 aneurysmal SAH patients (52 males and 116 females), 104 had complications with hydrocephalus during the acute phase, including initial hydrocephalus in 82 and subsequent hydrocephalus in 22. Their characteristics in terms of hydrocephalus and location and seize of aneurysms were listed in Table 1 and 2. Hypertension, diabetes mellitus (DM), and coronary artery diseases were the three most common underlying diseases. The proportions of nosocomial pneumonia in patients with initial hydrocephalus and subsequent hydrocephalus were 39% (32/82) and 50% (11/22), respectively.
Table 1
Characteristics of patients with aneurysmal SAH in terms of hydrocephalus (n = 168)
 
With Hydrocephalus
Without Hydrocephalus
P value
 
Initial hydrocephalus
Subsequent hydrocephalus
  
  
N = 82
N = 22
N = 64
 
Mean age, years
57.79 ± 14.79
57.32 ± 11.59
52.59 ± 12.08
0.06
Sex (male/female)
29/53
7/15
16/48
0.403
Mean blood pressure on presentation
Systolic Blood pressure (mmHg)
148.07 ± 23.62
143.68 ± 24.29
145.73 ± 22.90
0.687
 
Diastolic Blood pressure (mmHg)
81.27 ± 13.93
79.13 ± 16.24
81.89 ± 11.87
0.712
 
Mean GCS on presentation
10.88 ± 4.07
11.64 ± 3.65
13.16 ± 2.96
0.001α
Mean modified Fisher SAH grade on presentation
3.17 ± 0.86
2.82 ± 0.96
2.42 ± 0.79
<0.0001β
Mean WFNS grade on presentation
2.95 ± 1.41
2.86 ± 1.46
2.01 ± 1.20
<0.0001γ
Mean Hospitalization days
30.40 ± 21.97
44.45 ± 24.34
20.03 ± 16.80
<0.0001ϵ
Underlying diseases
 
Atrial fibrillation
2
0
1
 
 
Coronary artery diseases
3
3
3
0.174
 
Diabetes mellitus
8
3
4
06540
 
End-stage renal diseases
3
0
2
0.666
 
Hypertension
38
12
21
0.119
Treatmentθ
 
Clipping of aneurysm only
35
17
35
 
 
Transarterial embolization only
29
3
24
 
 
Both transarterial embolization and clipping
8
1
1
 
 
External ventral drainage
52
16
--
 
 
Ventriculoperitoneal shuntι
32
15
--
 
Mean GOS at discharge
3.18 ± 1.34
2.86 ± 0.91
3.97 ± 1.14
<0.0001η
 
Good recovery
12
0
24
 
 
Moderate disability
32
6
26
 
 
Severe disability
11
7
6
 
 
Vegetative state
13
7
4
 
 
Death
14
2
4
 
Mean GOS after more than 18 months of follow-up
3.70 ± 1.69
3.18 ± 1.26
4.36 ± 1.13
0.002θ
Abbreviations: SAH, sub-arachnoid hemorrhage; GCS, Glasgow Coma Scale; GOS, Glasgow Outcome Scale; WFNS, World Federation of Neurosurgical Societies; θ, Not all patients have every treatment; --, not done; ι, Shunt-dependent hydrocephalus; IH, Initial hydrocephalus; SH, Subsequent hydrocephalus; WH, Without Hydrocephalus.
Post-hoc test: α = IH vs. WH, p = 0.001; β = IH vs. WH, p < 0.0001; γ = IH vs. WH, p < 0.0001; SH vs. WH, p = 0.041; ϵ = IH vs. SH, p = 0.019; IH vs. WH, p = 0.011; SH vs. WH, p < 0.001; η = IH vs. WH, p = 0.001; SH vs. WH, p = 0.002; θ = IH vs. WH, p = 0.025; SH vs. WH, p = 0.005.
Table 2
Location and seize of aneurysms in patients in terms of hydrocephalus (n = 168)
  
With Hydrocephalus
Without Hydrocephalus
Total
  
Initial hydrocephalus
Subsequent hydrocephalus
  
 
N = 82
N = 22
N = 64
N = 168
Location of aneurysm
Single (n = 156)
 
