Skip to main content
Erschienen in: Molecular Cancer 1/2008

Open Access 01.12.2008 | Research

Radiation-induced caveolin-1 associated EGFR internalization is linked with nuclear EGFR transport and activation of DNA-PK

verfasst von: Klaus Dittmann, Claus Mayer, Rainer Kehlbach, H Peter Rodemann

Erschienen in: Molecular Cancer | Ausgabe 1/2008

Abstract

Background

To elucidate the role of src kinase in caveolin-1 driven internalization and nuclear transport of EGFR linked to regulation of DNA-repair in irradiated cells.

Results

Ionizing radiation resulted in src kinase stabilization, activation and subsequent src mediated caveolin-1 Y14- and EGFR Y845-phosphorylations. Both phosphorylations were radiation specific and could not be observed after treatment with EGF. Inhibition of EGFR by the antibody Erbitux resulted in a strong accumulation of caveolin/EGFR complexes within the cytoplasm, which could not be further increased by irradiation. Radiation-induced caveolin-1- and EGFR-phosphorylations were associated with nuclear EGFR transport and activation of DNA-PK, as detected by phosphorylation at T2609. Blockage of src activity by the specific inhibitor PP2, decreased nuclear transport of EGFR and inhibited caveolin-1- and DNA-PK-phosphorylation. Knockdown of src by specific siRNA blocked EGFR phosphorylation at Y845, phosphorylation of caveolin-1 at Y14 and abolished EGFR transport into the nucleus and phosphorylation of DNA-PK. Consequently, both knockdown of src by specific siRNA and also inhibition of src activity by PP2 resulted in an enhanced residual DNA-damage as quantified 24 h after irradiation and increased radiosensitivity.

Conclusion

Src kinase activation following irradiation triggered caveolin-1 dependent EGFR internalization into caveolae. Subsequently EGFR shuttled into the nucleus. As a consequence, inhibition of internalization and nuclear transport of EGFR blocked radiation-induced phosphorylation of DNA-PK and hampered repair of radiation-induced double strand breaks.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1476-4598-7-69) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

KD, CM and RK performed experiments and interpreted data; the authors contribution to this research are reflected in the order shown. HPR supervised all aspects of this research. KD and HPR prepared the manuscript. All authors read and approved the final manuscript.

Background

Many human tumor cells are characterized by over-expression of epidermal growth factor receptor (EGFR), a protein that promotes growth and aggressiveness and resistance of cancer cells to chemo- and radiotherapy [15]. EGFR can be phosphorylated in response to binding of its specific ligands (EGF, TGF alpha and Amphiregulin) [6, 7] and after exposure to unspecific stimuli like ionizing radiation [8], UV-radiation [9], hypoxia [10], hyperthermia [11], oxidative stress [12] and trans-activation by G-protein coupled receptors [13, 14]. Ligand-dependent as well as ligand-independent phosphorylation of EGFR results in receptor internalization [15] and intracellular signaling [4, 5, 1618]. Up to date internalization is assumed to be essential for receptor silencing and inactivation. Indeed, EGF treatment results in internalization of EGFR into coated pits followed by receptor degradation [19]. As reported by Khan [12], exposure to oxidative stress can lead to internalization of EGFR by caveolae and this process is associated with peri-nuclear accumulation of EGFR.
A characteristic constituent of caveolae is caveolin. In vertebrates the caveolin gene family has three members: CAV1, CAV2, and CAV3, coding for the proteins caveolin-1, caveolin-2 and caveolin-3, respectively. Caveolins form oligomers and associate with cholesterol and sphingolipids in certain areas of the cell membrane, leading to the formation of caveolae. Caveolae are involved in receptor independent endocytosis [20]. Furthermore Caveolin-1 is an integral transmembrane protein and an essential component in interactions of integrin receptors with cytoskeleton-associated and signaling molecules [21]. Compartmentation into caveolae prevents EGFR degradation and simultaneously enables intracellular EGFR signaling [12]. These findings suggest a new function of EGFR – depending on its intracellular localization -, which supplements its functions described so far. The idea of additional EGFR functions is further supported by the observation, that peri-nuclear EGFR can be transported into cell nucleus in response to irradiation [5]. As we and others have reported earlier [4, 2224], nuclear EGFR is linked with activation of DNA-PK and regulation of non-homologous end-joining DNA-repair resulting in increased radioresistance [5]. As reported recently [1], nuclear EGFR detection in tumors biopsies correlated strongly with treatment resistance and bad prognosis.
In the present study, we focused on the radiation-induced nuclear translocation process of EGFR via caveolae. Evidence is provided that inhibition of src activity blocks the caveolin-dependent EGFR internalization and nuclear EGFR transport, which results in impaired DNA-repair.

