Skip to main content
Erschienen in: Immunity & Ageing 1/2009

Open Access 01.12.2009 | Review

Pathophysiology of vascular dementia

verfasst von: Francesco Iemolo, Giovanni Duro, Claudia Rizzo, Laura Castiglia, Vladimir Hachinski, Calogero Caruso

Erschienen in: Immunity & Ageing | Ausgabe 1/2009

Abstract

The concept of Vascular Dementia (VaD) has been recognized for over a century, but its definition and diagnostic criteria remain unclear.
Conventional definitions identify the patients too late, miss subjects with cognitive impairment short of dementia, and emphasize consequences rather than causes, the true bases for treatment and prevention. We should throw out current diagnostic categories and describe cognitive impairment clinically and according to commonly agreed instruments that document the demographic data in a standardized manner and undertake a systematic effort to identify the underlying aetiology in each case.
Increased effort should be targeted towards the concept of and criteria for Vascular Cognitive Impairment and Post-Stroke Dementia as well as for genetic factors involved, especially as these categories hold promise for early prevention and treatment.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1742-4933-6-13) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors drafted, read and approved the final manuscript.

Background

The concept of Vascular Dementia (VaD), has been recognized for over a century, but its definition and diagnostic criteria remain unclear and generate, much confusion and debate althoung several clinical criteria have been used for defining the VaD
The term of VaD substantially means "disease with a cognitive impairment resulting from cerebrovascular disease and ischemic or hemorrhagic brain injury".
Dementia represents only a portion of the burden of cognitive dysfunction associated with cerebrovascular disease. In addition to patients who develop dementia, there are those who develop cognitive impairment that does not fulfill traditional criteria for dementia but that nonetheless has a significant impact on quality of life and ability to carry out activities of daily living. As a result, the older term "vascular dementia" is being replaced with a new one: "vascular cognitive impairment" (VCI). In addition, postmortem pathological studies indicate that 15% to 34% of dementia cases show significant vascular pathology, either alone or in combination with Alzheimer disease (AD) pathology [1].
In fact, dementia criteria are typically modelled on Alzheimer Disease (AD), wherein involvement of the mesial temporal lobe results in dense episodic memory impairment. [2, 3]. Current research has led to the identification of a cognitive syndrome signalling a high risk of further cognitive decline, a group of patients similar to that of mild cognitive impairment as a risk state for AD [4]. The cognitive impairment attributable to cerebrovascular disease is a rapidly escalating public health problem. The heterogeneity of the population of patients with VaD diagnosed using current criteria has raised the need for updating the classification of subtypes

History

The concept of "dementia" originated early in the 16th century., when for the first time Pratensis mentioned the "Dementia stroke correlate". in the "De cerebri morbis -1549" Subsequently Willis described the most important causes of dementia including ageing and vascular disease and the first accurate clinical observations of patients with vascular dementia In the early 19th century Cooke described "intellectual deficits among the sequelae of apoplexy" The history of vascular dementia during 19th and 20th centuries has been recently reviewed [5].
Binswanger and Alzheimer, began a series of clinicopathological correlation studies attempting to isolate additional forms of dementia, describing four different form of vascular dementia (arteriosclerotic brain degeneration, perivascular gliosis of the brain cortex, dementia post-apoplexian and Binswanger's chronic progressive subcortical encephalitis) [616]. Pierre Marie described in 1901 the "état lacunaire" associated with a constant intellectual deficits. Dementia was separated from delirium and other psychiatric diseases at the end of the 19th century, but its etiology remained un cleared [17].
Alzheimer and Binswanger had correctly concluded that "arteriosclerotic dementia" represented a large clinico-pathological spectrum. However, "arteriosclerotic dementia" incorrectly became synonymous with senile dementia, and it was widely held that cortical atrophy in the elderly resulted from progressive decrease in cerebral perfusion leading to hypoxic neuronal death.
Little further progress was made for the next 70 years because of a combination of factors (Freud's work, Kraepelin's classification, syphilis as a common and obscuring cause of dementia). New suggestions and observations were made, but they did not thrive against this background. In 1946 a clear description of a multi-infarct dementia was given, recognizing the possible role of silent infarcts and explicating that the chronic ischemia wasn't he cause of vascular dementia, but the true mechanism was the infarction. This process later termed "multi-infarct dementia" [18]
Today, the importance of vascular lesions in Alzheimer's disease is being increasingly recognized: various data shows that more than 30% of AD exhibit cerebrovascular pathology [5].
A recent review define the AD as a vascular disorder: "...since the value of scientific evidence generally revolves around probability and chance, it is concluded that the data presented here pose a powerful argument in support of the proposal that AD should be classified as a vascular disorder. According to elementary statistics, the probability or chance that all these findings are due to an indirect pathological effect or to coincidental circumstances related to the disease process of AD seems highly unlikely. The collective data presented in this review strongly support the concept that sporadic AD is a vascular disorder." [19].