Anterior communicating artery aneurysm
19
8
24
51
 
Posterior communicating artery aneurysm
21
3
7
31
 
Middle cerebral artery aneurysm
8
3
10
21
 
Internal carotid artery aneurysm
8
3
8
19
 
Vertebral artery
4
1
3
8
 
Othersη
16
3
7
26
 
Multiple sites (N = 12)
6
1
5
12
 
Diameter of aneurysm (mm)Ф
0.75 ± 0.20
0.71 ± 0.25
0.67 ± 0.32
0.68 ± 0.31
Shape of aneurysmЄ
    
 
Pouch
54
17
52
133
 
Lobulation
13
3
8
24
 
Fusiform
9
2
1
12
 
dissection
4
0
2
6
 
Wide neck
2
0
1
3
η = The other locations of aneurysms included the superior cerebellar artery aneurysm in four,, posterior inferior cerebellar artery aneurysm in four, anterior cerebral artery aneurysm in four, pericallosal artery aneurysm in three, posterior cerebral artery aneurysm in four, ophthalmic artery in one, basilar artery aneurysm in five, and anterior inferior cerebellar artery aneurysm in one.
Ф = Indicates the maximum diameter of the aneurysm if at least two aneurysms are found.
Є = Indicates the largest aneurysm if at least two aneurysms are found.
The mean GCS on presentation were 10.88 ± 4.07, 11.64 ± 3.65, and 13.16 ± 2.96 for patients with initial hydrocephalus, subsequent hydrocephalus, and no hydrocephalus, respectively (p = 0.001). The mean modified Fisher SAH grade on presentation were 3.17 ± 0.86, 2.82 ± 0.96, and 2.42 ± 0.79, respectively (p < 0.0001), while the mean WFNS grade on presentation were 2.95 ± 1.41, 2.86 ± 1.46, and 2.01 ± 1.20, respectively (p < 0.0001). The median time (interquartile range) of ventriculostomy insertion relative to the date of presentation were 1 (0, 2) and 1.5 (0.25-6.25) days for patients with initial hydrocephalus and subsequent hydrocephalus, respectively (p = 0.138, Mann–Whitney U test).

Complications following aneurysmal SAH

Complications following underlying aneurysmal SAH among the three patient groups were listed in Table 3. The proportions of intra-ventricular hemorrhage were 51.2% (42/82), 27.2% (6/22), and 7.8% (5/64) in patients with initial hydrocephalus, subsequent hydrocephalus, and no hydrocephalus, respectively (p < 0.0001). The proportions of hyponatremia were 12.2% (10/82), 22.7% (5/22), and 3.1% (2/64), respectively (p = 0.022), while the proportions of diabetes inspidus were 1.2% (1/82), 9% (2/22), and 0% (0/64), respectively (p = 0.018). Other complications following the aneurysmal SAH included cerebral infarctions, aneurysmal re-bleeding, vasospasm, intra-cerebral hemorrhage, and arrhythmia (Table 2).
Table 3
Complications following treatment or underlying SAH
  