Materials and methods

Cell culture, transfection, irradiation and colony formation assay

Experiments were performed with the human bronchial carcinoma cell line, A549 (ATCC) and the human squamous carcinoma cell line FaDu (ATCC, origin head and neck cancer). Cells were irradiated with 200-kV photons (Gulmay RS 225, dose rate 1 Gy/min) at 37°C. The EGFR-inhibitory antibody Erbitux was purchased from Merck KG aA, Germany and was administered to the cells at a concentration of 30 nM 1 h before irradiation. PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine) was received from Sigma and cells were treated at a concentration of 100 nM PP2 dissolved in DMSO for 1 h. For silencing of src cells were treated with specific siRNA for 72 hours before irradiation. Control non-silencing siRNA (sense UUCUCCGAACGUGUCACGUtt; antisense ACGUGACACGU-UCGGAGAAtt) and siRNA targeting src (sense ACUCGCCUUCUUAGAGUUUtt; antisense AAACUCUAAGAAGGCGAGUtt) probes were purchased from MWG-Biotech AG. Both were transfected at a concentration of 30 nM using Lipofectamine 2000 transfection reagent according to manufacture's protocol (Invitrogen). For colony formation assay cells were grown to confluence, treated as indicated and irradiated. After 6 hours cells were typsinized and seeded at a density of 500 cells in 78 cm2 plates. After 10 days colonies were fixed, stained and counted. Radiation survival curves were plotted after normalizing for the cytotoxicity induced by siRNA treatment or vehicle alone. Clonogenic survival curves were constructed from at least three independent experiments.

Subcellular fractionation

Cytoplasmic and nuclear extracts were prepared according to the instructions of the NE-PER® nuclear and cytoplasmic extraction kit (Pierce, Rockford, IL, USA).

Western blot analysis and immune-precipitation

After irradiation, as described above, cells were lysed and proteins were resolved by SDS-PAGE. Western blotting was performed according to standard procedures [25]. The primary antibodies were diluted as follows: anti-EGFR (BD Transduction Laboratories, clone 13) 1:1000; anti EGFR pY845 (nanotools, clone 12A3) 1:1000; anti-EGFR pY992 (abcam, polyclonal) 1:500); anti-EGFR pY1173 (Cell signaling, clone 53A5) 1:1000; anti-phosphotyrosin (Santa Cruz, clone PY20) 1:500); anti-src (Santa Cruz, clone H-12) 1:1000; anti-src Y416 (cell signaling, polyclonal), 1:1000; anti-caveolin-1 (BD Transduction Laboratories, clone 2297) 1:1000; anti-caveolin pY14 (BD Transduction Laboratories, clone 56) 1:1000; anti-DNA-PK (PharMingen, clone 4F10C5) 1:500; anti-DNA-PK pT2609 (Rockland) 1:1000; anti-lamin B1 (Biozol, clone ZL-5) 1:1000. Quantification of binding was achieved by incubation with a secondary peroxidase-conjugated antibody with the ECL system (Amersham).
EGFR was immune-precipitated from cytoplasmic and nuclear protein fractions prepared from 20 × 106 cells with EGFR antibody clone 13 (BD Transduction Laboratories). Immune-precipitation was performed as described [26].

Quantification of γH2AX-foci formation

Cells cultured on CultureSlides (Becton Dickinson) were incubated with PP2 or src-siRNA, irradiated and fixed with 70% ice-cold ethanol 24 h after irradiation. For immune-fluorescence analysis cells were incubated with γ H2AX antibody (Upstate, clone JBW301)(1:500) at room temperature for 2 h. Positive foci were visualized by incubation with a 1:500 dilution of Alexa488-labelled goat anti-mouse serum (Molecular Probes) for 30 min. Coverslips were mounted in Vectashield/DAPI (Vector Laboratories). For each data point 300 to 500 nuclei were evaluated.

Results

Caveolin-1 associated EGFR internalization following irradiation was triggered by src kinase

Ionizing radiation induced protein stabilization of cytoplasmic src in A549 cells within 10 to 20 min (Fig. 1A). Stabilization of src was associated with phosphorylation at residue Y416, which indicates src activation [27]. Radiation-induced stabilization and activation of src led to complex formation with caveolin-1 and EGFR as shown by means of a src-specific immune-precipitation. Caveolin-1 associated EGFR was phosphorylated at residue Y845, which is a known src kinase specific phosphorylation site [28]. Moreover, increased src activity was associated with increased caveolin-1 and EGFR binding and phosphorylation at Y14 and respectively Y845 (Fig. 1A). EGF treatment also stabilized src protein and triggered a weaker Y416 phosphorylation. However, caveolin-1 and EGFR were not increased over the control in the src associated complex following EGF treatment (Fig. 1B). To elucidate the role of src-driven EGFR phosphorylation at residue Y845 following irradiation, we determined the phosphorylation status of additional tyrosine residues of EGFR after irradiation with 4 Gy (Fig. 1C). In general, tyrosine phoshorylation of EGFR was markedly increased. Especially phosphorylation at residues Y845 and Y1173 were strongly induced by irradiation, whereas the induction of phosphorylation at residue Y992 was weaker.

The antibody Erbitux stabilized the cytoplasmic caveolin-1/EGFR complex

In agreement with Fig. 1, immune-precipitation targeting caveolin-1 indicated also an increasing complex formation with EGFR following radiation exposure in A549 cells (Fig. 2). Pre-incubation (1 h) with the EGFR inhibitory antibody Erbitux, resulted in a pronounced stabilization of the caveolin-1/EGFR complex in non-irradiated cells. This complex formation could not be further increased by radiation exposure.

