Skip to main content
Erschienen in: Cancer Cell International 1/2001

Open Access 01.12.2001 | Review

Mitotic death: a mechanism of survival? A review

verfasst von: Jekaterina Erenpreisa, M S Cragg

Erschienen in: Cancer Cell International | Ausgabe 1/2001

Abstract

Mitotic death is a delayed response of p53 mutant tumours that are resistant to genotoxic damage. Questions surround why this response is so delayed and how its mechanisms serve a survival function. After uncoupling apoptosis from G1 and S phase arrests and adapting these checkpoints, p53 mutated tumour cells arrive at the G2 compartment where decisions regarding survival and death are made. Missed or insufficient DNA repair in G1 and S phases after severe genotoxic damage results in cells arriving in G2 with an accumulation of point mutations and chromosome breaks. Double strand breaks can be repaired by homologous recombination during G2 arrest. However, cells with excessive chromosome lesions either directly bypass the G2/M checkpoint, starting endocycles from G2 arrest, or are subsequently detected by the spindle checkpoint and present with the features of mitotic death. These complex features include apoptosis from metaphase and mitosis restitution, the latter of which can also facilitate transient endocycles, producing endopolyploid cells. The ability of cells to initiate endocycles during G2 arrest and mitosis restitution most likely reflects their similar molecular environments, with down-regulated mitosis promoting factor activity. Resulting endocycling cells have the ability to repair damaged DNA, and although mostly reproductively dead, in some cases give rise to mitotic progeny. We conclude that the features of mitotic death do not simply represent aberrations of dying cells but are indicative of a switch to amitotic modes of cell survival that may provide additional mechanisms of genotoxic resistance.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1475-2867-1-1) contains supplementary material, which is available to authorized users.

Introduction

Following severe genotoxic damage, cells undergo either rapid or delayed death termed by Okada [1] as interphase and reproductive deaths, respectively. Sensitive cells undergo death within a few hours of genotoxic insult (if the damage is not so enormous as to cause immediate necrosis), whilst damage resistant cells execute death after a delay, precipitating either from the initial G2 arrest or after a number of cell divisions. In lymphoid and myeloid cell lines, all three types of cell death require new protein synthesis and exhibit the DNA ladder characteristic of apoptosis [2].
This delayed reproductive death, also known as "mitotic death", is characteristic of many p53 mutated tumours that are resistant to genotoxic insult [3,4,5]. The main features of mitotic death have been described by several workers [6,7,8]. They include (a) the absence/delay of the G1/S checkpoint and hence (b) the absence of interphase apoptosis coupled to this checkpoint; (c) delay in the G2 compartment followed by its adaptation and hence (d) a sequence of aberrant mitoses which end in mitotic death; (e) formation and disintegration of (multinuclear) giant cells (which is often also termed mitotic death or catastrophe); (f) delayed apoptosis; and (g) finally survival.
Given this elaborate sequence of events associated with resistance to genotoxic insult and poor oncological prognosis [9], it is logical to suggest that these phenomena may contribute to cell survival. To assess this possibility, we must first explore the various facets of mitotic death.

Uncoupling of apoptosis

Terminal cell death ends any potential for repair or propagation of a cell population and so the earlier death occurs in the cell cycle following damage, the smaller the potential for possible cell survival. From studies of p53, the concept that there is a temporal element to the adaptive response of the cell to damage has emerged, and it has been suggested that there is a "race between repair and cell death" [10]. Therefore, it is clear that to ensure genomic integrity, apoptosis should be tightly coupled to cell cycle checkpoints and initiated rapidly [11,12]. For this reason, apoptosis is mostly precipitated from the G1/S checkpoint in normal, healthy, p53 wild-type cells before segregation of genomes occurs, preventing any chance of potentiating or fixing the damage later in the cell cycle. As such, maintaining genome fidelity puts a tight limit on the proliferative and survival capacity of cells. Conversely, uncoupling cell death from cell cycle checkpoints and delaying the terminal effector stage of apoptosis should give cells a greater chance for repair, diversification of pathways and survival. This latter situation is observed in resistant tumours, where G1/S and S-phase checkpoints fail [13] and where mitotic death is initiated only at the last stage of the cell cycle, as the term suggests, around the final stages of mitosis. The tight negative correlation between delayed apoptosis and release from G2 arrest in p53 mutant tumours after irradiation (Cragg et al., submitted), and other data [7,14,15] suggest that the main decision for death versus survival originates from the G2/M checkpoint. Thus, reaching the G2 compartment would appear crucial for cell survival and removing preceding checkpoints should increase resistance. Importantly however, these resistant cells have missed the chance of repair in G1 and S.

Repair of DNA strand-breaks

To repair damaged DNA, the damage must first be sensed. The precise mechanisms for this are not yet clear, although some current data suggests that p53 itself [16] and repair proteins of the Rad 9 and Ku group, also function as damage sensors [4,17]. Recent evidence also indicates that in S-phase, sensing and repair of strand-breaks competes with continued DNA replication. Therefore, it may be that in resistant tumour cells, damage is not repaired because it not sensed [18]. In support of this notion, comparing S-phase delay for a panel of lymphoid cell lines after a single dose of irradiation, the most radioresistant cells delay least in S-phase and exhibit the most extensive chromosomal aberrations (Cragg et al; submitted). This situation is exacerbated by the fact that conversion of single-strand breaks (SSB) into pernicious double-strand breaks (DSB) and the error-prone trans-lesion DNA synthesis, are probably occurring in this environment [4,19]. It is paradoxical then, that unlike p53 mutated cells, p53 wild-type cells which sense DNA damage and delay for repair in G1 and S, do not recover from large genotoxic insults [20].
Potentially lethal DSB are repaired by non-homologous end-joining (NHEJ) in G1/early S and by homologous recombination (HR), in late S/G2 [18,21]. NHEJ is by definition error-prone and so error-free repair is only possible through HR. Reaching the G2 compartment provides the best chance for error-free DNA repair within the mitotic cycle.

Delay in G2 – a rescue compartment?