With Hydrocephalus
Without Hydrocephalus
P-value
  
Initial hydrocephalus
Subsequent hydrocephalus
  
  
N = 82
N = 22
N = 64
 
Complications following underlying SAH
 
Cerebral infarctions
18
7
13
0.528
 
Vasospasm
16
4
8
0.518
 
Rebleeding during hospitalization
10
3
3
0.241
 
Seizure
11
5
9
0.537
 
Diabetes inspidus
1
2
0
0.018
 
Hyponatremia
10
5
2
0.022
 
Arrhythmia
1
1
1
0.570
 
Intracerebral hemorrhage
14
4
11
0.992
 
Intraventricular hemorrhage
42
6
5
<0.0001
Complications following treatment
 
Pneumonia
21
9
4
0.001
 
Postoperative intracerebral hemorrhage
5
6
4
0.005
 
Shunt infections
5
2
--
 
 
Over-shunting
1
2
--
 
 
Shunt obstruction
12
6
--
 
Abbreviations: SAH, sub-arachnoid hemorrhage;--, not done.
Complications following the treatment of aneurysmal SAH were listed in Table 2. The proportions of nosocomial pneumonia were 25.6% (21/82), 40.9% (9/22), and 6.3% (4/64) in patients with initial hydrocephalus, subsequent hydrocephalus, and no hydrocephalus, respectively (p = 0.001), while the proportions of post-operative intra-cerebral hemorrhage following surgical interventions were 6.1% (5/82), 27.3% (6/22), and 6.3% (4/64), respectively (p = 0.005). Complications related to ventriculo-peritoneal (VP) shunt procedures included shunt infections, over-shunting and shunt obstructions (Table 2).
The mean lengths of hospitalization among the three groups were 30.40 ± 21.97, 44.45 ± 24.34, and 20.03 ± 16.80 (p < 0.0001). Therapeutic outcomes among the 168 patients after discharge as determined by GOS were 36 normal (21.4%, 36/168), 64 moderate disability (38.1%, 64/168), 24 severe disabilities (14.2%, 24/168), 24 persistent vegetative states (14.2%, 24/168), and 20 mortalities (11.9%, 20/168). The mean GOS score among the three groups were 3.18 ± 1.34, 2.86 ± 0.91, and 3.97 ± 1.14 in patients with initial hydrocephalus, subsequent hydrocephalus, and no hydrocephalus, respectively (p < 0.0001). After a 1.5-year follow-up, the mean GOS score among the three groups were 3.70 ± 1.69, 3.18 ± 1.26 and 4.36 ± 1.13, respectively (p = 0.002).

Risk factors of shunt-dependent hydrocephalus

Risk factors of shunt-dependent hydrocephalus in patients with aneurysmal SAH but without hydrocephalus upon arrival at the hospital were listed in Table 4. Statistical analysis revealed significant mean GCS on presentation (p = 0.01), mean modified Fisher SAH grade on presentation (p = 0.039), mean WFNS grade on presentation (p = 0.012), presence of intra-ventricular hemorrhage on admission (p < 0.003), and post-operative intra-cerebral hemorrhage (p = 0.013). These variables were then used in the stepwise logistic regression model. After analysis, only the presence of intra-ventricular hemorrhage on admission (p = 0.003, OR = 9.608, 95% CI: 2.207-41.822) and post-operative intra-cerebral hemorrhage (p = 0.011, OR = 7.354, 95% CI: 1.576-34.313) were independently associated with the presence of shunt-dependent hydrocephalus.
Table 4
Risk factors of shunt-dependent hydrocephalus in aneurysmal SAH patients without hydrocephalus upon arrival at the hospital
 
Without shunt-dependent hydrocephalus N = 71
With shunt-dependent hydrocephalus N = 15
P value
OR
95% CI
Sex (male/female)
20/51
3/12
0.384
0.638
0.163-2.501
Mean age at onset
52.92 ± 11.85
57.93 ± 12.66
0.146
  
Mean blood pressure on presentation
     
 
Mean Systolic Blood pressure (mmHg)
144.59 ± 22.92
148.13 ± 24.77
0.593
  
 
Mean diastolic Blood pressure (mmHg)
81.84 ± 12.734
78.07 ± 14.67
0.312
  
Mean GCS on presentation
13.17 ± 2.82
10.87 ± 4.17
0.01
  
Mean modified Fisher SAH grade on presentation
2.44 ± 0.80
2.93 ± 0.96
0.039
  
Mean WFNS grade on presentation
2.07 ± 1.20
3.00 ± 1.60
0.012
  
Mean Hospitalization days
24.13 ± 21.50
36.46 ± 20.24
0.0.045
  
Neuroimaging findings
     
 
Rebleeding of aneurysm
4
2
0.280
2.577
0.427-15.563
 
Intraventricular hemorrhage on admission
5
6
0.003
8.8
2.223-34.842
 
Intracerebral hemorrhage on admission
12
3
0.72
1.229
0.3-5.301
Underlying diseases
     
 
Hypertension
27
6
1.0
1.086
0.348-3.393
 
Atrial fibrillation
1
0
1.0
0.824
0.746-0.909
 
Coronary artery diseases
5
1
1.0
0.943
0.102-8.708
 
Diabetes mellitus
4
3
0.098
4.188
0.83-21.12
 
End stage renal diseases
2
0
1.0
0.821
0.743-0.908
Other complications following aneurysmal SAH
     