Src kinase inhibitor PP2 prevented radiation-induced EGFR transport into the nucleus and hampered radiation-induced activation of DNA-PK

As already shown earlier [5], ionizing radiation triggered EGFR transport into the nucleus and complex formation with DNA-PK (Fig. 3) [5]. Treatment with the src kinase inhibitor PP2 (100 nM for 1 h) was sufficient to block radiation-induced nuclear translocation of EGFR in A549 cells (Fig. 3). Interestingly, basal amount of nuclear EGFR protein was not affected by PP2 treatment. However, total nuclear caveolin-1 protein and its phosphorylated form was decreased by PP2 treatment. In addition, phosphorylation of DNA-PK at residue T2609, which is essential for non-homologous end-joining DNA-repair process [29], was inhibited in response to PP2 incubation, whereas the amount of total DNA-PK protein was unchanged.

Src siRNA decreased phosphorylation of cytoplasmic EGFR at Y845, reduced EGFR transport into nucleus and impaired phosphorylation of DNA-PK at T2609 after irradiation

Src protein expression was effectively knocked down in A549 and FaDu cells 72 h after transfection with src specific siRNA (Fig. 4A/C). Repression of src-protein markedly inhibited radiation-induced phosphorylation of cytoplasmic EGFR at Y845 and caveolin Y14 (Fig. 4A/C) after irradiation. In agreement with the data of Fig. 3, src knockdown also reduced radiation-induced EGFR shuttling into nucleus (Fig. 4B/D). Moreover, like PP2 inhibitor (see Fig. 3) src siRNA treatment led to reduced phosphorylation of DNA-PK at residue T2609 (Fig. 4B). It is noteworthy, that basal amount of nuclear EGFR protein was increased already by src siRNA treatment alone. However, this increase did not correspond to an activation/phosphorylation of DNA-PK at T2609.

Blocking of src signaling increased level of residual DNA-damage following irradiation

Irradiation of confluent A549 cells treated with control siRNA resulted in a radiation- dose dependent increase in residual γH2AX positive repair foci, which represent un-repaired DNA double strand breaks (Fig. 5A). Pre-treatment with src specific siRNA increased the number of radiation-induced residual γH2AX foci 24 h after irradiation, by a factor of 1.5 – 2 (Fig. 5A). Likewise pre-treatment of cells with the src kinase inhibitor PP2 for 1 h, resulted also in a significant increase in residual γH2AX foci (Fig. 5B). In both cases inhibition of DNA-damage repair was correlated with increased radiosensitivity, as determined by means of colony formation assay (Fig. 5C/D).

Discussion

It is generally accepted, that the epidermal growth factor receptor is localized within the cell membrane and will be internalized following activation and dimerization [30]. Indeed, such a scenario can be observed following EGF stimulation [30], which initiates proliferation associated signaling. However, the EGFR can be also activated by oxidative stress [12], radiation, [5, 8] and G-coupled receptors [13]. The molecular mechanisms of this ligand independent activation of EGFR are not fully understood. However, ligand independent stimulation of EGFR, e.g. by ionizing radiation [8], is clearly characterized by receptor internalization also. The data presented herein, give new insights into the mechanism of EGFR internalization process and the intra-nuclear function of EGFR following exposure to ionizing radiation.
Several pathways enable endocytic transport of cargo molecules from the surface of eukaryotic cells into cytoplasm [31]. The two best understood pathways, relevant for EGFR internalization, are the clathrin-coated pit [31] and the caveolin [32] driven internalization mechanisms. As shown by Khan et al. [12], the clathrin-coated pit associated EGFR internalization can be observed following treatment with EGF and results in a fast degradation and silencing of receptor function. In contrast, treatment with H2O2 leads to EGFR internalization into caveolae, which sort internalized EGFR into a per-nuclear localization associated with an ongoing receptor signaling [12]. In agreement with these data, we could show, that exposure to ionizing radiation induced a caveolin-1 associated EGFR internalization, whereas EGF treatment failed to trigger complex formation between src, EGFR and caveolin-1. Sorting into different compartments in response to different stimuli may explain signal discrimination at the level of activated EGFR. Like for H2O2 treatment [12], exposure to ionizing radiation also mediates the src driven phosphorylations of EGFR at Y845 and of caveolin-1 at Y14, which is needed for internalization of EGFR into caveolae [12]. In response to radiation not only EGFR phosphorylation at Y845 – which is Src dependent – was observed, but also phosphorylation at Y992 and Y1173 could be observed. Both are described as autophosphorylation sites [33]. This implicates that ionizing radiation activates not only src kinase, but also EGFR kinase and both kinases contribute to altered phosphorylation pattern of EGFR following radiation exposure. Caveolin-1 phosphorylation seems to be critical for caveolae formation [20]. On the contrary, Y845 phosphorylation of EGFR probably is rather essential in regulation of EGFR-kinase activity than in formation of coated pits or caveolae [15]. However, as shown by us and by Khan [12] src activity is crucial for radiation- and H2O2-induced formation of caveolae. Nevertheless, the molecular mechanism responsible for activation of src has to be resolved. From our data it appears, that radiation leads to a fast activation of src, which is documented by phosphorylation of src at residue Y416. This phosphorylation is described as an autophosphorylation [27]. As activating molecular switch several mechanisms are discussed: (i) oxidation associated structural modifications result in activation of src kinase [34], (ii) inhibition of a phosphatase leads to auto-activation of kinase [35], (iii) G-coupled receptor signaling mediates src activation [14]. Which of these potential mechanisms is relevant for radiation-induced src kinase activity is currently unclear and is subject of ongoing investigations.
As shown herein, treatment with Erbitux, which binds to the extracellular domain of EGFR, results in receptor internalization and formation of an intracellular complex of EGFR, caveolin-1 and Erbitux. Internalized EGFR however can not be activated by EGF and this observation may explain growth inhibitory effects of Erbitux.
Khan et al. observed a peri-nuclear EGFR accumulation due to caveolin-1 driven internalization after exposing cells to H2O2 [12]. We could also detect a peri-nuclear localization of the EGFR [5] in irradiated cells, which is accompanied by a nuclear EGFR shuttling [5]. Based on these results we hypothesized, that peri-nuclear EGFR serves as a pool for nuclear EGFR transport following irradiation. This hypothesis is supported by the observation that inhibition of src either by its specific inhibitor PP2 or by specific siRNA, prevents nuclear translocation of EGFR by blocking caveolin-1 driven EGFR internalization. It is noteworthy, that caveolin-1 driven EGFR internalization occurs predominantly following treatment of cells with genotoxic agents. This observation is in favor with the idea, that EGFR internalization and nuclear transport of EGFR are linked with DNA-repair processes [23, 36]. This assumption is supported by the observation, that caveolin-1 driven EGFR internalization is not observed after EGF treatment. As shown for irradiated cells nuclear EGFR is found in complex with DNA-PK, which is an essential compound of non-homologous end-joining DNA-repair [5]. As reported earlier [37], inhibition of EGFR nuclear transport by Erbitux, markedly impaired radiation associated activation of DNA-PK and increased cellular radiosensitivity [37]. In agreement with that, inhibition of src, which blocks EGFR internalization and subsequently nuclear transport after irradiation, abolished activation of DNA-PK, inhibited DNA-repair and increased radiosensitvity. Based on the data presented, it can be concluded, that the radiation-induced activation and nuclear translocation of EGFR is mediated through src kinase activity in a caveolin-1 dependent process. As blocking of these processes markedly effects repair of DNA-double strand breaks, this EGFR-coupled radiation response mechanism offers new interventional molecular targets for cancer therapy, especially by radiation therapy.