Cells with DSB arrest in G2 at the G2/M DNA damage checkpoint [22] and attempt HR. In fact, it was only recently discovered that HR acts in human cells [18,23]. This HR repair capacity seems to be many-fold more active in p53-mutated tumours than in wild-type counterparts [24] and therefore, G2 arrest should be considered an important rescue compartment for damage-resistant tumours. In support of this, the ability of various tumour cell lines to accumulate after damage in G2 seems proportional to their clonogenicity (Cragg et al., submitted) and resistance to multiple anticancer drugs [14], whilst abrogation of G2-arrest potentiates cell death [15]. This type of response, providing maximal accumulation of cells in G2, is due to loss of functional p53 [3,13,25] and perhaps explains why mutations in p53 are selected for during tumour progression.
Although possibly elevated in p53-mutated tumours, it is clear that the repair capacity of the G2 compartment cannot be limitless. If the damage is too extensive and the cells have overcome (adapted) the G2/M checkpoint, the mitoses that ensue are aberrant due to the genome instability and chromosome breaks. In addition, the ability of chromosomes to stick at breakage sites is often displayed in sequential post-damage mitoses as "bridge-break-fusion" events and it is mostly this process which accounts for a large proportion of first aberrant and then lethal mitoses. All of these facets are due to secondary DNA damage events and represent the "cost" of reaching the G2 compartment. Several investigators have now shown that secondary chromosome lesions and mis-repair directly cause chromosome breaks and evoke "mitotic catastrophe" [2,26,27,28,29].

Mitotic catastrophe

There are very diverse descriptions of mitotic catastrophe. Initially, mitotic catastrophe was associated with incomplete DNA synthesis and premature chromosome condensation [30,31], with features in common with apoptosis. Other authors define it as an aberrant form of mitosis associated with the formation of multinucleate giant cells that are temporarily viable but reproductively dead [11,32]. Still others state that mitotic catastrophe is pre-determined in G2 and characterised by an abortive short cut into metaphase arrest [33,34]. Mitotic failure often manifests with micronucleation [35,36] and nuclear segmentation [37] and this in turn, is associated with mitosis restitution into interphase polyploid cells [38]. An apoptosis-like, TUNEL-positive death from metaphase-arrest can often be observed in tumours after various apoptogens [37]. It frequently accompanies mitosis restitution [39], and is commonly seen during the development of micronuclei and nuclear segments, which are themselves initially TUNEL-negative [40,41].
Clearly, the features of mitotic catastrophe are eclectic [39]. In fact, although these events are usually viewed as deviations from the normal cell cycle, they involve phenomena that are not necessarily associated with mitosis, such as micronucleation, restitution, and polyploidy. Indeed, the last of these is clearly associated with the endocycle, and we would suggest that initiating the endocycle provides an alternative to mitotic catastrophe in resistant cells.

Endopolyploid giant cells

Polygenomic giant cells can arise from G2 arrested cells [7,42,43], by cell fusion or by mitotic restitution [38,44,45]. In all cases, tetraploidy appears to be a pre-requisite for initiation of endocycles. True endopolyploids contain several chromosome sets and are usually formed in a series of restitution cycles by (polyploidising) mitoses, which are aborted after segregation of sister chromatids. These cells are thought to be able to return to the diploid state either through mitosis omitting S-phases or by multipolar mitosis [46]. Interestingly, studies on human megakaryocytes in culture [47] showed that 8N-16N giant nuclei express cyclin B1 and that this co-precipitates with H1 histone kinase activity. Thus, these nuclei retain competency for mitosis and subsequently, multipolar mitoses with centrosomes co-localized with cyclin B follow. For the S-phase 16N-32N cells and for 32N and 64N cells, these activities are strongly reduced. These data are in line with numerous reports that 8N-ploidy represents a general limit, above which cells cannot execute mitosis. 16N-32N cells and cells of higher ploidy are usually unable to divide by mitosis, and therefore belong to the so-called hyperploid class of polyploids [44].
Hyperploidy, which can reach very high DNA content values, is widely observed during the development of transient organs in animals and plants [44,46,48]. Unlike in true endopolyploids, in hyperploid cells, sister chromatids usually do not become separated after replication rounds [44,46,48] and especially if slightly condensed, retain partial cohesion at highly reiterated sites. Most likely, such a polytenic kind of endopolyploidy arises initially from cells arrested in the G2/M or spindle checkpoint and renders these nuclei unable to segregate chromosomes by mitosis.
Although mostly reproductively dead, these cells however, can also return to the diploid state, through a specific kind of cell division termed de-polyploidisation, which involves de-polytenization, somatic pairing of homologs and subsequent reduction divisions [44]. Such a process, termed also "meiosis without karyogamy", has been described by Grell in Culex[49] and in the asexual life-cycle of Radiolaria, reviewed in [50]. Although somatic reduction is likely to occur in higher plants, the possibility of a similar process occurring in mammalian cells remained until recently only speculation [42,44].
In malignant tumours, there is often a population of cells with a DNA content above the diploid value of the so-called stem-line and in many cases a number of high-ploidy cells are evident [51]. The proliferative potential of this latter population remains controversial. Some authors claim that high ploidy cells have reduced proliferative potential [52] or even none at all [53,54]. Others have found that although these cells are usually delayed in, and often deleted from, metaphase, they can proliferate either normally [55] or through multipolar mitoses [56], although these observations may refer only to oligoploid tumour cells. We have observed giant cells of 8N-128N and more, as a transient response of p53 mutated human lymphoma cell lines to genotoxic damage or spindle poisons. Within this response, some endopolyploid cells appear to undergo somatic reduction and/or multipolar mitoses and produce mitotic descendants [[41,57], also unpublished]. Therefore, it is important to consider how endopolyploids originate from, and return to, the mitotic cycle, with respect to the different molecular environments required.

