Skip to main content
Erschienen in: Reproductive Biology and Endocrinology 1/2003

Open Access 01.12.2003 | Review

Role of gonadotropin-releasing hormone (GnRH) in ovarian cancer

verfasst von: Carsten Gründker, Günter Emons

Erschienen in: Reproductive Biology and Endocrinology | Ausgabe 1/2003

Abstract

The expression of GnRH (GnRH-I, LHRH) and its receptor as a part of an autocrine regulatory system of cell proliferation has been demonstrated in a number of human malignant tumors, including cancers of the ovary. The proliferation of human ovarian cancer cell lines is time- and dose-dependently reduced by GnRH and its superagonistic analogs. The classical GnRH receptor signal-transduction mechanisms, known to operate in the pituitary, are not involved in the mediation of antiproliferative effects of GnRH analogs in these cancer cells. The GnRH receptor rather interacts with the mitogenic signal transduction of growth-factor receptors and related oncogene products associated with tyrosine kinase activity via activation of a phosphotyrosine phosphatase resulting in downregulation of cancer cell proliferation. In addition GnRH activates nucleus factor κB (NFκB) and protects the cancer cells from apoptosis. Furthermore GnRH induces activation of the c-Jun N-terminal kinase/activator protein-1 (JNK/AP-1) pathway independent of the known AP-1 activators, protein kinase (PKC) or mitogen activated protein kinase (MAPK/ERK).
Recently it was shown that human ovarian cancer cells express a putative second GnRH receptor specific for GnRH type II (GnRH-II). The proliferation of these cells is dose- and time-dependently reduced by GnRH-II in a greater extent than by GnRH-I (GnRH, LHRH) superagonists. In previous studies we have demonstrated that in ovarian cancer cell lines except for the EFO-27 cell line GnRH-I antagonist Cetrorelix has comparable antiproliferative effects as GnRH-I agonists indicating that the dichotomy of GnRH-I agonists and antagonists might not apply to the GnRH-I system in cancer cells. After GnRH-I receptor knock down the antiproliferative effects of GnRH-I agonist Triptorelin were abrogated while the effects of GnRH-I antagonist Cetrorelix and GnRH-II were still existing. In addition, in the ovarian cancer cell line EFO-27 GnRH-I receptor but not putative GnRH-II receptor expression was found. These data suggest that in ovarian cancer cells the antiproliferative effects of GnRH-I antagonist Cetrorelix and GnRH-II are not mediated through the GnRH-I receptor.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1477-7827-1-65) contains supplementary material, which is available to authorized users.

Introduction

The hypothalamic decapeptide gonadotropin releasing hormone (GnRH, GnRH-I), also called luteinizing hormone releasing hormone (LHRH), plays a key role in the regulation of mammalian reproduction [13]. It is released from the hypothalamus in a pulsatile manner and stimulates the synthesis and release of luteinizing hormone (LH) and follicle stimulating hormone (FSH). In addition to this classic hypophysiotropic actions, GnRH functions as a modulator of the activity of diverse systems in the brain and many peripheral organs [for review see [4]]. An autocrine/paracrine function of GnRH has been suggested to exist, for instance, in the placenta, granulosa cells, myometrium, and lymphoid cells [for review see [4, 5]]. In addition, it is probable that such GnRH-I-based autocrine systems are present in a number of human malignant tumors including cancers of the ovary, endometrium, breast and prostate [for review see [4, 5]].

The GnRH-I system in human ovarian cancers

In earlier studies the expression of GnRH-I and its receptor (GnRH-I receptor) as well as direct antiproliferative effects of GnRH-I and its analogs have been demonstrated in a number of malignant human tumors, including cancers of the ovary [614]. Data available today suggest that approximately 80% of ovarian cancers express high-affinity GnRH-I receptors [4, 5, 15]. These findings suggested the presence of a local regulatory system based on GnRH-I. The same situation was found in endometrial, breast and prostate cancer cells [4, 5, 15, 16].
The in vitro proliferation of a variety of human tumor cell lines, including those from ovarian cancers can be inhibited by GnRH-I and its agonistic analogs in a dose- and time-dependent manner [4, 9, 11, 12, 1720]. In most human ovarian cancer cells except for the ovarian cancer cell line EFO-27 GnRH-I antagonists act like agonists indicating that the dichotomy of GnRH-I agonists and antagonists does not exist in tumor cells [5, 9]. Using human ovarian cancer cell line OV-1063 xenografted into nude mice, Yano et al. [12] demonstrated a significant inhibition of tumor growth by chronic treatment with the GnRH-I antagonist Cetrorelix but not with the GnRH-I agonist Triptorelin. As both GnRH-I analogs induced a comparable suppression of the pituitary-gonadal axis, the authors speculated that in vivo anti tumor effects of Cetrorelix were exerted directly on GnRH-I receptors in tumors [8]. The findings on direct anti tumor effects of GnRH-I analogs in ovarian and endometrial cancer reported by several other groups are completely or partly in agreement with the results described earlier [4, 8, 21, 22]. In contrast, other investigators failed to detect direct anti tumor effects of GnRH-I analogs in human ovarian and endometrial cancer cell lines or observed them only at extremely high GnRH-I analog concentrations [2325]. These discrepancies might be due to the fact that probably the majority of the cell lines used by these authors did not express high-affinity GnRH-I receptors [4, 26]. Alternatively, differences in culture or experimental conditions as well as in the types of GnRH-I analogs used might be responsible for the observed variance. In the case of prostate cancer, several groups reported direct antiproliferative effects of GnRH-I analogs in vitro and in animal in vivo models, which could be mediated through specific GnRH-I-binding sites [1, 2732].
The proliferation of human ovarian cancer cells was significantly increased after treatment with an antiserum to GnRH-I, suggesting that GnRH-I produced by human ovarian cancer cells acts as a negative autocrine regulator of proliferation [33]. In contrast, Arencibia and Schally [34] have recently reported that in ES-2 human ovarian cancer cells GnRH-I agonist Triptorelin at 10 ng/ml stimulated the proliferation in vitro after 48 h, but was inhibitory after 72 h and at concentrations of 1000 ng/ml. GnRH-I antagonist Cetrorelix inhibited growth of ES-2 cell line only at 1000 ng/ml. The incubation of ES-2 ovarian cancer cells in vitro with an GnRH-I antibody inhibited cell proliferation in a time and concentration-dependent manner. These results suggest that GnRH-I may function as an autocrine growth factor in this ovarian cancer cell line [34]. Differences between tumor cell lines e.g. variances in G-protein coupling and signaling might explain these discrepancies.