Conclusion

EGFR internalization by caveolin-1 is a stress specific cellular reaction, which is src kinase activity dependent. Linked with EGFR internalization nuclear transport can be observed following irradiation. Nuclear EGFR transport can be hampered by inhibition of src. Consequently, src inhibition is associated with inhibition of EGFR triggered activation of DNA-PK, which leads to an inhibition of DNA-repair and cell survival.

Acknowledgements

This work was supported by grants from Deutsche Forschungsgemeinschaft (DI 402/9-1) and Deutsche Krebshilfe (No. 106401).
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

KD, CM and RK performed experiments and interpreted data; the authors contribution to this research are reflected in the order shown. HPR supervised all aspects of this research. KD and HPR prepared the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Laimer K, Spizzo G, Gastl G, Obrist P, Brunhuber T, Fong D, Barbieri V, Jank S, Doppler W, Rasse M: High EGFR expression predicts poor prognosis in patients with squamous cell carcinoma of the oral cavity and oropharynx: a TMA-based immunohistochemical analysis. Oral Oncology. 2007, 43 (2): 193-198. 10.1016/j.oraloncology.2006.02.009CrossRefPubMed Laimer K, Spizzo G, Gastl G, Obrist P, Brunhuber T, Fong D, Barbieri V, Jank S, Doppler W, Rasse M: High EGFR expression predicts poor prognosis in patients with squamous cell carcinoma of the oral cavity and oropharynx: a TMA-based immunohistochemical analysis. Oral Oncology. 2007, 43 (2): 193-198. 10.1016/j.oraloncology.2006.02.009CrossRefPubMed
2.
Zurück zum Zitat Franovic A, Gunaratnam L, Smith K, Robert I, Patten D, Lee S: Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer. Proceedings of the National Academy of Sciences of the United States of America. 2007, 104 (32): 13092-13097. 10.1073/pnas.0702387104PubMedCentralCrossRefPubMed Franovic A, Gunaratnam L, Smith K, Robert I, Patten D, Lee S: Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer. Proceedings of the National Academy of Sciences of the United States of America. 2007, 104 (32): 13092-13097. 10.1073/pnas.0702387104PubMedCentralCrossRefPubMed
3.
Zurück zum Zitat Toulany M, Dittmann K, Kruger M, Baumann M, Rodemann HP: Radioresistance of K-Ras mutated human tumor cells is mediated through EGFR-dependent activation of PI3K-AKT pathway. Radiother Oncol. 2005, 76 (2): 143-150. 10.1016/j.radonc.2005.06.024CrossRefPubMed Toulany M, Dittmann K, Kruger M, Baumann M, Rodemann HP: Radioresistance of K-Ras mutated human tumor cells is mediated through EGFR-dependent activation of PI3K-AKT pathway. Radiother Oncol. 2005, 76 (2): 143-150. 10.1016/j.radonc.2005.06.024CrossRefPubMed
4.
Zurück zum Zitat Rodemann HP, Dittmann K, Toulany M: Radiation-induced EGFR-signaling and control of DNA-damage repair. Int J Radiat Biol. 2007, 83 (11): 781-791. 10.1080/09553000701769970CrossRefPubMed Rodemann HP, Dittmann K, Toulany M: Radiation-induced EGFR-signaling and control of DNA-damage repair. Int J Radiat Biol. 2007, 83 (11): 781-791. 10.1080/09553000701769970CrossRefPubMed
5.
Zurück zum Zitat Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Raju U, Milas L, Chen DJ, Kehlbach R, Rodemann HP: Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem. 2005, 280 (35): 31182-31189. 10.1074/jbc.M506591200CrossRefPubMed Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Raju U, Milas L, Chen DJ, Kehlbach R, Rodemann HP: Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem. 2005, 280 (35): 31182-31189. 10.1074/jbc.M506591200CrossRefPubMed
6.
Zurück zum Zitat Yotsumoto F, Yagi H, Suzuki SO, Oki E, Tsujioka H, Hachisuga T, Sonoda K, Kawarabayashi T, Mekada E, Miyamoto S: Validation of HB-EGF and amphiregulin as targets for human cancer therapy. Biochem Biophys Res Commun. 2008, 365 (3): 555-561. 10.1016/j.bbrc.2007.11.015CrossRefPubMed Yotsumoto F, Yagi H, Suzuki SO, Oki E, Tsujioka H, Hachisuga T, Sonoda K, Kawarabayashi T, Mekada E, Miyamoto S: Validation of HB-EGF and amphiregulin as targets for human cancer therapy. Biochem Biophys Res Commun. 2008, 365 (3): 555-561. 10.1016/j.bbrc.2007.11.015CrossRefPubMed