Molecular machinery of the endocycle

The mitotic cycle is dependent upon the action of the mitosis-promoting factor (MPF), which is a complex of cyclin B and cdc2 kinase (p34 cdk1). The MPF phosphorylates various substrates including MAPs, lamins, and histone HI, which subsequently induce the spindle assembly, breakdown of nuclear envelope, and chromosome condensation, necessary for mitosis. In contrast, lack of MPF activity and inability to execute mitosis is considered a hallmark of the endocycle [8,42,58]. A recent study of reprogramming the cell cycle for endoreduplication in rodent trophoblast cells has shown that the arrest of the mitotic cycle at the onset of endoreduplication was associated with a failure to assemble the MPF [59], at the G2/M checkpoint. The same can be achieved by inhibiting cdc2 activity with the kinase inhibitor, staurosporine [45]. The main component of MPF inactivity appears to be lack of nuclear cyclin B1 localisation in the endocycle [8].
For endoreduplication, DNA synthesis must occur independently of mitosis and for this to happen several checkpoints must be overcome. These checkpoints are located in late S-phase (S/M [34], telophase [60], centrosome duplication [61] checkpoints), in G2-phase (G2/M checkpoint [22], and in M-phase (spindle and post-spindle checkpoints [62,63]). In the endoreduplication cycle, cells shuttle only between G1 and S-phase, with a truncated late S-phase [8,42,44,64] and therefore many of these checkpoints are naturally absent, allowing unchecked DNA synthesis.
The MPF also negatively regulates the assembly of the replication complex [8]. Stable overexpression of cyclin E, which is part of the replication complex and the main driver of replication, is a characteristic feature of endocycling and tumour cells [8,58,60,64,65]. Therefore, it seems likely that when DNA synthesis becomes unscheduled, due to the inactivity of the anaphase promoting complex APC and the post-spindle replication checkpoint, this stable and abundant cyclin E down-regulates cdc2 kinase, and thus renders the MPF inactive, enabling decondensation of chromosomes and reset of interphase.
Most of the checkpoints detailed above are p53 dependent, and so not surprisingly, the ability to initiate endocycles and form endopolyploid cells is characteristic of cells lacking wild-type p53 function [15,43,66].

Influence of DNA damage

Genotoxic damage in particular enhances this transition from the mitotic cycle into the endocycle in p53 mutant cells [15,66]. The arrest in the G2/M checkpoint is known to activate chk1, which induces the phosphorylation of cdc25. This results in cdc2 remaining phosphorylated on Tyr 15, causing its inactivation and through the subsequent molecular pathway, retaining the cytoplasmic localisation (nuclear export) of cyclin B1 [22]. Consequently, DNA damage, causing G2 arrest and preventing MPF assembly, may provide the necessary molecular environment to trigger entry into the endocycle instead of mitosis.
Another molecular constraint to overcome, to allow endoreduplication, concerns the APC which couples mitosis to a new round of DNA replication. This function is performed by the targeted proteolysis of several substrates necessary for the completion of mitosis [62]. Arrest at the spindle checkpoint caused by post-damage secondary DNA breaks or by spindle damage, down-regulates APC activity, thus preventing exit from mitosis but allowing entry into the endocycle by the pathways detailed above [8] and in [67].
In summary, the characteristic features of p53 mutated cancer cells in conjunction with DNA damage, appears to facilitate the molecular environment necessary to provide a shift from mitosis into the endocycle. The main switch-points for these transitions are outlined on Figure 1, although it should be mentioned that apoptosis represents another, third option.
Our own studies (Cragg et al., submitted) have shown that in p53-mutated cells, the radiation dose threshold for entering the endocycle from damage induced G2 arrest is higher than for entering mitosis, and in particular, in more resistant cells i.e. cells can still enter the endocycle after high doses of irradiation. One possible explanation for these data is that the endocycle provides a survival advantage.

Can giant cells repair DNA?

If giant cells do provide a survival advantage after genotoxic insult, then presumably they must be able to repair DNA. In support of this suggestion, chromatid exchanges have been found between sister chromatids in the endopolyploid nuclei of rodent fibroblasts [68,69]. Importantly, crossing over at each site appears only to occur between two of the many aligned chromonemes on the multichromonemic chromosomes [70] potentially allowing the production of a fully repaired chromosome. Furthermore, some data suggest that homologous chromosomes, which are randomly distributed in the mitotic cycle of diploid cells [71], become relocated and paired in polyploids [70,72]. This early data has acquired some recent support [73] as it has been shown that homologous chromosomes come together in generative polyploids long before meiosis begins.
In endopolyploid tumour cells, for recombination and somatic reduction to happen, reorganisation of endopolyploid nuclei should occur to provide pairing of homologous chromosomes. In support of this suggestion, a complex somatic reduction process involving meiotic-like bouquets has been reported recently by our group for some Burkitt's lymphoma cell lines after high doses of irradiation [41,59].
Although initially this process appears extremely exotic, it has serious molecular and evolutionary grounds. An attractive idea linking meiotic recombination with DNA repair in somatic cells was recently proposed by Kleckner [74] who suggested that crossing over and meiosis both originated during evolution from the necessity to repair DNA double strand breaks in the mitotic cycle. Furthermore, the molecular relationship between meiotic recombination and the mitotic DNA damage checkpoints has now been established [75]. In addition, it is worthwhile to note that the endocycle is probably more ancient than both meiosis and mitosis in evolution [76] and that somatic reduction introduces elements of meiosis into endopolyploid cells. This latter may be important, as recombination DNA repair by exchange between homologs in meiosis has been reported to be up to 10 times more effective than between sister chromatids [77].
Somatic reduction of endopolyploid cells, including pairing of homologs similar to that in meiosis, may therefore represent an effective means of both DNA repair and return to diploidy and the mitotic cycle. In fact, comparing the efficacy of HR in different cell cycle compartments reported in the literature, it can be inferred that HR efficiency increases from G1 to G2 [78] and then still further from G2 of the mitotic cycle to the endocycle. Possibly therefore, in the race between DNA repair and apoptosis, repair is elevated and apoptosis delayed further and further, allowing this extreme shift into the endocycle to occur in the most resistant tumours.