 
Cerebral infarction
     
 
Symptomatic vasospasm
10
2
1.0
0.938
0.184-4.799
 
Seizure
9
5
0.063
3.444
0.957-12.40
 
Diabetes inspidus
0
2
0.029
0.155
0.094-0.255
 
Hyponatremia
5
2
0.60
2.031
0.355-11.62
 
Shunt infection
1
1
0.32
5.0
0.295-84.776
 
Postoperative intracerebral hemorrhage
5
5
0.013
6.6
1.617-26.945
 
Arrhythmia
1
1
0.320
5.0
0.295-84.776
Outcome
     
 
Mean Hospitalization days
24.13 ± 21.50
36.47 ± 20.24
0.0452
  
 
Mean GOS at discharge
3.86 ± 1.16
2.93 ± 1.03
0.014
  
 
Mean GOS after more than 18 months of follow-up
4.21 ± 1.19
3.33 ± 1.40
0.211
  
Abbreviations: N, number of cases; OR, odds ratio; CI, confidence interval; SAH, sub-arachnoid hemorrhage; GCS, Glasgow Outcome Scale; GOS, Glasgow Outcome Scale; WFNS, World Federation of Neurosurgical Societies.

Discussion

To date, this is the first study to determine the potential risk factors that are predictive of shunt-dependent hydrocephalus in patients with aneurysmal SAH but without hydrocephalus upon arriving at the hospital. Differences in the relative prevalence of hydrocephalus following aneurysmal SAH vary with case ascertainment and inclusion criteria, timing and methods of neuro-imaging studies, serial follow-up neuro-imaging studies, surgical procedure, and presence of complications [17]. In the current study, hydrocephalus accounts for 61.9% (104/168) of all episodes, including 82 with initial hydrocephalus on admission and 22 with subsequent hydrocephalus. Such figures are higher than those of two recent studies [3, 6] and the largest study [5].
The present study examined the risk factors and outcome of shunt-dependent hydrocephalus in aneurysmal SAH patients and produced two major findings. First, the presence of intra-ventricular hemorrhage, lower mean score of Glasgow Coma Scale, higher mean scores of both the modified Fisher SAH grade and the World Federation of Neurosurgical grade on admission, and complications with post-operative intra-cerebral hemorrhage are significant risk factors for shunt-dependent hydrocephalus in patients without hydrocephalus on admission. Second, shunt-dependent hydrocephalus patients have worse short- and long-term outcomes and longer duration of hospitalization.
For research on the risk factors and outcomes of shunt-dependent hydrocephalus, most large studies have focused on acute or chronic hydrocephalus together, [2, 3, 6]. Very few have examined both clinical features and outcomes for acute and subsequent hydrocephalus, respectively [4]. The pathogenesis of acute hydrocephalus is thought to result from blockage of CSF flow, producing a pressure gradient, and ultimately leading to enlarged ventricles, whereas the pathogenesis of chronic hydrocephalus involves arachnoid adhesions formed as a result of meningeal reaction to blood products, impairing CSF absorption at the basal cisterns [15, 16].
The presence of hydrocephalus does not always lead to the development of shunt dependency although it is a strong predictor of such, as noted in previous studies [17, 18] and in the current study. The data here demonstrates that 39% of patients with acute hydrocephalus on admission and 50% of those with subsequent hydrocephalus have undergone permanent shunting procedures. Furthermore, there is evidence in literature suggesting that aggressive external ventricular drainage significantly reduces the need for permanent shunting among these patients [19]. Although the effect of temporary ventriculostomy placement on the development of hydrocephalus is not studied, its effects on the outcome of hydrocephalus may also be considered in future studies.
Several studies demonstrate a strong relationship between poor levels of consciousness on admission and hydrocephalus [5, 7]. Both acute and subsequent hydrocephalus cases also have similar results. Some studies show that the amount of blood in the sub-arachnoid space has special significance [5, 7] while the current study demonstrates higher mean modified Fisher SAH grade on presentation in patients who have shunt-dependent hydrocephalus. The effect of intra-ventricular hemorrhage on the development of hydrocephalus is also well established [5, 7]. Some authors suggest that the presence of blood clots and high CSF viscosity can lead to an obstructive form of hydrocephalus and early CSF circulation disturbances [20, 21]. In the current series, intra-ventricular hemorrhage is a significant risk factor for the development of shunt-dependent hydrocephalus in patients with aneurysmal SAH but without hydrocephalus on admission.
The outcomes of hydrocephalus have been extensively studied. Hydrocephalus can result in long-term cognitive decline and the development of psycho-organic disorders [22, 23]. This study demonstrates the worst short-term outcome and longest duration of hospitalization in patients with subsequent hydrocephalus, and the prognosis is also worst after 1.5 years of follow-up. Worse short- and long-term outcomes and longer duration of hospitalization are also noted in shunt-dependent hydrocephalus patients.
The current study has several limitations. First, it is a retrospective analysis and therefore subject to bias of unmeasured factors. Second, patients who were comatose or considered unlikely to survive for more than one week and had pre-existing neurologic deficits have been excluded. Third, hydrocephalus can occur in both the acute stage and later stages during treatment. The findings may underestimate the “true” frequency of hydrocephalus in asymptomatic patients. Thus, there is continued uncertainty in assessing the incidence of hydrocephalus after aneurysmal SAH in non-selected patients.