7.
Zurück zum Zitat Ferrer-Soler L, Vazquez-Martin A, Brunet J, Menendez JA, De Llorens R, Colomer R: An update of the mechanisms of resistance to EGFR-tyrosine kinase inhibitors in breast cancer: Gefitinib (Iressa) – induced changes in the expression and nucleo-cytoplasmic trafficking of HER-ligands (Review). Int J Mol Med. 2007, 20 (1): 3-10.PubMed Ferrer-Soler L, Vazquez-Martin A, Brunet J, Menendez JA, De Llorens R, Colomer R: An update of the mechanisms of resistance to EGFR-tyrosine kinase inhibitors in breast cancer: Gefitinib (Iressa) – induced changes in the expression and nucleo-cytoplasmic trafficking of HER-ligands (Review). Int J Mol Med. 2007, 20 (1): 3-10.PubMed
8.
Zurück zum Zitat Schmidt-Ullrich RK, Mikkelsen RB, Dent P, Todd DG, Valerie K, Kavanagh BD, Contessa JN, Rorrer WK, Chen PB: Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene. 1997, 15 (10): 1191-1197. 10.1038/sj.onc.1201275CrossRefPubMed Schmidt-Ullrich RK, Mikkelsen RB, Dent P, Todd DG, Valerie K, Kavanagh BD, Contessa JN, Rorrer WK, Chen PB: Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene. 1997, 15 (10): 1191-1197. 10.1038/sj.onc.1201275CrossRefPubMed
9.
Zurück zum Zitat Knebel A, Rahmsdorf HJ, Ullrich A, Herrlich P: Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. Embo J. 1996, 15 (19): 5314-5325.PubMedCentralPubMed Knebel A, Rahmsdorf HJ, Ullrich A, Herrlich P: Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. Embo J. 1996, 15 (19): 5314-5325.PubMedCentralPubMed
10.
Zurück zum Zitat Peng XH, Karna P, Cao Z, Jiang BH, Zhou M, Yang L: Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. J Biol Chem. 2006, 281 (36): 25903-25914. 10.1074/jbc.M603414200PubMedCentralCrossRefPubMed Peng XH, Karna P, Cao Z, Jiang BH, Zhou M, Yang L: Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. J Biol Chem. 2006, 281 (36): 25903-25914. 10.1074/jbc.M603414200PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Evdonin AL, Guzhova IV, Margulis BA, Medvedeva ND: Extracellular heat shock protein 70 mediates heat stress-induced epidermal growth factor receptor transactivation in A431 carcinoma cells. FEBS Lett. 2006, 580 (28–29): 6674-6678. 10.1016/j.febslet.2006.11.024CrossRefPubMed Evdonin AL, Guzhova IV, Margulis BA, Medvedeva ND: Extracellular heat shock protein 70 mediates heat stress-induced epidermal growth factor receptor transactivation in A431 carcinoma cells. FEBS Lett. 2006, 580 (28–29): 6674-6678. 10.1016/j.febslet.2006.11.024CrossRefPubMed
12.
Zurück zum Zitat Khan EM, Heidinger JM, Levy M, Lisanti MP, Ravid T, Goldkorn T: Epidermal growth factor receptor exposed to oxidative stress undergoes Src- and caveolin-1-dependent perinuclear trafficking. J Biol Chem. 2006, 281 (20): 14486-14493. 10.1074/jbc.M509332200CrossRefPubMed Khan EM, Heidinger JM, Levy M, Lisanti MP, Ravid T, Goldkorn T: Epidermal growth factor receptor exposed to oxidative stress undergoes Src- and caveolin-1-dependent perinuclear trafficking. J Biol Chem. 2006, 281 (20): 14486-14493. 10.1074/jbc.M509332200CrossRefPubMed
13.
Zurück zum Zitat Bhola NE, Grandis JR: Crosstalk between G-protein-coupled receptors and epidermal growth factor receptor in cancer. Front Biosci. 2008, 13: 1857-1865. 10.2741/2805CrossRefPubMed Bhola NE, Grandis JR: Crosstalk between G-protein-coupled receptors and epidermal growth factor receptor in cancer. Front Biosci. 2008, 13: 1857-1865. 10.2741/2805CrossRefPubMed
14.
Zurück zum Zitat Drube S, Stirnweiss J, Valkova C, Liebmann C: Ligand-independent and EGF receptor-supported transactivation: lessons from beta2-adrenergic receptor signalling. Cell Signal. 2006, 18 (10): 1633-1646. 10.1016/j.cellsig.2006.01.003CrossRefPubMed Drube S, Stirnweiss J, Valkova C, Liebmann C: Ligand-independent and EGF receptor-supported transactivation: lessons from beta2-adrenergic receptor signalling. Cell Signal. 2006, 18 (10): 1633-1646. 10.1016/j.cellsig.2006.01.003CrossRefPubMed