Conclusion

In conclusion, after extensive DNA damage, p53 mutated cells miss DNA repair and apoptosis at the G1 and S phase checkpoints and accumulate at the G2 arrest compartment with point mutations and chromosome breaks. The latter exhibit at the spindle checkpoint with mitotic catastrophe. In the absence of p53, the various phenomena of mitotic death, including mitosis restitution, are induced in an attempt to execute an evolutionarily conserved survival program via transient endocycles. The molecular environment of G2 arrest and restituting mitosis down-regulates MPF activity allowing initiation of the endocycle. The resulting polyploid cells may harbour greater DNA repair capacity coupled with the potential to return to the mitotic cycle and may therefore provide a survival advantage.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Okada S: Radiation Biochemistry. (Eds: Altman KI, Gerber GB and Okada S), Vol.1, Academic Press, New York. 1970 Okada S: Radiation Biochemistry. (Eds: Altman KI, Gerber GB and Okada S), Vol.1, Academic Press, New York. 1970
2.
Zurück zum Zitat Radford IR, Murphy TK: Radiation response of mouse lymphoid and myeloid cell lines. Part III. Different signals can lead to apoptosis and may influence sensitivity to killing by DNA double-strand breakage. Int J Radiat Biol. 1994, 65: 229-239.CrossRefPubMed Radford IR, Murphy TK: Radiation response of mouse lymphoid and myeloid cell lines. Part III. Different signals can lead to apoptosis and may influence sensitivity to killing by DNA double-strand breakage. Int J Radiat Biol. 1994, 65: 229-239.CrossRefPubMed
3.
4.
Zurück zum Zitat Friedberg EC: DNA repair and mutagenesis. (Eds: Friedberg EC, Walker GS, Siede W) Washingtone, DC:ASM Press. 1995 Friedberg EC: DNA repair and mutagenesis. (Eds: Friedberg EC, Walker GS, Siede W) Washingtone, DC:ASM Press. 1995
5.
Zurück zum Zitat Zhivotovsky B, Bertrand J, Orrenius S: Tumour radiosensitivity and apoptosis. Exp Cell Res. 1999, 248: 10-17. 10.1006/excr.1999.4452.CrossRefPubMed Zhivotovsky B, Bertrand J, Orrenius S: Tumour radiosensitivity and apoptosis. Exp Cell Res. 1999, 248: 10-17. 10.1006/excr.1999.4452.CrossRefPubMed
6.
Zurück zum Zitat Lock RB, Ross WE: Possible Role for the p34cdc2 Kinase in Etoposide-induced Cell Death of Chinese Hamster Ovary Cells. Cancer Res. 1990, 50: 3767-3771.PubMed Lock RB, Ross WE: Possible Role for the p34cdc2 Kinase in Etoposide-induced Cell Death of Chinese Hamster Ovary Cells. Cancer Res. 1990, 50: 3767-3771.PubMed
7.
Zurück zum Zitat Bernhard EJ, Muschel RJ, Bakanauskas VJ, McKenna W: Reducing the radiation-induced G2 delay causes HeLa cells to undergo apoptosis instead of mitotic death. Int J Radiat Biol. 1996, 69: 575-584. 10.1080/095530096145580.CrossRefPubMed Bernhard EJ, Muschel RJ, Bakanauskas VJ, McKenna W: Reducing the radiation-induced G2 delay causes HeLa cells to undergo apoptosis instead of mitotic death. Int J Radiat Biol. 1996, 69: 575-584. 10.1080/095530096145580.CrossRefPubMed
8.
Zurück zum Zitat Grafi G: Cell cycle regulation of DNA replication. The endoreduplication perspective (minireview). Exp Cell Res. 1998, 244: 372-378. 10.1006/excr.1998.4213.CrossRefPubMed Grafi G: Cell cycle regulation of DNA replication. The endoreduplication perspective (minireview). Exp Cell Res. 1998, 244: 372-378. 10.1006/excr.1998.4213.CrossRefPubMed
9.
Zurück zum Zitat O'Connor PM, Jackman J, Jondle D, Bhatia K, Magrath I: Role of the p53 tumor supressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines. Cancer Res. 1993, 53: 4776-4780.PubMed O'Connor PM, Jackman J, Jondle D, Bhatia K, Magrath I: Role of the p53 tumor supressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines. Cancer Res. 1993, 53: 4776-4780.PubMed
10.
11.
Zurück zum Zitat King KL, Cidlowski JA: Cell cycle and apoptosis: common pathways to life and death. J Cell Biochem. 1995, 58: 175-180.CrossRefPubMed King KL, Cidlowski JA: Cell cycle and apoptosis: common pathways to life and death. J Cell Biochem. 1995, 58: 175-180.CrossRefPubMed
12.
Zurück zum Zitat Diffey JFX, Evan G: Oncogenes and cell proliferation. Cell cycle, genome integrity, and cancer – millenial view. Curr Opin Genet Dev. 1993, 10: 13-16. 10.1016/S0959-437X(99)00053-2.CrossRef Diffey JFX, Evan G: Oncogenes and cell proliferation. Cell cycle, genome integrity, and cancer – millenial view. Curr Opin Genet Dev. 1993, 10: 13-16. 10.1016/S0959-437X(99)00053-2.CrossRef
13.
14.
Zurück zum Zitat Bedi A, Barber JP, Bedi JC, El-Deiry WC, Sidransky D, Vala MS, Akhtar AJ, Hilton J, Jones RJ: BCR-ABL-mediated inhibition of apoptosis with delay of G2-M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood. 1995, 86: 1148-1158.PubMed Bedi A, Barber JP, Bedi JC, El-Deiry WC, Sidransky D, Vala MS, Akhtar AJ, Hilton J, Jones RJ: BCR-ABL-mediated inhibition of apoptosis with delay of G2-M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood. 1995, 86: 1148-1158.PubMed
15.
Zurück zum Zitat Bracey TS, Williams AC, Paraskeva C: Inhibition of radiation-induced G2 delay potentiates cell death by apoptosis and/or the induction of giant cells in colorectal tumour cells with disrupted p53 function. Nature. 1996, 381: 713-716. 10.1038/381713a0.CrossRef Bracey TS, Williams AC, Paraskeva C: Inhibition of radiation-induced G2 delay potentiates cell death by apoptosis and/or the induction of giant cells in colorectal tumour cells with disrupted p53 function. Nature. 1996, 381: 713-716. 10.1038/381713a0.CrossRef