Signaling mechanisms mediating the direct anti-tumor effects of GnRH-I

During the last ten years, the signaling mechanisms mediating the antiproliferative effects of GnRH-I analogs in ovarian, endometrial and breast cancer cells have been elucidated. The signaling mechanism of GnRH-I receptor in human cancers is quite different from that in pituitary gonadotrophs, where GnRH-I receptors couple to G-protein αq and activate phospholipase C (PLC), protein kinase C (PKC), and adenylyl cyclase (AC) [reviewed in [4]]. Although we could clearly demonstrate the activation of PLC, PKC, and AC in these tumor cells by pharmacological stimuli [35], the signaling pathways induced by GnRH-I in pituitary gonadotrophs were not activated by GnRH-I agonist Triptorelin in ovarian, endometrial and breast cancer cell lines [35, 36]. We found, however, that after binding of its ligand, the GnRH-I receptor in these cancers couples to G-protein αi and activates a phosphotyrosine phosphatase (PTP) [3540] (Fig. 1A). This PTP dephosphorylates EGF receptors [36]. As a result, mitogenic signaling induced by EGF binding to its receptor is abrogated leading to a suppression of EGF-induced activation of mitogen-activated protein kinase (MAPK) [35], c-fos expression [41], and EGF-induced proliferation [35] (Fig. 1A). These findings are in accord with reports that GnRH-I analogs reduce expression of growth factor receptors and their mRNA [12, 42, 43] (Fig. 1B) and/or growth factor induced tyrosine kinase activity [35, 3739, 42, 4446]. The reason for the differences of the GnRH-I receptor signaling between pituitary gonadotrophs and tumor cells remains unclear, as we could not find mutations or splice variants in the tumor GnRH-I receptor which might explain this phenomenon.
Recently, it was speculated that induction of apoptosis might be involved in the antiproliferative activity of GnRH-I and its analogs [4749]. However, though we have tried to show induction of apoptosis by GnRH-I analogs, we have found it only in one (Ca-Ov-3) of nine (EFO-21, EFO-27, OVCAR-3, AN-3-CA, Ca-Ov-3, SK-OV-3) ovarian cancer cell lines [[50] and unpublished results]. In contrast, we found that GnRH-I agonist Triptorelin reduced apoptosis induced by the cytotoxic agent doxorubicin. Since Triptorelin-induced reduction of Doxorubicin-induced apoptosis was blocked by inhibition of nucleus factor kappa B (NFκB) translocation into the nucleus and Triptorelin was shown to induce NFκB activation (Fig. 1C), we concluded that GnRH-I has an antiapoptotic effect mediated through NFκB activation in these human ovarian cancer cells [50]. This possibility to protect ovarian cancer cells from programmed cell death is a new and important feature in GnRH-I signaling in ovarian tumors apart from the inhibitory interference with the mitogenic pathway.
Recently, it became evident that it is not only mitogenic signaling of growth factor receptors that is modulated by GnRH-I in human cancers. In human ovarian and endometrial cancer cells GnRH-I agonist Triptorelin stimulates the activity of activator protein-1 (AP-1) mediated through pertussis toxin-sensitive G-protein αi (Fig. 1D). In addition, Triptorelin activates JNK, known to activate AP-1 [51] (Fig. 1D). In earlier investigations we have shown that Triptorelin does not activate phospholipase C (PLC) and protein kinase C (PKC) in endometrial and ovarian cancer cells [35]. In addition, it has been demonstrated that Triptorelin inhibits growth factor-induced mitogen activated protein kinase (MAPK, ERK) activity [35]. Thus Triptorelin-induced activation of the JNK/AP-1 pathway in endometrial cancer cells is independent of the known AP-1 activators, PKC or MAPK (ERK) (Fig. 1D).
In ovarian and endometrial cancer cells GnRH-I analogs mediate antiproliferative actions via inhibition of growth factor-induced mitogenic signal transduction. GnRH-I agonist Triptorelin protects the cancer cells from apoptosis via activation of NFκB, and Triptorelin stimulates AP-1 and JNK activity. Recently Yamauchi et al. [52] found that JNK is involved in inhibition of cell proliferation induced by α1B-adrenergic receptor in human embryonic kidney cells. In a study in rats, c-jun mRNA depression and endometrial epithelial cell proliferation were suggested to be linked [53]. In UT-OC-3 ovarian cancer cells cytokines have inhibitory effects on cell proliferation and activate AP-1 and NFκB [54]. Since the antiproliferative GnRH-I agonist Triptorelin activates the JNK/c-jun pathway and JNK/c-jun was found to be involved in downregulation of cell proliferation in different systems, it seems reasonable to speculate that the JNK/c-jun pathway is involved in the antiproliferative actions of the GnRH agonist Triptorelin. In addition, we have shown that GnRH-I agonist Triptorelin induces JunD-DNA binding, resulting in reduced proliferation as indicated by increased G0/1 phase of cell cycle and decreased DNA synthesis (Fig. 1D). Since GnRH-I activates NFκB and protects ovarian cancer cells from Doxorubicin-induced apoptosis and JunD is shown to decrease cell cycle and cell proliferation, we propose that JunD activated by GnRH-I acts as a modulator of cell proliferation and cooperates with the anti-apoptotic and anti-mitogenic functions of GnRH-I [55].

GnRH-II and its receptor

In non-mammalian vertebrates it became evident that three structural variants of GnRH were present in individual species [56, 57]. A similar situation seems to exist in mammals. One of these GnRH variants is GnRH-II, which is totally conserved in structure in the evolution from fish to mammals [58, 59]. In human granulosa-luteal cells expression of GnRH-II was found [60]. In these cells GnRH-I agonists exerted a biphasic effect on GnRH-I receptor density, while GnRH-II agonists induced a downregulation of GnRH-I receptor expression and of GnRH-II itself [60]. Recently Millar et al. cloned a type II GnRH receptor from the marmoset monkey which is highly selective for GnRH-II [61]. At the same time Neill et al. cloned the GnRH-II receptor from the rhesus monkey [62]. Only 41% (marmoset GnRH-II receptor) and 39% (rhesus monkey GnRH-II receptor) identities with the GnRH-I receptor have been reported [61, 62]. In contrast to the GnRH-I receptor the GnRH-II receptor in the marmoset and rhesus monkey has a C-terminal, cytoplasmatic tail resulting in a more rapid internalization [61, 62].
Using RT-PCR and Southern blot analysis we could recently show that human ovarian and endometrial cancer cells express a putative second GnRH receptor specific for GnRH-II [63] (Fig. 1E). The proliferation of these cell lines was reduced in a dose- and time-dependent manner by native GnRH-II. These effects were significantly higher than the antiproliferative effects of equimolar doses of GnRH-I agonist Triptorelin [63]. In the GnRH-II receptor mRNA positive but GnRH-I receptor negative ovarian cancer cell line SK-OV-3 native GnRH-II but not GnRH-I agonist Triptorelin had antiproliferative effects [63]. In previous studies we have demonstrated that in ovarian cancer cell lines except for the EFO-27 cell line GnRH-I antagonist Cetrorelix has comparable antiproliferative effects as GnRH-I agonists indicating that the dichotomy of GnRH-I agonists and antagonists might not apply to the GnRH-I system in cancer cells [9] After GnRH-I receptor knock down in EFO-21 and OVCAR-3 human ovarian cancer cell lines the antiproliferative effects of GnRH-I agonist Triptorelin were abrogated while the effects of GnRH-I antagonist Cetrorelix and GnRH-II were still existing [unpublished results]. In addition, in the ovarian cancer cell line EFO-27 GnRH-I receptor but not putative GnRH-II receptor expression was found [unpublished results]. These data suggest that in ovarian and endometrial cancer cells the antiproliferative effects of GnRH-I antagonist Cetrorelix and GnRH-II are not mediated through the GnRH-I receptor. It is possible that these antiproliferative effects are mediated through a putative GnRH-II receptor. However, the human GnRH-II receptor is expressed as a variety of splice variants [64] and a functional human GnRH-II receptor transcript has not been found until now. Further investigations are required to determine whether these GnRH-II receptor splice variants translate to functional proteins.
Gonadotropin biosynthesis and secretion by GnRH-I can be mediated by activation of MAP kinases. Therefore, Millar et al. [61] assessed the capacity of both human GnRH-I receptor and marmoset GnRH-II receptor to activate the MAP kinases ERK2, JNK, and p38α in COS-7 cells transfected with either the human GnRH-I receptor or the marmoset GnRH-II receptor. At the GnRH-I receptor, GnRH-I was considerably more potent than GnRH-II in activating ERK2 whereas at the GnRH-II receptor, GnRH-II was markedly more potent than GnRH-I [61]. Neither GnRH-I receptor nor GnRH-II receptor stimulation resulted in activation of JNK [61]. Activation of p38α was detected on stimulation of GnRH-II receptor with GnRH-II but not with stimulation of GnRH-I receptor with GnRH-I [61]. These data suggest that there are distinct differences in the signal transduction by the two GnRH receptors. However, the signal transduction mechanisms mediating the antiproliferative activity of GnRH-II in human ovarian cancer cells are not known (Fig. 1E).
As the antiproliferative activity of native GnRH-II is significantly superior to that of the GnRH-I superagonists, superactive agonists of GnRH-II might become efficacious drugs for the therapy of human cancers. However, the more widely distributed expression pattern of GnRH-II receptor [61] could limit the effectiveness of GnRH-II agonists.