15.
Zurück zum Zitat Wang Q, Zhu F, Wang Z: Identification of EGF receptor C-terminal sequences 1005–1017 and di-leucine motif 1010LL1011 as essential in EGF receptor endocytosis. Exp Cell Res. 2007, 313 (15): 3349-3363. 10.1016/j.yexcr.2007.06.014CrossRefPubMed Wang Q, Zhu F, Wang Z: Identification of EGF receptor C-terminal sequences 1005–1017 and di-leucine motif 1010LL1011 as essential in EGF receptor endocytosis. Exp Cell Res. 2007, 313 (15): 3349-3363. 10.1016/j.yexcr.2007.06.014CrossRefPubMed
16.
Zurück zum Zitat Saito T, Okada S, Ohshima K, Yamada E, Sato M, Uehara Y, Shimizu H, Pessin JE, Mori M: Differential activation of epidermal growth factor (EGF) receptor downstream signaling pathways by betacellulin and EGF. Endocrinology. 2004, 145 (9): 4232-4243. 10.1210/en.2004-0401CrossRefPubMed Saito T, Okada S, Ohshima K, Yamada E, Sato M, Uehara Y, Shimizu H, Pessin JE, Mori M: Differential activation of epidermal growth factor (EGF) receptor downstream signaling pathways by betacellulin and EGF. Endocrinology. 2004, 145 (9): 4232-4243. 10.1210/en.2004-0401CrossRefPubMed
17.
Zurück zum Zitat Toulany M, Baumann M, Rodemann HP: Stimulated PI3K-AKT signaling mediated through ligand or radiation-induced EGFR depends indirectly, but not directly, on constitutive K-Ras activity. Mol Cancer Res. 2007, 5 (8): 863-872. 10.1158/1541-7786.MCR-06-0297CrossRefPubMed Toulany M, Baumann M, Rodemann HP: Stimulated PI3K-AKT signaling mediated through ligand or radiation-induced EGFR depends indirectly, but not directly, on constitutive K-Ras activity. Mol Cancer Res. 2007, 5 (8): 863-872. 10.1158/1541-7786.MCR-06-0297CrossRefPubMed
18.
Zurück zum Zitat Toulany M, Kasten-Pisula U, Brammer I, Wang S, Chen J, Dittmann K, Baumann M, Dikomey E, Rodemann HP: Blockage of epidermal growth factor receptor-phosphatidylinositol 3-kinase-AKT signaling increases radiosensitivity of K-RAS mutated human tumor cells in vitro by affecting DNA repair. Clin Cancer Res. 2006, 12 (13): 4119-4126. 10.1158/1078-0432.CCR-05-2454CrossRefPubMed Toulany M, Kasten-Pisula U, Brammer I, Wang S, Chen J, Dittmann K, Baumann M, Dikomey E, Rodemann HP: Blockage of epidermal growth factor receptor-phosphatidylinositol 3-kinase-AKT signaling increases radiosensitivity of K-RAS mutated human tumor cells in vitro by affecting DNA repair. Clin Cancer Res. 2006, 12 (13): 4119-4126. 10.1158/1078-0432.CCR-05-2454CrossRefPubMed
19.
Zurück zum Zitat Tanos B, Pendergast AM: Abl tyrosine kinase regulates endocytosis of the epidermal growth factor receptor. J Biol Chem. 2006, 281 (43): 32714-32723. 10.1074/jbc.M603126200CrossRefPubMed Tanos B, Pendergast AM: Abl tyrosine kinase regulates endocytosis of the epidermal growth factor receptor. J Biol Chem. 2006, 281 (43): 32714-32723. 10.1074/jbc.M603126200CrossRefPubMed
20.
Zurück zum Zitat Parton RG, Simons K: The multiple faces of caveolae. Nat Rev Mol Cell Biol. 2007, 8 (3): 185-194. 10.1038/nrm2122CrossRefPubMed Parton RG, Simons K: The multiple faces of caveolae. Nat Rev Mol Cell Biol. 2007, 8 (3): 185-194. 10.1038/nrm2122CrossRefPubMed
21.
Zurück zum Zitat Cordes N, Frick S, Brunner TB, Pilarsky C, Grutzmann R, Sipos B, Kloppel G, McKenna WG, Bernhard EJ: Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1. Oncogene. 2007, 26 (48): 6851-6862. 10.1038/sj.onc.1210498CrossRefPubMed Cordes N, Frick S, Brunner TB, Pilarsky C, Grutzmann R, Sipos B, Kloppel G, McKenna WG, Bernhard EJ: Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1. Oncogene. 2007, 26 (48): 6851-6862. 10.1038/sj.onc.1210498CrossRefPubMed
22.
Zurück zum Zitat Chen DJ, Nirodi CS: The epidermal growth factor receptor: a role in repair of radiation-induced DNA damage. Clin Cancer Res. 2007, 13 (22 Pt 1): 6555-6560. 10.1158/1078-0432.CCR-07-1610CrossRefPubMed Chen DJ, Nirodi CS: The epidermal growth factor receptor: a role in repair of radiation-induced DNA damage. Clin Cancer Res. 2007, 13 (22 Pt 1): 6555-6560. 10.1158/1078-0432.CCR-07-1610CrossRefPubMed