16.
Zurück zum Zitat Pfeifer GP, Holmquist GP: Mutagenesis in the P53 gene. Biochem Biophys Acta. 1997, 1333: M1-M8. 10.1016/S0304-419X(97)00004-8.PubMed Pfeifer GP, Holmquist GP: Mutagenesis in the P53 gene. Biochem Biophys Acta. 1997, 1333: M1-M8. 10.1016/S0304-419X(97)00004-8.PubMed
17.
Zurück zum Zitat Lowndes NF, Muguia JR: Sensing and responding to DNA damage. Curr Opin Genet Dev. 2000, 10: 17-25. 10.1016/S0959-437X(99)00050-7.CrossRefPubMed Lowndes NF, Muguia JR: Sensing and responding to DNA damage. Curr Opin Genet Dev. 2000, 10: 17-25. 10.1016/S0959-437X(99)00050-7.CrossRefPubMed
18.
Zurück zum Zitat Karran P: DNA double strand break repair in mammalian cells. Curr Opin Genet Dev. 2000, 10: 144-150. 10.1016/S0959-437X(00)00069-1.CrossRefPubMed Karran P: DNA double strand break repair in mammalian cells. Curr Opin Genet Dev. 2000, 10: 144-150. 10.1016/S0959-437X(00)00069-1.CrossRefPubMed
19.
Zurück zum Zitat Goodman MF, Tippin B: Sloppier copier DNA polymerases involved in genome repair. Curr Opin Genet Dev. 2000, 10: 162-168. 10.1016/S0959-437X(00)00057-5.CrossRefPubMed Goodman MF, Tippin B: Sloppier copier DNA polymerases involved in genome repair. Curr Opin Genet Dev. 2000, 10: 162-168. 10.1016/S0959-437X(00)00057-5.CrossRefPubMed
20.
Zurück zum Zitat Linke SP, Clarkin KC, Wahl GM: p53 mediates permanent arrest over multiple cell cycles in response to gamma-irradiation. Cancer Res. 1997, 57: 1171-1179.PubMed Linke SP, Clarkin KC, Wahl GM: p53 mediates permanent arrest over multiple cell cycles in response to gamma-irradiation. Cancer Res. 1997, 57: 1171-1179.PubMed
21.
Zurück zum Zitat Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S: Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 1998, 17: 5497-5508. 10.1093/emboj/17.18.5497.PubMedCentralCrossRefPubMed Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S: Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 1998, 17: 5497-5508. 10.1093/emboj/17.18.5497.PubMedCentralCrossRefPubMed
22.
Zurück zum Zitat Weinert T: DNA damage checkpoint update: Getting molecular. Curr Opin Genet Dev. 1998, 8: 185-193. 10.1016/S0959-437X(98)80140-8.CrossRefPubMed Weinert T: DNA damage checkpoint update: Getting molecular. Curr Opin Genet Dev. 1998, 8: 185-193. 10.1016/S0959-437X(98)80140-8.CrossRefPubMed
23.
Zurück zum Zitat Liang FM, Han M, Romanienko PJ, Jasin M: Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci USA. 1998, 95: 5172-5177. 10.1073/pnas.95.9.5172.PubMedCentralCrossRefPubMed Liang FM, Han M, Romanienko PJ, Jasin M: Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci USA. 1998, 95: 5172-5177. 10.1073/pnas.95.9.5172.PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Mekeel K, Tang W, Kachnic LA, Luo CM, DeFrank JS, Powell SN: Inactivation of p 53 results in high rates of homologous recombination. Oncogene. 1997, 14: 1847-1857. 10.1038/sj/onc/1201143.CrossRefPubMed Mekeel K, Tang W, Kachnic LA, Luo CM, DeFrank JS, Powell SN: Inactivation of p 53 results in high rates of homologous recombination. Oncogene. 1997, 14: 1847-1857. 10.1038/sj/onc/1201143.CrossRefPubMed
25.
Zurück zum Zitat Schwartz D, Rotter V: p53-dependant cell cycle control: response to genotoxic stress. Semin Cancer Biol. 1998, 8: 325-336. 10.1006/scbi.1998.0095.CrossRefPubMed Schwartz D, Rotter V: p53-dependant cell cycle control: response to genotoxic stress. Semin Cancer Biol. 1998, 8: 325-336. 10.1006/scbi.1998.0095.CrossRefPubMed
26.
Zurück zum Zitat Scott D, Fox M, Fox BW: The relationship between chromosomal aberrations, survival and DNA repair in tumour cell lines of differential sensitivity to X-rays and sulphur mustard. Mutat Res. 1974, 22: 207-221.CrossRefPubMed Scott D, Fox M, Fox BW: The relationship between chromosomal aberrations, survival and DNA repair in tumour cell lines of differential sensitivity to X-rays and sulphur mustard. Mutat Res. 1974, 22: 207-221.CrossRefPubMed
27.
Zurück zum Zitat Chadwick KH, Leenhouts HP: Radiation induced chromosome aberrations: some biophysical considerations. Mutat Res. 1998, 404: 113-117. 10.1016/S0027-5107(98)00102-X.CrossRefPubMed Chadwick KH, Leenhouts HP: Radiation induced chromosome aberrations: some biophysical considerations. Mutat Res. 1998, 404: 113-117. 10.1016/S0027-5107(98)00102-X.CrossRefPubMed
28.
Zurück zum Zitat Bryant PE: The Signal Model: a possible explanation for the conversion of DNA double-strand breaks into chromatid breaks. Int J Radiat Biol. 1998, 73: 243-251. 10.1080/095530098142338.CrossRefPubMed Bryant PE: The Signal Model: a possible explanation for the conversion of DNA double-strand breaks into chromatid breaks. Int J Radiat Biol. 1998, 73: 243-251. 10.1080/095530098142338.CrossRefPubMed
29.
Zurück zum Zitat Rogers-Bald M, Sargent RG, Bryant PE: Production of chromatid breaks by single dsb: Evidence supporting the signal model. Int J Radiat Biol. 2000, 76: 23-29. 10.1080/095530000138970.CrossRefPubMed Rogers-Bald M, Sargent RG, Bryant PE: Production of chromatid breaks by single dsb: Evidence supporting the signal model. Int J Radiat Biol. 2000, 76: 23-29. 10.1080/095530000138970.CrossRefPubMed