Acknowledgements

Our work was supported by the Deutsche Forschungsgemeinschaft (SFB 215-B10 and GR 1895/2-1), the PE Kempkes Foundation, Marburg, Germany, the Bundesministerium für Bildung und Forschung, the German-Israeli Foundation for Scientific Research and Development (I-684-176.2/2000), Ferring Pharmaceuticals, Copenhagen, Denmark, Asta Medica AG, Frankfurt, Germany.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Schally AV: Hypothalamic hormones from neuroendocrinology to cancer therapy. Anticancer Drugs. 1994, 5: 115-130.CrossRefPubMed Schally AV: Hypothalamic hormones from neuroendocrinology to cancer therapy. Anticancer Drugs. 1994, 5: 115-130.CrossRefPubMed
2.
Zurück zum Zitat Stojilkovic SS, Catt KJ: Expression and signal transduction pathways of gonadotropin-releasing hormone receptors. Recent Prog Horm Res. 1995, 30: 161-205. Stojilkovic SS, Catt KJ: Expression and signal transduction pathways of gonadotropin-releasing hormone receptors. Recent Prog Horm Res. 1995, 30: 161-205.
3.
Zurück zum Zitat Stanislaus D, Pinter JH, Janovick JA, Conn PM: Mechanisms mediating multiple physiological responses to gonadotropin-releasing hormone. Mol Cell Endocrinol. 1998, 144: 1-10. 10.1016/S0303-7207(98)00126-9.CrossRefPubMed Stanislaus D, Pinter JH, Janovick JA, Conn PM: Mechanisms mediating multiple physiological responses to gonadotropin-releasing hormone. Mol Cell Endocrinol. 1998, 144: 1-10. 10.1016/S0303-7207(98)00126-9.CrossRefPubMed
4.
Zurück zum Zitat Gründker C, Günthert AR, Westphalen S, Emons G: Biology of the GnRH system in human gynecological cancers. Eur J Endocrinol. 2002, 146: 1-14.CrossRefPubMed Gründker C, Günthert AR, Westphalen S, Emons G: Biology of the GnRH system in human gynecological cancers. Eur J Endocrinol. 2002, 146: 1-14.CrossRefPubMed
5.
Zurück zum Zitat Emons G, Ortmann O, Schulz KD, Schally AV: Growth-inhibitory actions of analogues of luteinizing hormone releasing hormone on tumor cells. Trends Endocrinol Metab. 1997, 8: 155-362.CrossRef Emons G, Ortmann O, Schulz KD, Schally AV: Growth-inhibitory actions of analogues of luteinizing hormone releasing hormone on tumor cells. Trends Endocrinol Metab. 1997, 8: 155-362.CrossRef
6.
Zurück zum Zitat Emons G, Pahwa GS, Brack C, Sturm R, Oberheuser F, Knuppen R: Gonadotropin releasing hormone binding sites in human epithelial ovarian carcinomata. Eur J Cancer Clin Oncol. 1989, 25: 215-221.CrossRefPubMed Emons G, Pahwa GS, Brack C, Sturm R, Oberheuser F, Knuppen R: Gonadotropin releasing hormone binding sites in human epithelial ovarian carcinomata. Eur J Cancer Clin Oncol. 1989, 25: 215-221.CrossRefPubMed
7.
Zurück zum Zitat Pahwa GS, Vollmer G, Knuppen R, Emons G: Photoaffinity labelling of gonadotropin releasing hormone binding sites in human epithelial ovarian carcinomata. Biochem Biophys Res Commun. 1989, 161: 1086-1092.CrossRefPubMed Pahwa GS, Vollmer G, Knuppen R, Emons G: Photoaffinity labelling of gonadotropin releasing hormone binding sites in human epithelial ovarian carcinomata. Biochem Biophys Res Commun. 1989, 161: 1086-1092.CrossRefPubMed
8.
Zurück zum Zitat Thompson MA, Adelson MD, Kaufman LM: Lupron retards proliferation of ovarian tumor cells cultured in serum-free medium. J Clin Endocrinol Metab. 1991, 72: 1036-1041.CrossRefPubMed Thompson MA, Adelson MD, Kaufman LM: Lupron retards proliferation of ovarian tumor cells cultured in serum-free medium. J Clin Endocrinol Metab. 1991, 72: 1036-1041.CrossRefPubMed
9.
Zurück zum Zitat Emons G, Ortmann O, Becker M, Irmer G, Springer B, Laun R, Hölzel F, Schulz KD, Schally AV: High affinity binding and direct antiproliferative effects of LHRH analogues in human ovarian cancer cell lines. Cancer Res. 1993, 54: 5439-5446. Emons G, Ortmann O, Becker M, Irmer G, Springer B, Laun R, Hölzel F, Schulz KD, Schally AV: High affinity binding and direct antiproliferative effects of LHRH analogues in human ovarian cancer cell lines. Cancer Res. 1993, 54: 5439-5446.
10.
Zurück zum Zitat Ohno T, Imai A, Furui T, Takahashi K, Tamaya T: Presence of gonadotropin-releasing hormone and his messenger ribunucleic acid in human ovarian epithelial carcinoma. Am J Obstet Gynecol. 1993, 169: 605-610.CrossRefPubMed Ohno T, Imai A, Furui T, Takahashi K, Tamaya T: Presence of gonadotropin-releasing hormone and his messenger ribunucleic acid in human ovarian epithelial carcinoma. Am J Obstet Gynecol. 1993, 169: 605-610.CrossRefPubMed
11.
Zurück zum Zitat Yano T, Pinski J, Radulovic S, Schally AV: Inhibition of human epithelial ovarian cancer cell growth in vitro by agonistic and antagonistic analogues of luteinizing hormone-releasing hormone. Proc Natl Acad Sci USA. 1994, 91: 1701-1704.PubMedCentralCrossRefPubMed Yano T, Pinski J, Radulovic S, Schally AV: Inhibition of human epithelial ovarian cancer cell growth in vitro by agonistic and antagonistic analogues of luteinizing hormone-releasing hormone. Proc Natl Acad Sci USA. 1994, 91: 1701-1704.PubMedCentralCrossRefPubMed
12.
Zurück zum Zitat Yano T, Pinski J, Halmos G, Szepeshazi K, Schally AV: Inhibition of growth of OV-1063 human epithelial ovarian cancer xenografts in nude mice by treatment with luteinizing hormone-releasing hormone antagonist SB-75. Proc Natl Acad Sci USA. 1994, 91: 7090-7094.PubMedCentralCrossRefPubMed Yano T, Pinski J, Halmos G, Szepeshazi K, Schally AV: Inhibition of growth of OV-1063 human epithelial ovarian cancer xenografts in nude mice by treatment with luteinizing hormone-releasing hormone antagonist SB-75. Proc Natl Acad Sci USA. 1994, 91: 7090-7094.PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Kakar SS, Grizzle WE, Neill JD: The nucleotide sequence of human GnRH receptors in breast and ovarian tumors are identical with that found in pituitary. Mol Cell Endocrinol. 1994, 106: 145-149. 10.1016/0303-7207(94)90196-1.CrossRefPubMed Kakar SS, Grizzle WE, Neill JD: The nucleotide sequence of human GnRH receptors in breast and ovarian tumors are identical with that found in pituitary. Mol Cell Endocrinol. 1994, 106: 145-149. 10.1016/0303-7207(94)90196-1.CrossRefPubMed
14.
Zurück zum Zitat Irmer G, Bürger C, Müller R, Ortmann O, Peter U, Kakar S, Neill JD, Schulz KD, Emons G: Expression of the messenger RNAs for luteinizing hormone-releasing hormone (LHRH) and its receptor in human ovarian epithelial carcinoma. Cancer Res. 1995, 55: 817-822.PubMed Irmer G, Bürger C, Müller R, Ortmann O, Peter U, Kakar S, Neill JD, Schulz KD, Emons G: Expression of the messenger RNAs for luteinizing hormone-releasing hormone (LHRH) and its receptor in human ovarian epithelial carcinoma. Cancer Res. 1995, 55: 817-822.PubMed
15.