Discussion

Vascular dementia (VAD) and vascular cognitive impairment (VCI): clinical criteria

Cardinal elements implemented in the clinical criteria for VaD are the definition of the cognitive syndrome of dementia and the objective documentation of vascular lesions capable of causing dementia [2024]. All the currently clinical criteria, are derived from expert opinion based on prevailing knowledge and pathogenetic hypothesis of dementia's causes [25].
The current clinical criteria for VaD recognize the multiplicity of lesions, but none of these clinical criteria provide guidelines for subtype of VaD [26]. Only the NINDS-AIREN criteria mention the following subtype: cortical vascular dementia, Binswanger's disease and thalamic dementia [27]. Also the brain imaging requirements are not included, or are not complete, in all current clinical criteria.
The systematic heterogeneity of the population of patients with VaD diagnosed by using current criteria has raised the need for updating the classification of subtypes. The main subtype of VaD include: multi-infarct dementia or predominantly cortical VaD, strategic infarct dementia and small vessel dementia or subcortical VaD even if only subcortical VaD is probably a more homogenous group [2831]
The new criteria are based on homogeneity (in aetiologies, brain imaging and clinical syndrome), on predictability (phenomenology and clinical picture, clinical course and natural history, outcomes and treatment responses), on reproducibility (intra- and inter-rater reliability). Furthermore, they must be validated by prospective clinical pathological correlation [25, 32].
The cornerstone of all criteria of dementia is memory impairment; this criterion works very well for AD, in which the mesial temporal lobes are affected early and prominently with consequent early memory loss, but strokes affecting cognition occur most commonly in the frontobasal systems that subserves judgement, planning and emotion, features seldom tested in cognitive screens.
At present, there is no generally accepted test battery for identifying or classifying patients with VCI. However, there are some basic principles that can be followed in developing such a battery. One of these is that large vessel cortical strokes and subcortical small vessel disease, tend to produce different kinds of deficits. The former typically present with region-specific syndromes such as aphasia, apraxia, and amnesia. The latter present with more subtle and temporally progressive deficits, often described as "executive" in nature. [4, 3337]. These include deficits in speed and so-called "strategic" processing (ie, attention, planning, and monitoring) in tasks such as memory tasks. Patients may perform normally on simple tasks but reveal deficits as tasks increase in complexity. It appears that the majority of VCI patients fall into the class with subcortical small vessel disease. [21, 38]. Thus, it seems reasonable that neuropsychological testing for VCI would include tasks testing executive function. In addition, such tests may help to differentiate patients in which either vascular or AD pathologies predominate [1]
The extent of ischaemic disease on neuroimaging, that is both sufficient and necessary to cause cognitive impairment, Leukoaraiosis and atrophy as well as the issue of location [39]. To summarize the literature data, it's clear that there are insufficient data to propose firm cut-offs for the extent of Leukoaraiosis or for extent of infarction.
Anyway, enough scientific rationale already exists for undertaking systematic clinical trials in the prevention of cognitive impairment through the control of vascular risk factors and the use of statins, anti-inflammatory agents, ACE inhibitors, vitamins E and B12 [40].