Conclusions

The presence of intra-ventricular hemorrhage, lower mean score of Glasgow Coma Scale, and higher mean scores of the modified Fisher SAH and World Federation of Neurosurgical grading on admission imply risks of shunt-dependent hydrocephalus in patients without hydrocephalus on admission. These patients also have worse short- and long-term outcomes and longer hospitalization. More prospective multi-center investigations evaluating the role of hydrocephalus on outcome of aneurysmal SAH and timing of surgical intervention on this specific group of patients are warranted. Despite the high proportion of disability during the acute stage, adequate treatment of neurologic complications is essential for improving therapeutic outcomes.

Acknowledgements

The authors also want to express their gratitude to the patients and their families for participating in this study.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

All authors declare that they have no competing interests.

Authors’ contributions

All authors have read and approved the final manuscript. YMW and YJL had substantial contributions to conception and design, data acquisition and analysis, drafting the manuscript and revising the manuscript. THL, NTW, BCC, WCL, YJS, CCH, TMY, MJC, WNC, LHL had substantial contributions to conception and design, clinical data analysis. CHL and HCW had substantial contributions to conception and design, data analysis, critical revision and final approval of the revision.
Literatur
1.
Zurück zum Zitat Rosengart AJ, Schultheiss KE, Tolentino J, Macdonald RL: Prognostic factors for outcome in patients with aneurysmal sub-arachnoid hemorrhage. Stroke. 2007, 38: 2315-2321. 10.1161/STROKEAHA.107.484360.CrossRefPubMed Rosengart AJ, Schultheiss KE, Tolentino J, Macdonald RL: Prognostic factors for outcome in patients with aneurysmal sub-arachnoid hemorrhage. Stroke. 2007, 38: 2315-2321. 10.1161/STROKEAHA.107.484360.CrossRefPubMed
2.
Zurück zum Zitat Tapaninaho A, Hernesniemi J, Vapalahti M: Shunt-dependent hydrocephalus after sub-arachnoid haemorrhage and aneurysm surgery: timing of surgery is not a risk factor. Acta Neurochir (Wien). 1993, 123: 118-124. 10.1007/BF01401866.CrossRef Tapaninaho A, Hernesniemi J, Vapalahti M: Shunt-dependent hydrocephalus after sub-arachnoid haemorrhage and aneurysm surgery: timing of surgery is not a risk factor. Acta Neurochir (Wien). 1993, 123: 118-124. 10.1007/BF01401866.CrossRef
3.
Zurück zum Zitat Rincon F, Gordon E, Starke RM: Predictors of long-term shunt-dependent hydrocephalus after aneurysmal sub-arachnoid hemorrhage. J Neurosurg. 2010, 113: 774-780. 10.3171/2010.2.JNS09376.CrossRefPubMed Rincon F, Gordon E, Starke RM: Predictors of long-term shunt-dependent hydrocephalus after aneurysmal sub-arachnoid hemorrhage. J Neurosurg. 2010, 113: 774-780. 10.3171/2010.2.JNS09376.CrossRefPubMed
4.
Zurück zum Zitat Lin CL, Kwan AL, Howng SL: Acute hydrocephalus and chronic hydrocephalus with the need of post-operative shunting after aneurysmal sub-arachnoid hemorrhage. Kaohsiung J Med Sci. 1999, 15: 137-145.PubMed Lin CL, Kwan AL, Howng SL: Acute hydrocephalus and chronic hydrocephalus with the need of post-operative shunting after aneurysmal sub-arachnoid hemorrhage. Kaohsiung J Med Sci. 1999, 15: 137-145.PubMed