Zurück zum Zitat Völker P, Gründker C, Schmidt O, Schulz KD, Emons G: Expression of receptors for luteinizing hormone-releasing hormone in human ovarian and endometrial cancers: frequency, autoregulation and correlation with direct antiproliferative activity of LHRH analogues. Am J Obstet Gynecol. 2002, 186: 171-179. 10.1067/mob.2002.119633.CrossRefPubMed Völker P, Gründker C, Schmidt O, Schulz KD, Emons G: Expression of receptors for luteinizing hormone-releasing hormone in human ovarian and endometrial cancers: frequency, autoregulation and correlation with direct antiproliferative activity of LHRH analogues. Am J Obstet Gynecol. 2002, 186: 171-179. 10.1067/mob.2002.119633.CrossRefPubMed
16.
Zurück zum Zitat Dondi D, Limonta P, Moretti RM, Marelli MM, Garattini E, Motta M: Antiproliferative effects of luteinizing hormone-releasing hormone (LHRH) agonists on human androgen-independent prostate cancer cell line DU 145: Evidence for an autocrine-inhibitory LHRH loop. Cancer Res. 1994, 54: 4091-4095.PubMed Dondi D, Limonta P, Moretti RM, Marelli MM, Garattini E, Motta M: Antiproliferative effects of luteinizing hormone-releasing hormone (LHRH) agonists on human androgen-independent prostate cancer cell line DU 145: Evidence for an autocrine-inhibitory LHRH loop. Cancer Res. 1994, 54: 4091-4095.PubMed
17.
Zurück zum Zitat Emons G, Schally AV: The use of luteinizing hormone-releasing hormone agonists and antagonists in gynecological cancers. Hum Reprod. 1994, 9: 1364-1379.PubMed Emons G, Schally AV: The use of luteinizing hormone-releasing hormone agonists and antagonists in gynecological cancers. Hum Reprod. 1994, 9: 1364-1379.PubMed
18.
Zurück zum Zitat Emons G, Schröder B, Ortmann O, Westphalen S, Schulz KD, Schally AV: High affinity binding and direct antiproliferative effects of luteinizing hormone-releasing hormone analogs in human endometrial cancer cell lines. J Clin Endocrinol Metab. 1993, 77: 1458-1464. 10.1210/jc.77.6.1458.PubMed Emons G, Schröder B, Ortmann O, Westphalen S, Schulz KD, Schally AV: High affinity binding and direct antiproliferative effects of luteinizing hormone-releasing hormone analogs in human endometrial cancer cell lines. J Clin Endocrinol Metab. 1993, 77: 1458-1464. 10.1210/jc.77.6.1458.PubMed
19.
Zurück zum Zitat Miller WR, Scott WN, Morris R, Fraser HM, Sharpe RM: Growth of human breast cancer cells inhibited by luteinizing hormone-releasing hormone agonist. Nature. 1985, 313: 231-233.CrossRefPubMed Miller WR, Scott WN, Morris R, Fraser HM, Sharpe RM: Growth of human breast cancer cells inhibited by luteinizing hormone-releasing hormone agonist. Nature. 1985, 313: 231-233.CrossRefPubMed
20.
Zurück zum Zitat Shibata S, Sato H, Ota H, Karube A, Takahashi O, Tanaka T: Involvement of annexin V in antiproliferative effects of gonadotropin-releasing hormone agonists on human endometrial cancer cell line. Gynecol Oncol. 1997, 66: 217-221. 10.1006/gyno.1997.4746.CrossRefPubMed Shibata S, Sato H, Ota H, Karube A, Takahashi O, Tanaka T: Involvement of annexin V in antiproliferative effects of gonadotropin-releasing hormone agonists on human endometrial cancer cell line. Gynecol Oncol. 1997, 66: 217-221. 10.1006/gyno.1997.4746.CrossRefPubMed
21.
Zurück zum Zitat Kleinman D, Douvdevani A, Schally AV, Levy J, Sharoni Y: Direct growth inhibition of human endometrial cancer cells by the gonadotropin-releasing hormone antagonist SB-75: role of apoptosis. Am J Obst Gynecol. 1994, 170: 96-102.CrossRef Kleinman D, Douvdevani A, Schally AV, Levy J, Sharoni Y: Direct growth inhibition of human endometrial cancer cells by the gonadotropin-releasing hormone antagonist SB-75: role of apoptosis. Am J Obst Gynecol. 1994, 170: 96-102.CrossRef
22.
Zurück zum Zitat Pályi I, Vincze B, Kálnay A, Turi G, Mezo I, Teplan I, Seprodi J, Pato J, Mora M: Effect of gonadotropin releasing hormone analogs and their conjugates on gonadotropin-releasing hormone receptor-positive human cancer cell lines. Cancer Detect Prev. 1996, 20: 146-152.PubMed Pályi I, Vincze B, Kálnay A, Turi G, Mezo I, Teplan I, Seprodi J, Pato J, Mora M: Effect of gonadotropin releasing hormone analogs and their conjugates on gonadotropin-releasing hormone receptor-positive human cancer cell lines. Cancer Detect Prev. 1996, 20: 146-152.PubMed
23.
Zurück zum Zitat Connor JP, Buller RE, Conn PM: Effects of GnRH analogs on six ovarian cancer cell lines in culture. Gynecol Oncol. 1994, 54: 3215-3221. Connor JP, Buller RE, Conn PM: Effects of GnRH analogs on six ovarian cancer cell lines in culture. Gynecol Oncol. 1994, 54: 3215-3221.
24.
Zurück zum Zitat Manetta A, Gamboa-Vujicic L, Paredes P, Emma D, Liao S, Leong L, Asch B, Schally AV: Inhibition of growth of human ovarian cancer in nude mice by luteinizing hormone-releasing hormone antagonist Cetrorelix (SB-75). Fertil Steril. 1995, 63: 282-287.PubMed Manetta A, Gamboa-Vujicic L, Paredes P, Emma D, Liao S, Leong L, Asch B, Schally AV: Inhibition of growth of human ovarian cancer in nude mice by luteinizing hormone-releasing hormone antagonist Cetrorelix (SB-75). Fertil Steril. 1995, 63: 282-287.PubMed
25.
Zurück zum Zitat Chatzaki E, Bax CMR, Eidne KA, Anderson L, Grudzinskas JG, Gallagher CJ: The expression of gonadotropin-releasing hormone and its receptor in endometrial cancer and its relevance as an autocrine growth factor. Cancer Res. 1996, 56: 2055-2065. Chatzaki E, Bax CMR, Eidne KA, Anderson L, Grudzinskas JG, Gallagher CJ: The expression of gonadotropin-releasing hormone and its receptor in endometrial cancer and its relevance as an autocrine growth factor. Cancer Res. 1996, 56: 2055-2065.
26.
Zurück zum Zitat Emons G, Ortmann O, Irmer G, Müller V, Schulz KD, Schally AV: Treatment of ovarian cancer with LHRH antagonists. Treatment with GnRH Analogs: Controversies and Perspectives. Edited by: Filicori M, Flamigni C. 1996, Carnforth: Parthenon Publishing, 165-172. Emons G, Ortmann O, Irmer G, Müller V, Schulz KD, Schally AV: Treatment of ovarian cancer with LHRH antagonists. Treatment with GnRH Analogs: Controversies and Perspectives. Edited by: Filicori M, Flamigni C. 1996, Carnforth: Parthenon Publishing, 165-172.
27.
Zurück zum Zitat Loop SM, Gorder CA, Lewis SM, Saiers JH, Drivdahl RH, Ostenson RC: Growth inhibition of human prostatic cancer cells by an agonist of gonadotropin-releasing hormone. Prostate. 1995, 26: 179-188.CrossRefPubMed Loop SM, Gorder CA, Lewis SM, Saiers JH, Drivdahl RH, Ostenson RC: Growth inhibition of human prostatic cancer cells by an agonist of gonadotropin-releasing hormone. Prostate. 1995, 26: 179-188.CrossRefPubMed
28.
Zurück zum Zitat Motta M, Dondi D, Moretti M, Montagnani-Marelli M, Pimpinelli F, Maggi R, Limonta P: Role of growth factors, steroid and peptide hormones in the regulation of human prostatic tumor growth. J Steroid Biochem Mol Biol. 1996, 56: 107-111. 10.1016/0960-0760(95)00240-5.CrossRefPubMed Motta M, Dondi D, Moretti M, Montagnani-Marelli M, Pimpinelli F, Maggi R, Limonta P: Role of growth factors, steroid and peptide hormones in the regulation of human prostatic tumor growth. J Steroid Biochem Mol Biol. 1996, 56: 107-111. 10.1016/0960-0760(95)00240-5.CrossRefPubMed