Epidemiology

Epidemiologic studies of VaD have been hampered by the "lack of clear and universal diagnostic criteria, by the use of different strategies in detecting dementia cases of vascular origin, by the difficulties of developing an effective case-finding strategy, and by the complexity of using imaging or laboratory tests in large scale epidemiologic surveys" [41]. Despite these difficulties, the broad contours of VaD epidemiology are emerging slowly [4244].
The data from current studies cannot be compared and reconciled easily. Diagnostic criteria for VaD have been a long standing source of disagreement and are perhaps the greatest barrier to reaching consensus on the epidemiology of this disease [42, 43, 45]. A first problem is the classification of patients with the so-called "mixed" dementia, in whom the aetiology appears to include both cerebrovascular and primary degenerative features. A second problem is the disagreement about criteria and evaluation of tools. A number of new sets of criteria have been introduced in the 1990s, including the ICD-10, the Chui et al., the Roman et al., and the DSM-IV criteria [46, 47]. An additional problem with epidemiologic studies is the need to transfer published criteria into clinical instruments or procedures that can be implemented on a large scale. Brief scales to separate VaD from AD have been developed beginning with the Hachinski Ischemic Score (HIS) introduced in 1975. A number of modifications or transformations of this original scale have been proposed in the past 20 years [48]. Some of these scales require imaging tests, whereas others are purely clinical. A third problem is the use of imaging findings in the definition of VaD: in the incidence study of dementia in Rochester, the age-specific incidence rate of VaD by using more restrictive DSM-IV criteria (clinical stroke required) and less restrictive criteria (certain vascular imaging lesion sufficient) diverge beyond 70 years of age, and are more than doubled with the restrictive criteria beyond 85 years of age [49]. A fourth problem is to define the range of severity of VaD to be detected in the study: severity may vary from a mild cognitive impairment to terminal stages of deterioration.
If the prevalence of VaD is greater among women than men of a certain age, it remains uncertain whether women have a higher incidence of VaD or whether the incidence is equal to men, but survival after onset of VaD is better in women [41].
Today new prevalence studies are available) and the breadth of variation for VaD prevalence is now even wider. It remains unclear whether the differences between different countries reflect disagreement over diagnostic criteria for VaD or other methodological differences. For studies investigating the incidence of VaD in different countries the data are similarly disparate [50, 34].
The data available to answer the question if the prevalence or the incidence of VaD is increasing or decreasing over time are very few. Because the data from current studies cannot be easy reconciled, it remains very difficult to draw conclusions about the epidemiology of VaD. Our progress would benefit greatly from the development of a new set of diagnostic criteria sensitive and specific, easy to apply in the field setting and internationally accepted. It appears, however, that the prevalence of VaD tends to be higher in men than in women, and that it increases with age; moreover there seems to have been a decline in both prevalence and incidence of VaD between the 1950s and 1970s [41]. The prevalence of VaD ranged typically between 3% and 6%; but the variation described ranged between 0% to 20%. There are relatively few data regarding incidence in the general population. The incidence of cognitive impairment sufficient to adversely affect outcome but not meeting current criteria for vascular dementia is as high as 35.2% compared to 3.8% with a similar degree of impairment in stroke-free controls [18, 35, 42].