5.
Zurück zum Zitat Graff-Radford NR, Torner J, Adams HP, Kassell NF: Factors associated with hydrocephalus after sub-arachnoid hemorrhage. A report of the Cooperative Aneurysm Study. Arch Neurol. 1989, 46: 744-752. 10.1001/archneur.1989.00520430038014.CrossRefPubMed Graff-Radford NR, Torner J, Adams HP, Kassell NF: Factors associated with hydrocephalus after sub-arachnoid hemorrhage. A report of the Cooperative Aneurysm Study. Arch Neurol. 1989, 46: 744-752. 10.1001/archneur.1989.00520430038014.CrossRefPubMed
6.
Zurück zum Zitat Dorai Z, Hynan LS, Kopitnik TA, Samson D: Factors related to hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2003, 52: 763-771. 10.1227/01.NEU.0000053222.74852.2D.CrossRefPubMed Dorai Z, Hynan LS, Kopitnik TA, Samson D: Factors related to hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2003, 52: 763-771. 10.1227/01.NEU.0000053222.74852.2D.CrossRefPubMed
7.
Zurück zum Zitat Vale FL, Bradley EL, Fisher WS: The relationship of sub-arachnoid hemorrhage and the need for post-operative shunting. J Neurosurg. 1997, 86: 462-466. 10.3171/jns.1997.86.3.0462.CrossRefPubMed Vale FL, Bradley EL, Fisher WS: The relationship of sub-arachnoid hemorrhage and the need for post-operative shunting. J Neurosurg. 1997, 86: 462-466. 10.3171/jns.1997.86.3.0462.CrossRefPubMed
8.
Zurück zum Zitat Greenberg MS: Hydrocephalus. Greenberg MS. Handbook of Neurosurgery. 1997, Lakeland, Florida: Greenberg Graphics, Inc, 571-600. 4 Greenberg MS: Hydrocephalus. Greenberg MS. Handbook of Neurosurgery. 1997, Lakeland, Florida: Greenberg Graphics, Inc, 571-600. 4
9.
Zurück zum Zitat Haley EC, Kassell NF, Torner JC: A randomized controlled trial of high-dose intravenous nicardipine in aneurysmal sub-arachnoid hemorrhage. A report of the Cooperative Aneurysm Study. J Neurosurg. 1993, 78: 537-547. 10.3171/jns.1993.78.4.0537.CrossRefPubMed Haley EC, Kassell NF, Torner JC: A randomized controlled trial of high-dose intravenous nicardipine in aneurysmal sub-arachnoid hemorrhage. A report of the Cooperative Aneurysm Study. J Neurosurg. 1993, 78: 537-547. 10.3171/jns.1993.78.4.0537.CrossRefPubMed
10.
Zurück zum Zitat Lee JY, Lee MS, Whang K, Lee JM, Kim SH, Lee SS: Accuracy of trans-cranial Doppler sonography for predicting cerebral infarction in aneurysmal sub-arachnoid hemorrhage. J Clin Ultrasound. 2006, 34: 380-384. 10.1002/jcu.20269.CrossRefPubMed Lee JY, Lee MS, Whang K, Lee JM, Kim SH, Lee SS: Accuracy of trans-cranial Doppler sonography for predicting cerebral infarction in aneurysmal sub-arachnoid hemorrhage. J Clin Ultrasound. 2006, 34: 380-384. 10.1002/jcu.20269.CrossRefPubMed
11.
Zurück zum Zitat Rabinstein AA, Pichelmann MA, Friedman JA: Symptomatic vasospasm and outcomes following aneurysmal sub-arachnoid hemorrhage: a comparison between surgical repair and endovascular coil occlusion. J Neurosurg. 2003, 98: 319-325. 10.3171/jns.2003.98.2.0319.CrossRefPubMed Rabinstein AA, Pichelmann MA, Friedman JA: Symptomatic vasospasm and outcomes following aneurysmal sub-arachnoid hemorrhage: a comparison between surgical repair and endovascular coil occlusion. J Neurosurg. 2003, 98: 319-325. 10.3171/jns.2003.98.2.0319.CrossRefPubMed