30.
Zurück zum Zitat Mackay MA, Morgan WF, Dewey WC: Nuclear fragmentation and premature chromosome condensation induced by heat shock in S-phase Chinese hamster ovary cells. Cancer Res. 1988, 48: 6478-6483. Mackay MA, Morgan WF, Dewey WC: Nuclear fragmentation and premature chromosome condensation induced by heat shock in S-phase Chinese hamster ovary cells. Cancer Res. 1988, 48: 6478-6483.
31.
Zurück zum Zitat lanzini F, Mackay MA: Delayed DNA damage associated with mitotic catastrophe following X-irradiation of HeLa S3 cells. Mutagenesis. 1998, 13: 337-344.CrossRef lanzini F, Mackay MA: Delayed DNA damage associated with mitotic catastrophe following X-irradiation of HeLa S3 cells. Mutagenesis. 1998, 13: 337-344.CrossRef
32.
Zurück zum Zitat Miranda El, Santana C, Rojas E, Hernandez A, Ostrosky-Wegman P, Garcia-Carranca A: Induced mitotic death of HeLa cells by abnormal expression of c-H-ras. Mutat Res. 1996, 349: 173-182. 10.1016/0027-5107(95)00164-6.CrossRefPubMed Miranda El, Santana C, Rojas E, Hernandez A, Ostrosky-Wegman P, Garcia-Carranca A: Induced mitotic death of HeLa cells by abnormal expression of c-H-ras. Mutat Res. 1996, 349: 173-182. 10.1016/0027-5107(95)00164-6.CrossRefPubMed
33.
Zurück zum Zitat Kondo S: Apoptosis by antitumour agents and other factors in relation to cell-cycle checkpoints. J Radiat Res (Tokyo). 1995, 36: 56-62.CrossRef Kondo S: Apoptosis by antitumour agents and other factors in relation to cell-cycle checkpoints. J Radiat Res (Tokyo). 1995, 36: 56-62.CrossRef
34.
Zurück zum Zitat Rhind N, Russell P: Mitotic DNA damage and replication checkpoints in yeast. Curr Opin Cell Biol. 1998, 10: 749-758. 10.1016/S0955-0674(98)80118-X.PubMedCentralCrossRefPubMed Rhind N, Russell P: Mitotic DNA damage and replication checkpoints in yeast. Curr Opin Cell Biol. 1998, 10: 749-758. 10.1016/S0955-0674(98)80118-X.PubMedCentralCrossRefPubMed
35.
Zurück zum Zitat Heddle JA, Carrano AV: The DNA content of micronuclei induced in mouse bone marrow by gamma-irradiation: evidence that micronuclei arise from acentric chromosomal fragments. Mutat Res. 1977, 44: 63-69. 10.1016/0027-5107(77)90115-4.CrossRefPubMed Heddle JA, Carrano AV: The DNA content of micronuclei induced in mouse bone marrow by gamma-irradiation: evidence that micronuclei arise from acentric chromosomal fragments. Mutat Res. 1977, 44: 63-69. 10.1016/0027-5107(77)90115-4.CrossRefPubMed
36.
Zurück zum Zitat Abend M, Gilbertz K-P, Rhein A, van Beuningen D: Early and late G2 arrest of cells undergoing radiation-induced apoptosis or micronucleation. Cell Prolif. 1996, 29: 101-113. 10.1046/j.1365-2184.1996.00989.x.CrossRefPubMed Abend M, Gilbertz K-P, Rhein A, van Beuningen D: Early and late G2 arrest of cells undergoing radiation-induced apoptosis or micronucleation. Cell Prolif. 1996, 29: 101-113. 10.1046/j.1365-2184.1996.00989.x.CrossRefPubMed
37.
Zurück zum Zitat Dini L, Coppola S, Ruzittu MT, Ghibelli L: Multiple Pathways for Apoptotic Nuclear Fragmentation. Exp Cell Res. 1996, 223: 340-347. 10.1006/excr.1996.0089.CrossRefPubMed Dini L, Coppola S, Ruzittu MT, Ghibelli L: Multiple Pathways for Apoptotic Nuclear Fragmentation. Exp Cell Res. 1996, 223: 340-347. 10.1006/excr.1996.0089.CrossRefPubMed
38.
39.
Zurück zum Zitat Erenpreisa Je, Ivanov A, Dekena G, Vitina A, Krampe R, Freivalds T, Selivanova G, Roach Hl: Arrest in metaphase and anatomy of mitotic catastrophe: mild heat shock in two human osteosarcoma cell lines. Cell Biol Int. 2000, 24: 61-71. 10.1006/cbir.1999.0466.CrossRefPubMed Erenpreisa Je, Ivanov A, Dekena G, Vitina A, Krampe R, Freivalds T, Selivanova G, Roach Hl: Arrest in metaphase and anatomy of mitotic catastrophe: mild heat shock in two human osteosarcoma cell lines. Cell Biol Int. 2000, 24: 61-71. 10.1006/cbir.1999.0466.CrossRefPubMed
40.
Zurück zum Zitat Shimizu N, Itoh N, Utiyama H, Wahl GM: Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S-phase. J Cell Biol. 1998, 140: 1307-1320. 10.1083/jcb.140.6.1307.PubMedCentralCrossRefPubMed Shimizu N, Itoh N, Utiyama H, Wahl GM: Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S-phase. J Cell Biol. 1998, 140: 1307-1320. 10.1083/jcb.140.6.1307.PubMedCentralCrossRefPubMed
41.
Zurück zum Zitat Illidge TM, Cragg MS, Fringes B, Olive P, Erenpreisa JA: Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biol Int. 2000, 24: 621-633. 10.1006/cbir.2000.0557.CrossRefPubMed Illidge TM, Cragg MS, Fringes B, Olive P, Erenpreisa JA: Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biol Int. 2000, 24: 621-633. 10.1006/cbir.2000.0557.CrossRefPubMed
42.
Zurück zum Zitat Nagl W: Cdc2-kinases, cyclins, and the switch from proliferation to polyploidization. Protoplasma. 1995, 188: 143-150.CrossRef Nagl W: Cdc2-kinases, cyclins, and the switch from proliferation to polyploidization. Protoplasma. 1995, 188: 143-150.CrossRef
43.
Zurück zum Zitat Waldman T, Lengauer C, Kinzler KW, Vogelstein B: Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature. 1996, 381: 713-716. 10.1038/381713a0.CrossRefPubMed Waldman T, Lengauer C, Kinzler KW, Vogelstein B: Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature. 1996, 381: 713-716. 10.1038/381713a0.CrossRefPubMed