Pathophysiology

Epidemiological studies have explored widely the potential risk factors or protective factors for different dementing disorders [36, 51]. Many studies have focused on AD and more recently, on all types of dementia as a syndrome. Aetiological studies about VaD have been hampered by methodological issues and - the search for risk factors of VaD may potentially be more amenable to prevention than AD [52].
Some common determinants between AD and VaD are:
- risk factors involved in cerebrovascular disease (age, sex, some atherogenic disorders or vascular risk factors, genetic factors and inflammation). Other potential risk factors like occupational exposure to pesticide, psychological stress or life events, dietary fat intake, family history of stroke, etc.);
- potential protective factors (high educational attainment, eating fish or shellfish, physical exercise, use of supplementary antioxidants like Vitamins E and C, use of Vitamin B12, Mediterranean diet, etc.) [36, 50, 53].
Vascular cognitive impairment is not a regular pathogenetic entity. Multiple small thromboembolic strokes or strokes in strategic locations such as the thalamus, frontal lobe or temporal lobes may cause cognitive impairment and frequently occur without classical stroke-like symptoms. Nonetheless, in VaD, the majority of patients instead present widespread microangiopathy-related cerebral damage, which is often clinically silent or is accompanied by unspecific neurological signs.
Several mechanisms may explain why patients affected by stroke are prone to develop dementia [20, 37, 54, 55]:
- post-stroke dementia may be the direct consequence of vascular lesions in the brain
- post-stroke dementia could be the result of pre-existing neuropathological effects AD's related
- recurrent stroke that is cause by vessel damages and by white matter lesions that may lead to cognitive decline and contribute to post-stroke dementia;
One of the mechanism involved in ischemic VaD is under the control of large vessels disease (atherosclerosis, and other arteriopathies), however, impaired cerebral flow in the absence of infarct as consequence of arterial stenosis has been documented, although its clinical consequences remain to be fully investigated. It is also unclear whether and to what degree large vessel disease contributes to the white matter pathology and lacunes associated with the subcortical type of VaD. Statistical association suggests it may have additive effects to small vessel pathology. [56, 57]
Moreover, the alterations of small vessels play a role in causing damage to the cerebral tissue and are potentially responsible for the subsequent development of cognitive alterations. Small vessel lesions are considered related to the deep lacunar infarcts and white matter changes typically observed in subcortical forms of vascular cognitive impairment.
The most common types of diseases affecting cerebral microvessels are: arteriosclerosis, lipohyalinosis, cerebral amyloid angiopathy, basal ganglia calcification, CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leucoencephalopathy), other uncommon intracerebral vasculopathies.
The small vessel alterations could also lead to damage affecting the blood-brain barrier and chronic leakage of fluid and macromolecules in the white matter, even if the neuroimaging methods do not detect diffuse alterations of the blood-brain barrier in vivo [58].
Another mechanism influencing small vessel alterations could be incomplete ischemia and selective tissue necrosis (i.e. incomplete infarction) causing a selective neuronal necrosis with sparing of glial cells and microvessels [5962].
Recently, it has been suggested a new variety of lacunar infarction, (type Ib), characterized by small areas of perivascular rarefaction and selective neuronal loss, followed in the more advanced stages by a varying amounts of depleted neurons and oligodendrocytes, astroglial response and minor central cavitation. Furthermore, embolic occlusion of small penetrating artery followed by spontaneous lyses of the thrombus could be responsible for these lacunes [6365].
The concept of Leukoaraiosis, suggested by Hachinski, was introduced to describe morphological abnormalities of the white matter on imaging [66].
The pathogenesis of white matter changes (WMC) is not well established and a number of possible mechanisms have been hypothesized, all mechanisms are reconducible to a form of cerebrovascular disease. It has been proposed that the diffuse changes of the white matter should be considered a form of incomplete infarction. [6776]
The understanding of the pathobiology of AD and VaD recived an impulse by the discovery of genes that produce monogenic forms of the illness or contribute to polygenic forms; in particular, the identification of genes contributing to VCI would no doubt provide insight into the cellular and molecular basis of VCI.
Genetic factors play an important role in the aetiology of VaD, in particular, it's seems to be more important in large-vessel stroke and small vessel stroke than in cryptogenic stroke, and there is no epidemiological evidence for a genetic component in cardioembolic stroke.