12.
Zurück zum Zitat Teasdale G, Jennett B: Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974, 2: 81-84.CrossRefPubMed Teasdale G, Jennett B: Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974, 2: 81-84.CrossRefPubMed
13.
Zurück zum Zitat Fisher CM, Roberson GH, Ojemann RG: Cerebral vasospasm with ruptured saccular aneurysm - the clinical manifestations. Neurosurgery. 1977, 1: 245-248. 10.1227/00006123-197711000-00004.CrossRefPubMed Fisher CM, Roberson GH, Ojemann RG: Cerebral vasospasm with ruptured saccular aneurysm - the clinical manifestations. Neurosurgery. 1977, 1: 245-248. 10.1227/00006123-197711000-00004.CrossRefPubMed
14.
Zurück zum Zitat Teasdale GM, Drake CG, Hunt W: A universal sub-arachnoid hemorrhage scale: report of a committee of the World Federation of Neurosurgical Societies. J Neurol Neurosurg Psychiatry. 1988, 51: 1457-CrossRefPubMedPubMedCentral Teasdale GM, Drake CG, Hunt W: A universal sub-arachnoid hemorrhage scale: report of a committee of the World Federation of Neurosurgical Societies. J Neurol Neurosurg Psychiatry. 1988, 51: 1457-CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Blasberg R, Johnson D, Fenstermacher J: Absorption resistance of cerebrospinal fluid after sub-arachnoid hemorrhage in the monkey: Effects of heparin. Neurosurgery. 1981, 9: 686-691. 10.1227/00006123-198112000-00012.CrossRefPubMed Blasberg R, Johnson D, Fenstermacher J: Absorption resistance of cerebrospinal fluid after sub-arachnoid hemorrhage in the monkey: Effects of heparin. Neurosurgery. 1981, 9: 686-691. 10.1227/00006123-198112000-00012.CrossRefPubMed
16.
Zurück zum Zitat Ellington E, Margolis G: Block of arachnoid villus by sub-arachnoid hemorrhage. J Neurosurg. 1969, 30: 651-657. 10.3171/jns.1969.30.6.0651.CrossRefPubMed Ellington E, Margolis G: Block of arachnoid villus by sub-arachnoid hemorrhage. J Neurosurg. 1969, 30: 651-657. 10.3171/jns.1969.30.6.0651.CrossRefPubMed
17.
Zurück zum Zitat Rajshekhar V, Harbaugh RE: Results of routine ventriculostomy with external ventricular drainage for acute hydrocephalus following sub-arachnoid hemorrhage. Acta Neurochir (Wien). 1992, 115: 8-14. 10.1007/BF01400584.CrossRef Rajshekhar V, Harbaugh RE: Results of routine ventriculostomy with external ventricular drainage for acute hydrocephalus following sub-arachnoid hemorrhage. Acta Neurochir (Wien). 1992, 115: 8-14. 10.1007/BF01400584.CrossRef
18.
Zurück zum Zitat Sheehan JP, Polin RS, Sheenan JM, Baskaya MK, Kassell NF: Factors associated with hydrocephalus after aneurysmal sub-arachnoid hemorrhage. Neurosurgery. 1999, 45: 112-118.CrossRef Sheehan JP, Polin RS, Sheenan JM, Baskaya MK, Kassell NF: Factors associated with hydrocephalus after aneurysmal sub-arachnoid hemorrhage. Neurosurgery. 1999, 45: 112-118.CrossRef
19.