29.
Zurück zum Zitat Jungwirth A, Galvan G, Pinski J, Halmos G, Szepeshazi K, Cai RZ, Groot K, Schally AV: Luteinizing hormone releasing hormone antagonist Cetrorelix (SB-75) and bombesin antagonist RC-3940-II inhibit the growth of androgen-independent PC-3 prostate cancer in nude mice. Prostate. 1997, 32: 164-172. 10.1002/(SICI)1097-0045(19970801)32:3<164::AID-PROS2>3.3.CO;2-Z.CrossRefPubMed Jungwirth A, Galvan G, Pinski J, Halmos G, Szepeshazi K, Cai RZ, Groot K, Schally AV: Luteinizing hormone releasing hormone antagonist Cetrorelix (SB-75) and bombesin antagonist RC-3940-II inhibit the growth of androgen-independent PC-3 prostate cancer in nude mice. Prostate. 1997, 32: 164-172. 10.1002/(SICI)1097-0045(19970801)32:3<164::AID-PROS2>3.3.CO;2-Z.CrossRefPubMed
30.
Zurück zum Zitat Jungwirth A, Pinski J, Galvan G, Halmos G, Szepeshazi K, Cai RZ, Groot K, Vadillo-Buenfil M, Schally AV: Inhibition of growth of androgen-independent DU-145 prostate cancer in vivo by luteinizing hormone-releasing hormone antagonist Cetrorelix and bombesin antagonists RC-3940-II and RC-3950-II. Eur J Cancer. 1997, 33: 1141-1148. 10.1016/S0959-8049(97)00072-5.CrossRefPubMed Jungwirth A, Pinski J, Galvan G, Halmos G, Szepeshazi K, Cai RZ, Groot K, Vadillo-Buenfil M, Schally AV: Inhibition of growth of androgen-independent DU-145 prostate cancer in vivo by luteinizing hormone-releasing hormone antagonist Cetrorelix and bombesin antagonists RC-3940-II and RC-3950-II. Eur J Cancer. 1997, 33: 1141-1148. 10.1016/S0959-8049(97)00072-5.CrossRefPubMed
31.
Zurück zum Zitat Montagnani-Marelli M, Moretti RM, Dondi D, Limonta P, Motta M: Effects of LHRH agonists on the growth of human prostatic tumor cells: "in vitro" and "in vivo" studies. Arch Ital Urol Androl. 1997, 69: 257-263.PubMed Montagnani-Marelli M, Moretti RM, Dondi D, Limonta P, Motta M: Effects of LHRH agonists on the growth of human prostatic tumor cells: "in vitro" and "in vivo" studies. Arch Ital Urol Androl. 1997, 69: 257-263.PubMed
32.
Zurück zum Zitat Qayum A, Gullick W, Clayton RC, Sikora K, Waxman J: The effects of gonadotropin-releasing hormone analogues in prostate cancer are mediated through specific tumor receptors. Br J Cancer. 1990, 62: 96-99.PubMedCentralCrossRefPubMed Qayum A, Gullick W, Clayton RC, Sikora K, Waxman J: The effects of gonadotropin-releasing hormone analogues in prostate cancer are mediated through specific tumor receptors. Br J Cancer. 1990, 62: 96-99.PubMedCentralCrossRefPubMed
33.
Zurück zum Zitat Emons G, Weiβ S, Ortmann O, Gründker C, Schulz KD: Luteinizing hormone-releasing hormone (LHRH) might act as a negative autocrine regulator of proliferation of human ovarian cancer. Eur J Endocrinol. 2000, 142: 665-670.CrossRefPubMed Emons G, Weiβ S, Ortmann O, Gründker C, Schulz KD: Luteinizing hormone-releasing hormone (LHRH) might act as a negative autocrine regulator of proliferation of human ovarian cancer. Eur J Endocrinol. 2000, 142: 665-670.CrossRefPubMed
34.
Zurück zum Zitat Arencibia JM, Schally AV: Luteinizing hormone-releasing hormone as an autocrine growth factor in ES-2 ovarian cancer cell line. Int J Oncol. 2000, 16: 1009-1013.PubMed Arencibia JM, Schally AV: Luteinizing hormone-releasing hormone as an autocrine growth factor in ES-2 ovarian cancer cell line. Int J Oncol. 2000, 16: 1009-1013.PubMed
35.
Zurück zum Zitat Emons G, Müller V, Ortmann O, Grossmann G, Trautner U, von Stuckrad B, Schulz KD, Schally AV: Luteinizing hormone-releasing hormone agonist triptorelin antagonizes signal transduction and mitogenic activity of epidermal growth factor in human ovarian and endometrial cancer cell lines. Int J Oncol. 1996, 9: 1129-1137.PubMed Emons G, Müller V, Ortmann O, Grossmann G, Trautner U, von Stuckrad B, Schulz KD, Schally AV: Luteinizing hormone-releasing hormone agonist triptorelin antagonizes signal transduction and mitogenic activity of epidermal growth factor in human ovarian and endometrial cancer cell lines. Int J Oncol. 1996, 9: 1129-1137.PubMed
36.
Zurück zum Zitat Gründker C, Völker P, Günthert AR, Emons G: Antiproliferative signaling of LHRH in human endometrial and ovarian cancer cells through G-protein αi-mediated activation of phosphotyrosine phosphatase. Endocrinology. 2001, 142: 2369-2380. 10.1210/en.142.6.2369.PubMed Gründker C, Völker P, Günthert AR, Emons G: Antiproliferative signaling of LHRH in human endometrial and ovarian cancer cells through G-protein αi-mediated activation of phosphotyrosine phosphatase. Endocrinology. 2001, 142: 2369-2380. 10.1210/en.142.6.2369.PubMed
37.
Zurück zum Zitat Lee MT, Liebow C, Kramer AR, Schally AV: Effects of epidermal growth factor and analogues of luteinizing hormone-releasing hormone and somatostatin on phosphorylation of tyrosine residues of specific substrates in various tumors. Proc Natl Acad Sci USA. 1991, 88: 1656-1660.PubMedCentralCrossRefPubMed Lee MT, Liebow C, Kramer AR, Schally AV: Effects of epidermal growth factor and analogues of luteinizing hormone-releasing hormone and somatostatin on phosphorylation of tyrosine residues of specific substrates in various tumors. Proc Natl Acad Sci USA. 1991, 88: 1656-1660.PubMedCentralCrossRefPubMed
38.
Zurück zum Zitat Furui T, Imai A, Takagi H, Horibe S, Fuseya T, Tamaya T: Phosphotyrosine phosphatase activity in membranes from endometrial carcinoma. Oncology Reports. 1995, 2: 1055-1057.PubMed Furui T, Imai A, Takagi H, Horibe S, Fuseya T, Tamaya T: Phosphotyrosine phosphatase activity in membranes from endometrial carcinoma. Oncology Reports. 1995, 2: 1055-1057.PubMed
39.
Zurück zum Zitat Imai A, Takagi H, Furui T, Horibe S, Fuseya T, Tamaya T: Evidence for coupling of phosphotyrosine phosphatase to gonadotropin-releasing hormone receptor in ovarian carcinoma membrane. Cancer. 1996, 77: 132-137. 10.1002/(SICI)1097-0142(19960101)77:1<132::AID-CNCR22>3.0.CO;2-5.CrossRefPubMed Imai A, Takagi H, Furui T, Horibe S, Fuseya T, Tamaya T: Evidence for coupling of phosphotyrosine phosphatase to gonadotropin-releasing hormone receptor in ovarian carcinoma membrane. Cancer. 1996, 77: 132-137. 10.1002/(SICI)1097-0142(19960101)77:1<132::AID-CNCR22>3.0.CO;2-5.CrossRefPubMed
40.
Zurück zum Zitat Imai A, Takagi H, Horibe S, Fuseya T, Tamaya T: Coupling of gonadotropin releasing hormone receptor to Gi protein in human reproductive tract tumors. J Clin Endocrinol Metab. 1996, 81: 3249-3253. 10.1210/jc.81.9.3249.PubMed Imai A, Takagi H, Horibe S, Fuseya T, Tamaya T: Coupling of gonadotropin releasing hormone receptor to Gi protein in human reproductive tract tumors. J Clin Endocrinol Metab. 1996, 81: 3249-3253. 10.1210/jc.81.9.3249.PubMed