The genes underlying VaD must be of 2 nonmutually exclusive classes: (1) genes that predispose individuals to cerebrovascular disease, and (2) genes that determine tissue responses to cerebrovascular disease (eg, genes conveying ischemic tolerance or susceptibility, or the ability to recover from ischemic insult). With regard to the first class of genes, some progress has been made in the past few years in identifying genes that confer susceptibility to hypertension and stroke [77]. In addition, several monogenic forms of cerebrovascular disease have been identified. The two best studied of these are cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL: a subcortical small vessel disease accompanied by lacunar strokes, migraine, and dementia) and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D) [1].
The CADASIL condition is a heritable small-vessel disease caused by mutations in NOTCH3 gene which is normally expressed in vascular smooth muscle cells and pericytes (including those of the cerebral vasculature) and that encodes a cell-surface receptor, which has a role in arterial development and is expressed on vascular smooth-muscle cells. appears to be involved in directing smooth muscle cell proliferation and differentiation. The NOTCH3 receptor is a heterodimer composed of a large extracellular fragment and a smaller transmembrane intracellular fragment. About 95% of patients have missense mutations that cluster in exons 3- and consist in change of cysteine residues amount, but the pathogenic meccanism is still unknown [78, 79].
Whit regard to HCHWA-D (a syndrome of primarily hemorrhagic strokes and dementia), it is caused by a mutation in the gene for amyloid precursor protein (APP) that causes abnormal deposition of amyloid in the walls of leptomeningeal arteries and cortical arterioles (a mpathological condition known as cerebral amyloid angiopathy [CAA]). Mouse models have been developed for CADASIL and HCHWA-D and have contributed critical insights into the cell biology of the pathogenic processes underlying them. [80]
In contrast, little attention has been paid to the second class of genes: those that render the brain more or less susceptible to injury in response to cerebrovascular disease. Evidence for the existence of such response genes is that patients with apparently similar loads of vascular pathology (with regard to lesion type, number, and location) may range from no cognitive impairment to severely cognitively impaired. The association studies using the candidate gene approach, has identified a number of genetic variants possibly involved in risk factor development and, on the other hand, suggests that the risk of stroke has a substantial genetic component. Nonetheless, the genes underlying this risk in the general population remain undetermined. Genetic factors can act at several levels. They can contribute to conventional risk factors such as hypertension, diabetes, or homocysteine concentrations, which have a known genetic components. They might further interact with environmental factors or contribute directly to an intermediate phenotype [78, 81]
It is also possible that some genetic factors contribute, by interaction with conventional risk factors, to the development of subcortical injury of vascular origin in non familiar cases.
Most single-gene disorders are associated with specific stroke subtypes, especially in young stroke patients without known risk factors. Table 1; ref. [79, 8287].
Table 1
Single-gene disorders associated with ischaemic stroke (for reference see the text)
Gene
Disease
Mode of
inheritance
Stroke mechanism
GAL
Fabry's disease
X-linked
Large-artery disease and small-vessel disease
NOTCH3
CADASIL
AD
Small-vassel disease
HBB
Sickle-cell disease
AR
Large-artery disease, small-vessel disease, haemodynamic insufficiency
CBS and others
Homocystinuria
AR
Large-artery disease, cardioembolism, small-vessel disease, arterial dissection
mtDNA
MELAS
Maternal
Complex (microvascular and neuronal factors)
FBN1
Marfan syndrome
AD
Cardioembolism and arterial dissection
COL3A1
Ehlers-Danlos syndrome type IV
AD
Arterial dissection
ABCC6
Pseudoxanthoma elasticum
AR
Large-artery disease and small-vessel disease
AD = autosomal dominant. AR = autosomal recessive. HBB = haemoglobin beta. CADASIL = cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy. MELAS = mitochondrial myopathy, encephalopathy, lactacidosis, and stroke. mtDNA = mitochondrial DNA.
For references, see text
In this group of diseases we take in consideration only Fabry's disease for its special association with stroke. The Fabry's disease is an X-linked systemic disorder caused by deficiency of the lysosomal enzyme α-galactosidase A, that results in progressive accumulation of glycosphingolipids in the myocardium, renal epithelium, skin, eye, and vasculature. The symptoms are acroparesthesia, angiokeratoma, hypoidrosis, which start during the childhood or adolescence and are present in the majority of the affected individuals and many young patients are affect by cryptogenetic stroke. The disease occurs either in large-artery either in small-vessel disease, with a preference for posterior circulation. Small-vessel disease in Fabry's disease is associated with white-matter changes and evidence suggests that the extent of such lesions is influenced by gene polymorphisms as interleukin 6, endothelial nitric oxide synthase, factor V, and protein Z [78, 82]. These findings are suggestive but need further confirmation (Duro's data not published).