44.
Zurück zum Zitat Nagl W: Endopolyploidy and polyteny in differentiation and evolution. North-Holland Publ, Amsterdam-New York-Oxford. 1978 Nagl W: Endopolyploidy and polyteny in differentiation and evolution. North-Holland Publ, Amsterdam-New York-Oxford. 1978
45.
Zurück zum Zitat Hall L, Th'ng JPH, Guo XW, Teplitz RL, Bradbury EM: A brief staurosporine treatment of mitotic cells triggers premature exit from mitosis and polyploid cell formation. Cancer Res. 1996, 56: 3551-3559.PubMed Hall L, Th'ng JPH, Guo XW, Teplitz RL, Bradbury EM: A brief staurosporine treatment of mitotic cells triggers premature exit from mitosis and polyploid cell formation. Cancer Res. 1996, 56: 3551-3559.PubMed
46.
Zurück zum Zitat Brodsky VY, Uryvayeva IV: Genome multiplication in growth and development. Cambridge University Press,. 1985 Brodsky VY, Uryvayeva IV: Genome multiplication in growth and development. Cambridge University Press,. 1985
47.
Zurück zum Zitat Vitrat N, Cohen-Solal K, Pique C, Couedic J-P, Norol F, Larsen AK, Katz A, Vaichenker W, Debili N: Endomitosis of human megakaryocytes are due to abortive mitosis. Blood. 1998, 91: 3711-3723.PubMed Vitrat N, Cohen-Solal K, Pique C, Couedic J-P, Norol F, Larsen AK, Katz A, Vaichenker W, Debili N: Endomitosis of human megakaryocytes are due to abortive mitosis. Blood. 1998, 91: 3711-3723.PubMed
48.
Zurück zum Zitat Zybina EV, Zybina TG: Polytene chromosomes in mammalian cells. Int Rev Cytol. 1996, 165: 53-119.CrossRefPubMed Zybina EV, Zybina TG: Polytene chromosomes in mammalian cells. Int Rev Cytol. 1996, 165: 53-119.CrossRefPubMed
49.
Zurück zum Zitat Grell M: Cytological studies in Culex. I Somatic reduction division. Genetics. 1946, 31: 60-70.PubMedCentral Grell M: Cytological studies in Culex. I Somatic reduction division. Genetics. 1946, 31: 60-70.PubMedCentral
50.
Zurück zum Zitat Raikov IB: The protozoan nucleus. Morphology and evolution. Springer Verlag, Wien-N.Y. 1982 Raikov IB: The protozoan nucleus. Morphology and evolution. Springer Verlag, Wien-N.Y. 1982
51.
Zurück zum Zitat Bohm N, Sandritter W: DNA in human tumours: a cytophotometric study. Curr Top Pathol. 1975, 560: 151-219. Bohm N, Sandritter W: DNA in human tumours: a cytophotometric study. Curr Top Pathol. 1975, 560: 151-219.
52.
Zurück zum Zitat Gustavino B, Bassani B, Pacchierotti F: Vinblastine-induced numerical chromosome changes and selection processes in mouse bone marrow cells. Mutat Res. 1991, 248: 45-50. 10.1016/0027-5107(91)90086-4.CrossRefPubMed Gustavino B, Bassani B, Pacchierotti F: Vinblastine-induced numerical chromosome changes and selection processes in mouse bone marrow cells. Mutat Res. 1991, 248: 45-50. 10.1016/0027-5107(91)90086-4.CrossRefPubMed
53.
Zurück zum Zitat Frankfurt OS, Chin JL, Erglander LS, Greco WR, Pontes JE, Rustum YM: Relationship between DNA ploidy, glandular differentiation and tumour spread in human prostate cancer. Cancer Res. 1985, 45: 1418-1423.PubMed Frankfurt OS, Chin JL, Erglander LS, Greco WR, Pontes JE, Rustum YM: Relationship between DNA ploidy, glandular differentiation and tumour spread in human prostate cancer. Cancer Res. 1985, 45: 1418-1423.PubMed
54.
Zurück zum Zitat Therman E, Kuhn EM: Mitotic modifications and aberrations in cancer. Crit Rev Oncog. 1989, 1: 293-305.PubMed Therman E, Kuhn EM: Mitotic modifications and aberrations in cancer. Crit Rev Oncog. 1989, 1: 293-305.PubMed
55.
Zurück zum Zitat Dooley WC, Allison DC, Robertson J: Discrepancies among the metaphase, telophase, and the GO/G1 and G2 DNA peaks of heteroploid cell lines. Cytometry. 1991, 12: 99-106.CrossRefPubMed Dooley WC, Allison DC, Robertson J: Discrepancies among the metaphase, telophase, and the GO/G1 and G2 DNA peaks of heteroploid cell lines. Cytometry. 1991, 12: 99-106.CrossRefPubMed
56.
Zurück zum Zitat de la Hoz C, Baroja A: Proliferative behaviour of high-ploidy cells in two murine tumour lines. J Cell Sci. 1993, 104: 31-36.PubMed de la Hoz C, Baroja A: Proliferative behaviour of high-ploidy cells in two murine tumour lines. J Cell Sci. 1993, 104: 31-36.PubMed
57.
Zurück zum Zitat Je Erenpreisa A, Cragg MS, Fringes B, Sharakhov I, Illidge TM: Release of mitotic descendants from irradiated Burkitt's lymphoma cell lines. Cell Biol Int. 2000, 24: 635-648. 10.1006/cbir.2000.0558.CrossRef Je Erenpreisa A, Cragg MS, Fringes B, Sharakhov I, Illidge TM: Release of mitotic descendants from irradiated Burkitt's lymphoma cell lines. Cell Biol Int. 2000, 24: 635-648. 10.1006/cbir.2000.0558.CrossRef
58.
Zurück zum Zitat Grafi G, Larkins BA: Endoreduplication in maize endosperm: Involvement of M-phase-promoting factor inhibition and induction of S-phase related kinases. Science. 1995, 269: 1262-1264.CrossRefPubMed Grafi G, Larkins BA: Endoreduplication in maize endosperm: Involvement of M-phase-promoting factor inhibition and induction of S-phase related kinases. Science. 1995, 269: 1262-1264.CrossRefPubMed
59.
60.
Zurück zum Zitat Price CM: Telomeres and telomerase: broad effect on cell growth. Curr Opin Genet Dev. 1999, 9: 218-224. 10.1016/S0959-437X(99)80032-X.CrossRefPubMed Price CM: Telomeres and telomerase: broad effect on cell growth. Curr Opin Genet Dev. 1999, 9: 218-224. 10.1016/S0959-437X(99)80032-X.CrossRefPubMed