41.
Zurück zum Zitat Gründker C, Völker P, Schulz KD, Emons G: Luteinizing Hormone-releasing Hormone (LHRH) Agonist Triptorelin and Antagonist Cetrorelix inhibit EGF-induced c-fos Expression in Human Gynecological Cancers. Gynecol Oncol. 2000, 78: 194-202. 10.1006/gyno.2000.5863.CrossRefPubMed Gründker C, Völker P, Schulz KD, Emons G: Luteinizing Hormone-releasing Hormone (LHRH) Agonist Triptorelin and Antagonist Cetrorelix inhibit EGF-induced c-fos Expression in Human Gynecological Cancers. Gynecol Oncol. 2000, 78: 194-202. 10.1006/gyno.2000.5863.CrossRefPubMed
42.
Zurück zum Zitat Moretti RM, Montagnani-Marelli M, Dondi D, Poletti A, Martini L, Motta M, Limonta P: Luteinizing hormone-releasing hormone agonists interfere with the stimulatory actions of epidermal growth factor in human prostatic cancer cell lines, LNCaP and DU 145. J Clin Endocrinol Metab. 1996, 81: 3930-3937. 10.1210/jc.81.11.3930.PubMed Moretti RM, Montagnani-Marelli M, Dondi D, Poletti A, Martini L, Motta M, Limonta P: Luteinizing hormone-releasing hormone agonists interfere with the stimulatory actions of epidermal growth factor in human prostatic cancer cell lines, LNCaP and DU 145. J Clin Endocrinol Metab. 1996, 81: 3930-3937. 10.1210/jc.81.11.3930.PubMed
43.
Zurück zum Zitat Shirahige Y, Cook C, Pinski J, Halmos G, Nair R, Schally AV: Treatment with luteinizing hormone-releasing hormone antagonist SB-75 decreases levels of epidermal growth factor receptor and its mRNA in OV-1063 human epithelial ovarian cancer xenografts in nude mice. Int J Oncol. 1994, 5: 1031-1035.PubMed Shirahige Y, Cook C, Pinski J, Halmos G, Nair R, Schally AV: Treatment with luteinizing hormone-releasing hormone antagonist SB-75 decreases levels of epidermal growth factor receptor and its mRNA in OV-1063 human epithelial ovarian cancer xenografts in nude mice. Int J Oncol. 1994, 5: 1031-1035.PubMed
44.
Zurück zum Zitat Kéri G, Balogh A, Szöke B, Téplan J, Csika O: Gonadotropin-releasing hormone analogues inhibit cell proliferation and activate signal transduction pathways in MDA-MB-231 human breast cancer cell lines. Tumour Biol. 1991, 12: 61-67.CrossRefPubMed Kéri G, Balogh A, Szöke B, Téplan J, Csika O: Gonadotropin-releasing hormone analogues inhibit cell proliferation and activate signal transduction pathways in MDA-MB-231 human breast cancer cell lines. Tumour Biol. 1991, 12: 61-67.CrossRefPubMed
45.
Zurück zum Zitat Liebow C, Lee MT, Kramer AR, Schally AV: Regulation of luteinizing hormone-releasing hormone receptor binding by heterologous receptor-stimulated tyrosine phosphorylation. Proc Natl Acad Sci USA. 1991, 88: 2244-2248.PubMedCentralCrossRefPubMed Liebow C, Lee MT, Kramer AR, Schally AV: Regulation of luteinizing hormone-releasing hormone receptor binding by heterologous receptor-stimulated tyrosine phosphorylation. Proc Natl Acad Sci USA. 1991, 88: 2244-2248.PubMedCentralCrossRefPubMed
46.
Zurück zum Zitat Hershkovitz E, Marbach M, Bosin M, Levy J, Roberts C, Le Roith D, Schally AV, Sharoni Y: Luteinizing hormone-releasing hormone antagonists interfere with autocrine and paracrine growth stimulation of MCF-7 mammary cancer cells by insulin like growth factors. J Clin Endocrinol Metab. 1993, 77: 963-968. 10.1210/jc.77.4.963.PubMed Hershkovitz E, Marbach M, Bosin M, Levy J, Roberts C, Le Roith D, Schally AV, Sharoni Y: Luteinizing hormone-releasing hormone antagonists interfere with autocrine and paracrine growth stimulation of MCF-7 mammary cancer cells by insulin like growth factors. J Clin Endocrinol Metab. 1993, 77: 963-968. 10.1210/jc.77.4.963.PubMed
47.
Zurück zum Zitat Imai A, Horibe S, Takagi A, Ohno T, Tamaya T: Frequent expression of Fas in gonadotropin-releasing hormone receptor-bearing tumors. Eur J Obstet Gynecol Reprod Biol. 1997, 74: 73-78. 10.1016/S0301-2115(97)02750-4.CrossRefPubMed Imai A, Horibe S, Takagi A, Ohno T, Tamaya T: Frequent expression of Fas in gonadotropin-releasing hormone receptor-bearing tumors. Eur J Obstet Gynecol Reprod Biol. 1997, 74: 73-78. 10.1016/S0301-2115(97)02750-4.CrossRefPubMed
48.
Zurück zum Zitat Imai A, Takagi A, Horibe S, Takagi H, Tamaya T: Evidence for tight coupling of gonadotropin-releasing hormone receptor to stimulate Fas ligand expression in reproductive tumors: possible mechanism for hormonal control of apoptotic cell death. J Clin Endocrinol Metab. 1998, 83: 127-431. Imai A, Takagi A, Horibe S, Takagi H, Tamaya T: Evidence for tight coupling of gonadotropin-releasing hormone receptor to stimulate Fas ligand expression in reproductive tumors: possible mechanism for hormonal control of apoptotic cell death. J Clin Endocrinol Metab. 1998, 83: 127-431.
49.
Zurück zum Zitat Imai A, Takagi A, Horibe S, Takagi H, Tamaya T: Fas and Fas-ligand system may mediate antiproliferative activity of gonadotropin-releasing hormone receptor in endometrial cancer cells. Int J Oncol. 1998, 13: 97-100.PubMed Imai A, Takagi A, Horibe S, Takagi H, Tamaya T: Fas and Fas-ligand system may mediate antiproliferative activity of gonadotropin-releasing hormone receptor in endometrial cancer cells. Int J Oncol. 1998, 13: 97-100.PubMed
50.
Zurück zum Zitat Gründker C, Schulz K, Günthert AR, Emons G: Luteinizing hormone-releasing hormone induces nuclear factor kappaB-activation and inhibits apoptosis in ovarian cancer cells. J Clin Endocrinol Metab. 2000, 85: 3815-3820. 10.1210/jc.85.10.3815.PubMed Gründker C, Schulz K, Günthert AR, Emons G: Luteinizing hormone-releasing hormone induces nuclear factor kappaB-activation and inhibits apoptosis in ovarian cancer cells. J Clin Endocrinol Metab. 2000, 85: 3815-3820. 10.1210/jc.85.10.3815.PubMed
51.
Zurück zum Zitat Gründker C, Schlotawa L, Viereck V, Emons G: Protein kinase C (PKC)-independent stimulation of activator protein-1 (AP-1) and c-Jun N-terminal kinase (JNK) activity in human endometrial cancer cells by luteinizing hormone-releasing hormone (LHRH) agonist Triptorelin. Eur J Endocrinol. 2001, 145: 651-658.CrossRefPubMed Gründker C, Schlotawa L, Viereck V, Emons G: Protein kinase C (PKC)-independent stimulation of activator protein-1 (AP-1) and c-Jun N-terminal kinase (JNK) activity in human endometrial cancer cells by luteinizing hormone-releasing hormone (LHRH) agonist Triptorelin. Eur J Endocrinol. 2001, 145: 651-658.CrossRefPubMed
52.
Zurück zum Zitat Yamauchi J, Itoh H, Shinoura H, Miyamoto Y, Hirasawa A, Kaziro Y, Tsujimoto G: Involvement of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase in α1B-adrenergic receptor/Gαq-induced inhibition of cell proliferation. Biochem Biophys Res Commun. 2001, 281: 1019-1023. 10.1006/bbrc.2001.4472.CrossRefPubMed Yamauchi J, Itoh H, Shinoura H, Miyamoto Y, Hirasawa A, Kaziro Y, Tsujimoto G: Involvement of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase in α1B-adrenergic receptor/Gαq-induced inhibition of cell proliferation. Biochem Biophys Res Commun. 2001, 281: 1019-1023. 10.1006/bbrc.2001.4472.CrossRefPubMed