The genetic contribution to common multifactorial stroke seems to be polygenic: there are many alleles with small effect, due to their wide distribution, however, on a population basis the impact on stroke is large. Several genes and polymorphisms were selected for a significant association with ischaemic stroke: in particular polymorphisms in the genes encoding MTHFR (enzyme in homocysteine metabolism), ACE (enzyme in renin-angiotensin-aldosterone system), Factor V Leiden, prothrombin and PAI 1 (Haemostatic system) [78]
Recently, studies for the analyses of ischemic stroke assessed two unsuspected common SNPs on chromosome 12p13 (rs11833579 and rs12425791), consistently associated with total ischemic, and atherothrombotic stroke in caucasic population although there is association with ischemic and atherothrombotic strokes (as compared with total stroke), but no association with non ischemic stroke. The SNPs are on the gene NINJ2 that encodes an adhesion molecule expressed in glia cells and shows increased expression after nerve injury Some mutations are associated with a slightly more aggressive phenotype. [81].
One class of genes that must influence tissue responses to cerebrovascular disease are the AD genes. There is an additive or synergistic interaction between AD and cerebrovascular pathologies, such that individuals with both of these pathologies show greater cognitive impairment than those exhibiting either pathology alone. In addition, at least three sets of genes in the AD pathway, the presenilins, APP, and apolipoprotein E (apoE), are known to interact with the VCI disease pathway.
The presenilins, mutations of which cause AD, have been shown to interact directly with Notch proteins, including Notch 3 (mutations of which cause CADASIL).
Mutations in the APP gene can lead either to AD or to hemorrhagic stroke and dementia (as in HCHWA-D) depending on the site of the mutation and the subsequent cellular site of amyloid accumulation.
Variants of the apoE gene appear to affect not only susceptibility to cerebrovascular disease but also recuperative responses to it (see below). Thus, there appear to be links in the biochemical pathways underlying VCI and AD pathologies, which could be responsible for the observed interactive effects of these pathologies on cognitive function.
Genes that influence brain responses to cerebrovascular disease do not appear to be limited to those within AD pathway. First, it has been shown that VCI can occur in the complete absence of AD pathology in sporadic VCI and in hereditary forms. In addition, the cognitive sequelae of pathogenic processes associated with VCI are different from those seen in "pure" AD, in that executive function appears more strongly affected in VCI than is memory. Consistent with these observations, different brain regions seem differentially affected in VCI and AD, with prefrontal circuits being more affected in VCI and the hippocampus in AD.
An important aspect of VaD's (AD's particular) pathophysiology, is the role of inflammation: the incidence is influenced by the gene polymorphisms of the inflammatory mediators. Among the most widely investigated genes are those involved in inflammation (interleukin 1, interleukin 6, TNFα, toll-like receptor 4, P-selectin and E-selectin, C-reactive protein), lipid metabolism (apolipoprotein E, paraoxonase, epoxide hydrolase), nitric oxide release, and extracellular matrix (matrix metalloproteinases) [88, 89].
Infact, in recent years, an increasing set of evidence has stress the role of inflammation in the brain, particularly in the microglia-rich amyloid deposits, where the microglias tend to release a wide variety of proinflammatory mediators including cytokines (IL 1β, IL 6, TNF α, acute phase proteins) complement components, various free radicals and nitric oxide (NO), all of which potentially contribute to further neuronal dysfunction and eventually result in cellular death. In addition, apolipoprotein E (ApoE) is strongly associated with AD in terms of cognitive decline and disease onset: ApoE, especially the ε4 allele, has been observed promoting an inflammatory reaction[14]. The AD's pathomechanism is related to the accumulation of toxic amyloid-β (Aβ), which precipitate along the vessel walls and in brain parenchymal plaques, as well as the formation of neurofibrillary tangles (NFTs); the development of cognitive impairment in VaD may be related to a number of different pathological processes including multiple infarctions resulting from occlusion of major brain vessels or their branches and lypohyalinosis. The latter is a degeneration of small arterial vessel walls supplying the subcortical white matter, thalamus, and basal ganglia, or cerebral amyloid angiopathy (CAA is the accumulation of amyloid protein in the walls of cerebral blood vessels): less commonly, vascular dementia is related to deposition of Aβ in brain vessels. CAA can be either sporadic or familial. The progressive cognitive impairment in CAA results from multiple brain hemorrhages and/or ischemia related to narrowing of vessel lumen [88, 90]