23.
Zurück zum Zitat Wanner G, Mayer C, Kehlbach R, Rodemann HP, Dittmann K: Activation of protein kinase Cepsilon stimulates DNA-repair via epidermal growth factor receptor nuclear accumulation. Radiother Oncol. 2008, 86 (3): 383-390. 10.1016/j.radonc.2007.10.041CrossRefPubMed Wanner G, Mayer C, Kehlbach R, Rodemann HP, Dittmann K: Activation of protein kinase Cepsilon stimulates DNA-repair via epidermal growth factor receptor nuclear accumulation. Radiother Oncol. 2008, 86 (3): 383-390. 10.1016/j.radonc.2007.10.041CrossRefPubMed
24.
Zurück zum Zitat Dittmann KH, Mayer C, Ohneseit PA, Raju U, Andratschke NH, Milas L, Rodemann HP: Celecoxib induced tumor cell radiosensitization by inhibiting radiation induced nuclear EGFR transport and DNA-repair: a COX-2 independent mechanism. Int J Radiat Oncol Biol Phys. 2008, 70 (1): 203-212.CrossRefPubMed Dittmann KH, Mayer C, Ohneseit PA, Raju U, Andratschke NH, Milas L, Rodemann HP: Celecoxib induced tumor cell radiosensitization by inhibiting radiation induced nuclear EGFR transport and DNA-repair: a COX-2 independent mechanism. Int J Radiat Oncol Biol Phys. 2008, 70 (1): 203-212.CrossRefPubMed
25.
Zurück zum Zitat Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227 (5259): 680-685. 10.1038/227680a0CrossRefPubMed Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227 (5259): 680-685. 10.1038/227680a0CrossRefPubMed
26.
Zurück zum Zitat Dittmann KH, Gueven N, Mayer C, Ohneseit P, Zell R, Begg AC, Rodemann HP: The presence of wild-type TP53 is necessary for the radioprotective effect of the Bowman-Birk proteinase inhibitor in normal fibroblasts. Radiat Res. 1998, 150 (6): 648-655. 10.2307/3579887CrossRefPubMed Dittmann KH, Gueven N, Mayer C, Ohneseit P, Zell R, Begg AC, Rodemann HP: The presence of wild-type TP53 is necessary for the radioprotective effect of the Bowman-Birk proteinase inhibitor in normal fibroblasts. Radiat Res. 1998, 150 (6): 648-655. 10.2307/3579887CrossRefPubMed
27.
Zurück zum Zitat Lu Y, Li X, Liang K, Luwor R, Siddik ZH, Mills GB, Mendelsohn J, Fan Z: Epidermal growth factor receptor (EGFR) ubiquitination as a mechanism of acquired resistance escaping treatment by the anti-EGFR monoclonal antibody cetuximab. Cancer Res. 2007, 67 (17): 8240-8247. 10.1158/0008-5472.CAN-07-0589CrossRefPubMed Lu Y, Li X, Liang K, Luwor R, Siddik ZH, Mills GB, Mendelsohn J, Fan Z: Epidermal growth factor receptor (EGFR) ubiquitination as a mechanism of acquired resistance escaping treatment by the anti-EGFR monoclonal antibody cetuximab. Cancer Res. 2007, 67 (17): 8240-8247. 10.1158/0008-5472.CAN-07-0589CrossRefPubMed
28.
Zurück zum Zitat Sato K, Sato A, Aoto M, Fukami Y: c-Src phosphorylates epidermal growth factor receptor on tyrosine 845. Biochem Biophys Res Commun. 1995, 215 (3): 1078-1087. 10.1006/bbrc.1995.2574CrossRefPubMed Sato K, Sato A, Aoto M, Fukami Y: c-Src phosphorylates epidermal growth factor receptor on tyrosine 845. Biochem Biophys Res Commun. 1995, 215 (3): 1078-1087. 10.1006/bbrc.1995.2574CrossRefPubMed
29.
Zurück zum Zitat Chen BP, Uematsu N, Kobayashi J, Lerenthal Y, Krempler A, Yajima H, Lobrich M, Shiloh Y, Chen DJ: Ataxia telangiectasia mutated (ATM) is essential for DNA-PKcs phosphorylations at the Thr-2609 cluster upon DNA double strand break. J Biol Chem. 2007, 282 (9): 6582-6587. 10.1074/jbc.M611605200CrossRefPubMed Chen BP, Uematsu N, Kobayashi J, Lerenthal Y, Krempler A, Yajima H, Lobrich M, Shiloh Y, Chen DJ: Ataxia telangiectasia mutated (ATM) is essential for DNA-PKcs phosphorylations at the Thr-2609 cluster upon DNA double strand break. J Biol Chem. 2007, 282 (9): 6582-6587. 10.1074/jbc.M611605200CrossRefPubMed
30.