53.
Zurück zum Zitat Bigsby RM, Li A: Differentially regulated immediate early genes in the rat uterus. Endocrinology. 1994, 134: 1820-1826. 10.1210/en.134.4.1820.PubMed Bigsby RM, Li A: Differentially regulated immediate early genes in the rat uterus. Endocrinology. 1994, 134: 1820-1826. 10.1210/en.134.4.1820.PubMed
54.
Zurück zum Zitat Seppänen M, Lin L, Punnonen J, Grénman S, Punnonen R, Vihko K: Regulation of UT-OC-3 ovarian carcinoma cells by cytokines: inhibitory effects on cell proliferation and activation of transcription factors AP-1 and NF-kappaB. Eur J Endocrinol. 2000, 142: 393-401.CrossRefPubMed Seppänen M, Lin L, Punnonen J, Grénman S, Punnonen R, Vihko K: Regulation of UT-OC-3 ovarian carcinoma cells by cytokines: inhibitory effects on cell proliferation and activation of transcription factors AP-1 and NF-kappaB. Eur J Endocrinol. 2000, 142: 393-401.CrossRefPubMed
55.
Zurück zum Zitat Günthert AR, Gründker C, Hollmann K, Emons G: Luteinizing hormone-releasing hormone induces JunD-DNA binding and extends cell cycle in human ovarian cancer cells. Biochem Biophys Res Commun. 2002, 294: 11-15. 10.1016/S0006-291X(02)00427-8.CrossRefPubMed Günthert AR, Gründker C, Hollmann K, Emons G: Luteinizing hormone-releasing hormone induces JunD-DNA binding and extends cell cycle in human ovarian cancer cells. Biochem Biophys Res Commun. 2002, 294: 11-15. 10.1016/S0006-291X(02)00427-8.CrossRefPubMed
56.
Zurück zum Zitat Miyamoto K, Hasegawa Y, Nomura M, Igarashi M, Kangawa K, Matsuo H: Identification of the second gonadotropin-releasing hormone in chicken hypothalamus: evidence that gonadotropin secretion is probably controlled by two distinct gonadotropin-releasing hormones in avian species. Proc Natl Acad Sci USA. 1984, 81: 3874-3878.PubMedCentralCrossRefPubMed Miyamoto K, Hasegawa Y, Nomura M, Igarashi M, Kangawa K, Matsuo H: Identification of the second gonadotropin-releasing hormone in chicken hypothalamus: evidence that gonadotropin secretion is probably controlled by two distinct gonadotropin-releasing hormones in avian species. Proc Natl Acad Sci USA. 1984, 81: 3874-3878.PubMedCentralCrossRefPubMed
57.
Zurück zum Zitat Sower SA, Chiang YC, Lovas S, Conlon JM: Primary structure and biological activity of a third gonadotropin-releasing hormone from lamprey brain. Endocrinology. 1993, 132: 1125-1131. 10.1210/en.132.3.1125.PubMed Sower SA, Chiang YC, Lovas S, Conlon JM: Primary structure and biological activity of a third gonadotropin-releasing hormone from lamprey brain. Endocrinology. 1993, 132: 1125-1131. 10.1210/en.132.3.1125.PubMed
58.
Zurück zum Zitat White RB, Eisen JA, Kasten TL, Fernald RD: Second gene for gonadotropin-releasing hormone in humans. Proc Natlional Acad Sci USA. 1998, 95: 305-309. 10.1073/pnas.95.1.305.CrossRef White RB, Eisen JA, Kasten TL, Fernald RD: Second gene for gonadotropin-releasing hormone in humans. Proc Natlional Acad Sci USA. 1998, 95: 305-309. 10.1073/pnas.95.1.305.CrossRef
59.
Zurück zum Zitat Urbanski HF, White RB, Fernald RD, Kahoma SG, Garyfallou VT, Densmore VS: Regional expression of mRNA encoding a second form of gonadotropin-releasing hormone in the macaque brain. Endocrinology. 1999, 140: 1945-1948. 10.1210/en.140.4.1945.CrossRefPubMed Urbanski HF, White RB, Fernald RD, Kahoma SG, Garyfallou VT, Densmore VS: Regional expression of mRNA encoding a second form of gonadotropin-releasing hormone in the macaque brain. Endocrinology. 1999, 140: 1945-1948. 10.1210/en.140.4.1945.CrossRefPubMed
60.
Zurück zum Zitat Kang SK, Tai CJ, Nathwani PS, Leung PC: Differential regulation of two forms of gonadotropin-releasing hormone messenger ribonucleic acid in human granulosa-luteal cells. Endocrinology. 2001, 142: 182-192. 10.1210/en.142.1.182.PubMed Kang SK, Tai CJ, Nathwani PS, Leung PC: Differential regulation of two forms of gonadotropin-releasing hormone messenger ribonucleic acid in human granulosa-luteal cells. Endocrinology. 2001, 142: 182-192. 10.1210/en.142.1.182.PubMed
61.
Zurück zum Zitat Millar RP, Lowe S, Conklin D, Pawson A, Maudsley S, Troskie B, Ott T, Millar M, Lincoln G, Sellar R, Faurholm B, Scobie G, Kuestner R, Terasawa E, Katz A: A novel mammalian receptor for the evolutionarily conserved type II GnRH. Proc Natl Acad Sci U S A. 2001, 98: 9636-9641. 10.1073/pnas.141048498.PubMedCentralCrossRefPubMed Millar RP, Lowe S, Conklin D, Pawson A, Maudsley S, Troskie B, Ott T, Millar M, Lincoln G, Sellar R, Faurholm B, Scobie G, Kuestner R, Terasawa E, Katz A: A novel mammalian receptor for the evolutionarily conserved type II GnRH. Proc Natl Acad Sci U S A. 2001, 98: 9636-9641. 10.1073/pnas.141048498.PubMedCentralCrossRefPubMed
62.
Zurück zum Zitat Neill JD, Duck LW, Sellers JC, Musgrove LC: A gonadotropin-releasing hormone (GnRH) receptor specific for GnRH II in primates. Biochem Biophys Res Commun. 2001, 282: 1012-1018. 10.1006/bbrc.2001.4678.CrossRefPubMed Neill JD, Duck LW, Sellers JC, Musgrove LC: A gonadotropin-releasing hormone (GnRH) receptor specific for GnRH II in primates. Biochem Biophys Res Commun. 2001, 282: 1012-1018. 10.1006/bbrc.2001.4678.CrossRefPubMed
63.
Zurück zum Zitat Gründker C, Günthert AR, Millar RP, Emons G: Expression of gonadotropin-releasing hormone II (GnRH-II) receptor in human endometrial and ovarian cancer cells and effects of GnRH-II on tumor cell proliferation. J Clin Endocrinol Metab. 2002, 87: 1427-1430. 10.1210/jc.87.3.1427.CrossRefPubMed Gründker C, Günthert AR, Millar RP, Emons G: Expression of gonadotropin-releasing hormone II (GnRH-II) receptor in human endometrial and ovarian cancer cells and effects of GnRH-II on tumor cell proliferation. J Clin Endocrinol Metab. 2002, 87: 1427-1430. 10.1210/jc.87.3.1427.CrossRefPubMed
64.
Zurück zum Zitat Morgan K, Conklin D, Pawson AJ, Sellar R, Ott TR, Millar RP: A transcriptionally active human type II gonadotropin-releasing hormone receptor gene homolog overlaps two genes in the antisense orientation on chromosome 1q.12. Endocrinology. 2003, 144: 423-436. 10.1210/en.2002-220622.CrossRefPubMed Morgan K, Conklin D, Pawson AJ, Sellar R, Ott TR, Millar RP: A transcriptionally active human type II gonadotropin-releasing hormone receptor gene homolog overlaps two genes in the antisense orientation on chromosome 1q.12. Endocrinology. 2003, 144: 423-436. 10.1210/en.2002-220622.CrossRefPubMed
Metadaten
Titel
Role of gonadotropin-releasing hormone (GnRH) in ovarian cancer
verfasst von
Carsten Gründker
Günter Emons
Publikationsdatum
01.12.2003
Verlag
BioMed Central
Erschienen in
Reproductive Biology and Endocrinology / Ausgabe 1/2003
Elektronische ISSN: 1477-7827
DOI
https://doi.org/10.1186/1477-7827-1-65