61.
62.
Zurück zum Zitat Amon A: The spindle checkpoint. Curr Opin Genet Dev. 1999, 9: 67-75. 10.1016/S0959-437X(99)80010-0.CrossRef Amon A: The spindle checkpoint. Curr Opin Genet Dev. 1999, 9: 67-75. 10.1016/S0959-437X(99)80010-0.CrossRef
63.
Zurück zum Zitat Lanni JS, Jacks T: Characterization of the p53-dependant post-mitotic checkpoint following spindle disruption. Mol Cell Biol. 1998, 18: 1055-1064.PubMedCentralCrossRefPubMed Lanni JS, Jacks T: Characterization of the p53-dependant post-mitotic checkpoint following spindle disruption. Mol Cell Biol. 1998, 18: 1055-1064.PubMedCentralCrossRefPubMed
64.
Zurück zum Zitat Lilly MA, Spradling AC: The Drosophila endocycle is controlled by cyclin E and lacks a checkpoint ensuring S-phase completion. Genes Dev. 1996, 10: 2514-2526.CrossRefPubMed Lilly MA, Spradling AC: The Drosophila endocycle is controlled by cyclin E and lacks a checkpoint ensuring S-phase completion. Genes Dev. 1996, 10: 2514-2526.CrossRefPubMed
65.
66.
Zurück zum Zitat Merrit AJ, Terence DA, Potten CHS, Hickman JA: Apoptosis in small intestinal epithelia from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after irradiation. Oncogene. 1997, 14: 2759-2766. 10.1038/sj.onc.1201126.CrossRef Merrit AJ, Terence DA, Potten CHS, Hickman JA: Apoptosis in small intestinal epithelia from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after irradiation. Oncogene. 1997, 14: 2759-2766. 10.1038/sj.onc.1201126.CrossRef
67.
Zurück zum Zitat King RW, Deshaies RJ, Peters J-M, Kirschner MW: How proteolysis drives the cell cycle. Science. 1996, 274: 1652-1659. 10.1126/science.274.5293.1652.CrossRefPubMed King RW, Deshaies RJ, Peters J-M, Kirschner MW: How proteolysis drives the cell cycle. Science. 1996, 274: 1652-1659. 10.1126/science.274.5293.1652.CrossRefPubMed
68.
Zurück zum Zitat Wandel KH: Spatial relationships in the replication of chromosomal DNA. Genetics. 1965, 51: 915-929. Wandel KH: Spatial relationships in the replication of chromosomal DNA. Genetics. 1965, 51: 915-929.
69.
Zurück zum Zitat Schwarzacher HG, W Schnedl: Position of labelled chromatids in diplochromosomes of endo-reduplicated cells after uptake of tritiated thymidine. Nature. 1966, 209: 107-108.CrossRefPubMed Schwarzacher HG, W Schnedl: Position of labelled chromatids in diplochromosomes of endo-reduplicated cells after uptake of tritiated thymidine. Nature. 1966, 209: 107-108.CrossRefPubMed
70.
Zurück zum Zitat Henderson SA: Chromosome pairing, chiasmata and crossingover. In: Handbook of Molecular Cytology, Frontiers of Biology 15: North Holand publishers, Amsterdam, 2969. Ed Lima-de-Faria. 1969, 326-357. Henderson SA: Chromosome pairing, chiasmata and crossingover. In: Handbook of Molecular Cytology, Frontiers of Biology 15: North Holand publishers, Amsterdam, 2969. Ed Lima-de-Faria. 1969, 326-357.
71.
Zurück zum Zitat Inbar , Kupiec M: Homology search and choice of homologous partner during mitotic recombination. Mol Cell Biol. 1999, 19: 4134-4142.PubMedCentralPubMed Inbar , Kupiec M: Homology search and choice of homologous partner during mitotic recombination. Mol Cell Biol. 1999, 19: 4134-4142.PubMedCentralPubMed
72.
Zurück zum Zitat White MJD: Animal cytology and evolution. 3rd ed., Cambridge University press,. 1973 White MJD: Animal cytology and evolution. 3rd ed., Cambridge University press,. 1973
73.
Zurück zum Zitat Martinez-Perez E, Shaw P, Moore G: The PH1 locus is needed to ensure specific somatic and meiotic centromere association. Nature. 2001, 411: 204-207. 10.1038/35075597.CrossRefPubMed Martinez-Perez E, Shaw P, Moore G: The PH1 locus is needed to ensure specific somatic and meiotic centromere association. Nature. 2001, 411: 204-207. 10.1038/35075597.CrossRefPubMed
75.
Zurück zum Zitat Page AW, Orr-Weaver TL: Stopping and starting the meiotic cell cycle. Curr Opin Genet Dev. 1997, 7: 23-31. 10.1016/S0959-437X(97)80105-0.CrossRefPubMed Page AW, Orr-Weaver TL: Stopping and starting the meiotic cell cycle. Curr Opin Genet Dev. 1997, 7: 23-31. 10.1016/S0959-437X(97)80105-0.CrossRefPubMed
76.
Zurück zum Zitat Kondrashov AS: The asexual ploidy cycle and the origin of sex. Nature. 1994, 370: 213-216. 10.1038/370213a0.CrossRefPubMed Kondrashov AS: The asexual ploidy cycle and the origin of sex. Nature. 1994, 370: 213-216. 10.1038/370213a0.CrossRefPubMed
77.
78.
Zurück zum Zitat Kadyk LC, Hartwell LH: Sister chromatids are preferred over homologs as substrates for recombination repair in Saccharomyces cerevisae. Genetics. 1992, 132: 387-402.PubMedCentralPubMed Kadyk LC, Hartwell LH: Sister chromatids are preferred over homologs as substrates for recombination repair in Saccharomyces cerevisae. Genetics. 1992, 132: 387-402.PubMedCentralPubMed
Metadaten
Titel
Mitotic death: a mechanism of survival? A review
verfasst von
Jekaterina Erenpreisa
M S Cragg
Publikationsdatum
01.12.2001
Verlag
BioMed Central
Erschienen in
Cancer Cell International / Ausgabe 1/2001
Elektronische ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-1-1

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.