Zurück zum Zitat Milhorat TH: Acute hydrocephalus after aneurysmal sub-arachnoid hemorrhage. Neurosurgery. 1987, 20: 15-20. 10.1227/00006123-198701000-00004.CrossRefPubMed Milhorat TH: Acute hydrocephalus after aneurysmal sub-arachnoid hemorrhage. Neurosurgery. 1987, 20: 15-20. 10.1227/00006123-198701000-00004.CrossRefPubMed
20.
Zurück zum Zitat Heinsoo M, Eelmae J, Kuklane M, Tomberg T, Tikk A, Asser T: The possible role of CSF hydrodynamic parameters following in management of SAH patients. Acta Neurochir Suppl (Wien). 1998, 71: 13-15. Heinsoo M, Eelmae J, Kuklane M, Tomberg T, Tikk A, Asser T: The possible role of CSF hydrodynamic parameters following in management of SAH patients. Acta Neurochir Suppl (Wien). 1998, 71: 13-15.
21.
Zurück zum Zitat Kibler RF, Couch RSC, Crompton MR: Hydrocephalus in the adult following spontaneous subarachnoid hemorrhage. Brain. 1961, 84: 45-61. 10.1093/brain/84.1.45.CrossRefPubMed Kibler RF, Couch RSC, Crompton MR: Hydrocephalus in the adult following spontaneous subarachnoid hemorrhage. Brain. 1961, 84: 45-61. 10.1093/brain/84.1.45.CrossRefPubMed
22.
Zurück zum Zitat Säveland H, Hillman J, Brandt L, Edner G, Jakobson KE, Algers G: Overall outcome in aneurysmal sub-arachnoid hemorrhage. J Neurosurg. 1992, 76: 729-734. 10.3171/jns.1992.76.5.0729.CrossRefPubMed Säveland H, Hillman J, Brandt L, Edner G, Jakobson KE, Algers G: Overall outcome in aneurysmal sub-arachnoid hemorrhage. J Neurosurg. 1992, 76: 729-734. 10.3171/jns.1992.76.5.0729.CrossRefPubMed
23.
Zurück zum Zitat Yas argil MG, Yonekawa Y, Zumstein B, Stahl H: Hydrocephalus following spontaneous sub-arachnoid hemorrhage. J Neurosurg. 1973, 39: 474-479. 10.3171/jns.1973.39.4.0474.CrossRef Yas argil MG, Yonekawa Y, Zumstein B, Stahl H: Hydrocephalus following spontaneous sub-arachnoid hemorrhage. J Neurosurg. 1973, 39: 474-479. 10.3171/jns.1973.39.4.0474.CrossRef
Metadaten
Titel
Predictors and outcomes of shunt-dependent hydrocephalus in patients with aneurysmal sub-arachnoid hemorrhage
verfasst von
Yi-Min Wang
Yu-Jun Lin
Ming-Jung Chuang
Tsung-Han Lee
Nai-Wen Tsai
Ben-Chung Cheng
Wei-Che Lin
Ben Yu-Jih Su
Tzu-Ming Yang
Wen-Neng Chang
Chih-Cheng Huang
Chia-Te Kung
Lian-Hui Lee
Hung-Chen Wang
Cheng-Hsien Lu
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
BMC Surgery / Ausgabe 1/2012
Elektronische ISSN: 1471-2482
DOI
https://doi.org/10.1186/1471-2482-12-12

Weitere Artikel der Ausgabe 1/2012

BMC Surgery 1/2012 Zur Ausgabe

Wie erfolgreich ist eine Re-Ablation nach Rezidiv?

23.04.2024 Ablationstherapie Nachrichten

Nach der Katheterablation von Vorhofflimmern kommt es bei etwa einem Drittel der Patienten zu Rezidiven, meist binnen eines Jahres. Wie sich spätere Rückfälle auf die Erfolgschancen einer erneuten Ablation auswirken, haben Schweizer Kardiologen erforscht.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 EAU 2024 Kongressbericht

Die Ureterstriktur ist eine relativ seltene Komplikation, trotzdem bedarf sie einer differenzierten Versorgung. In komplexen Fällen wird dies durch die roboterassistierte OP-Technik gewährleistet. Erste Resultate ermutigen.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.