Zurück zum Zitat Wang Q, Villeneuve G, Wang Z: Control of epidermal growth factor receptor endocytosis by receptor dimerization, rather than receptor kinase activation. EMBO Rep. 2005, 6 (10): 942-948. 10.1038/sj.embor.7400491PubMedCentralCrossRefPubMed Wang Q, Villeneuve G, Wang Z: Control of epidermal growth factor receptor endocytosis by receptor dimerization, rather than receptor kinase activation. EMBO Rep. 2005, 6 (10): 942-948. 10.1038/sj.embor.7400491PubMedCentralCrossRefPubMed
31.
Zurück zum Zitat Mills IG: The interplay between clathrin-coated vesicles and cell signalling. Semin Cell Dev Biol. 2007, 18 (4): 459-470. 10.1016/j.semcdb.2007.07.001CrossRefPubMed Mills IG: The interplay between clathrin-coated vesicles and cell signalling. Semin Cell Dev Biol. 2007, 18 (4): 459-470. 10.1016/j.semcdb.2007.07.001CrossRefPubMed
32.
Zurück zum Zitat Kirkham M, Parton RG: Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim Biophys Acta. 2005, 1746 (3): 349-363. 10.1016/j.bbamcr.2005.11.005CrossRefPubMed Kirkham M, Parton RG: Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim Biophys Acta. 2005, 1746 (3): 349-363. 10.1016/j.bbamcr.2005.11.005CrossRefPubMed
33.
Zurück zum Zitat Sturla LM, Amorino G, Alexander MS, Mikkelsen RB, Valerie K, Schmidt-Ullrichr RK: Requirement of Tyr-992 and Tyr-1173 in phosphorylation of the epidermal growth factor receptor by ionizing radiation and modulation by SHP2. Journal of Biological Chemistry. 2005, 280 (15): 14597-14604. 10.1074/jbc.M413287200CrossRefPubMed Sturla LM, Amorino G, Alexander MS, Mikkelsen RB, Valerie K, Schmidt-Ullrichr RK: Requirement of Tyr-992 and Tyr-1173 in phosphorylation of the epidermal growth factor receptor by ionizing radiation and modulation by SHP2. Journal of Biological Chemistry. 2005, 280 (15): 14597-14604. 10.1074/jbc.M413287200CrossRefPubMed
34.
Zurück zum Zitat Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P: Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol. 2005, 25 (15): 6391-6403. 10.1128/MCB.25.15.6391-6403.2005PubMedCentralCrossRefPubMed Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P: Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol. 2005, 25 (15): 6391-6403. 10.1128/MCB.25.15.6391-6403.2005PubMedCentralCrossRefPubMed
35.
Zurück zum Zitat Zhu S, Bjorge JD, Fujita DJ: PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation. Cancer Res. 2007, 67 (21): 10129-10137. 10.1158/0008-5472.CAN-06-4338CrossRefPubMed Zhu S, Bjorge JD, Fujita DJ: PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation. Cancer Res. 2007, 67 (21): 10129-10137. 10.1158/0008-5472.CAN-06-4338CrossRefPubMed
36.
Zurück zum Zitat Dittmann K, Mayer C, Wanner G, Kehlbach R, Rodemann HP: The radioprotector O-phospho-tyrosine stimulates DNA-repair via epidermal growth factor receptor- and DNA-dependent kinase phosphorylation. Radiother Oncol. 2007, 84 (3): 328-334. 10.1016/j.radonc.2007.07.006CrossRefPubMed Dittmann K, Mayer C, Wanner G, Kehlbach R, Rodemann HP: The radioprotector O-phospho-tyrosine stimulates DNA-repair via epidermal growth factor receptor- and DNA-dependent kinase phosphorylation. Radiother Oncol. 2007, 84 (3): 328-334. 10.1016/j.radonc.2007.07.006CrossRefPubMed
37.
Zurück zum Zitat Dittmann K, Mayer C, Rodemann HP: Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity. Radiother Oncol. 2005, 76 (2): 157-161. 10.1016/j.radonc.2005.06.022CrossRefPubMed Dittmann K, Mayer C, Rodemann HP: Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity. Radiother Oncol. 2005, 76 (2): 157-161. 10.1016/j.radonc.2005.06.022CrossRefPubMed
Metadaten
Titel
Radiation-induced caveolin-1 associated EGFR internalization is linked with nuclear EGFR transport and activation of DNA-PK
verfasst von
Klaus Dittmann
Claus Mayer
Rainer Kehlbach
H Peter Rodemann
Publikationsdatum
01.12.2008
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2008
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-7-69

Weitere Artikel der Ausgabe 1/2008

Molecular Cancer 1/2008 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.