Weitere Artikel der Ausgabe 1/2003

Reproductive Biology and Endocrinology 1/2003 Zur Ausgabe

Ambulantisierung: Erste Erfahrungen mit dem Hybrid-DRG

02.05.2024 DCK 2024 Kongressbericht

Die Hybrid-DRG-Verordnung soll dazu führen, dass mehr chirurgische Eingriffe ambulant durchgeführt werden, wie es in anderen Ländern schon länger üblich ist. Die gleiche Vergütung im ambulanten und stationären Sektor hatten Niedergelassene schon lange gefordert. Aber die Umsetzung bereitet ihnen doch Kopfzerbrechen.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Harninkontinenz: Netz-Op. erfordert über lange Zeit intensive Nachsorge

30.04.2024 Harninkontinenz Nachrichten

Frauen mit Belastungsinkontinenz oder Organprolaps sind nach einer Netz-Operation keineswegs beschwerdefrei. Vielmehr scheint die Krankheitslast weiterhin hoch zu sein, sogar höher als von harninkontinenten Frauen, die sich nicht haben operieren lassen.

Welche Übungen helfen gegen Diastase recti abdominis?

30.04.2024 Schwangerenvorsorge Nachrichten

Die Autorinnen und Autoren einer aktuellen Studie aus Griechenland sind sich einig, dass Bewegungstherapie, einschließlich Übungen zur Stärkung der Bauchmuskulatur und zur Stabilisierung des Rumpfes, eine Diastase recti abdominis postpartum wirksam reduzieren kann. Doch vieles ist noch nicht eindeutig belegt.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.