Conclusion

We should throw out current diagnostic categories and describe cognitive impairment clinically and according to commonly agreed instruments that document the demographic data in a standardized manner and undertake a systematic effort to identify the underlying aetiology in each case (imaging and DNA should be obtained whenever possible.
However, further empirical research and international debate is needed to define the syndrome and stages of vascular subcortical cognitive impairment, validate the brain imaging criteria for subcortical Vascular Dementia by clinical-pathological correlation, as well as the natural history and outcomes of the syndrome.
Increased effort should be targeted towards the concept of and criteria for Vascular Cognitive Impairment and Post-Stroke Dementia as well as for genetic factors involved, especially as these categories hold promise for early prevention and treatment.

Acknowledgements

Laura Castiglia is a PhD student at Pathobiology Course of Palermo University (directed by Calogero Caruso) and this paper is in partial fulfillment of the requirement for her PhD.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors drafted, read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Leblanc GG, Meschia JF, Stuss DT, Hachinski V: Genetics of Vascular Cognitive Impairment The Opportunity and the Challenges. Stroke. 2006, 37: 248-255. 10.1161/01.STR.0000195177.61184.49.CrossRefPubMed Leblanc GG, Meschia JF, Stuss DT, Hachinski V: Genetics of Vascular Cognitive Impairment The Opportunity and the Challenges. Stroke. 2006, 37: 248-255. 10.1161/01.STR.0000195177.61184.49.CrossRefPubMed
2.
Zurück zum Zitat Rockwood K, Wentzel C, Hachinski V, Hogan DB, MacKnight C, McDowell I: Prevalence and outcomes of vascular cognitive impairment. Neurology. 2000, 54: 447-51.CrossRefPubMed Rockwood K, Wentzel C, Hachinski V, Hogan DB, MacKnight C, McDowell I: Prevalence and outcomes of vascular cognitive impairment. Neurology. 2000, 54: 447-51.CrossRefPubMed
3.
Zurück zum Zitat Petersen RC: Aging, mild cognitive impairment, and Alzheimer's disease. Neurol Clin. 2000, 18: 789-806. 10.1016/S0733-8619(05)70226-7.CrossRefPubMed Petersen RC: Aging, mild cognitive impairment, and Alzheimer's disease. Neurol Clin. 2000, 18: 789-806. 10.1016/S0733-8619(05)70226-7.CrossRefPubMed
4.
Zurück zum Zitat Candore G, Balistreri CR, Grimaldi MP, Vasto S, Listì F, Chiappelli M, Licastro F, Lio D, Caruso C: Age-related inflammatory diseases: role of genetics and gender in the pathophysiology of Alzheimer's disease. Ann N Y Acad Sci. 2006, 1089: 472-86. 10.1196/annals.1386.008.CrossRefPubMed Candore G, Balistreri CR, Grimaldi MP, Vasto S, Listì F, Chiappelli M, Licastro F, Lio D, Caruso C: Age-related inflammatory diseases: role of genetics and gender in the pathophysiology of Alzheimer's disease. Ann N Y Acad Sci. 2006, 1089: 472-86. 10.1196/annals.1386.008.CrossRefPubMed
5.
Zurück zum Zitat Roman GC: A historical review of the concept of vascular dementia: lessons from the past for the future. Alzheimer Dis Assoc Disord. 1999, 13: S4-8. 10.1097/00002093-199912003-00002.CrossRefPubMed Roman GC: A historical review of the concept of vascular dementia: lessons from the past for the future. Alzheimer Dis Assoc Disord. 1999, 13: S4-8. 10.1097/00002093-199912003-00002.CrossRefPubMed
6.
Zurück zum Zitat Caruso C, Franceschi C, Licastro F: Genetics of neurodegenerative disorders. N Engl J Med. 2003, 349: 193-4. 10.1056/NEJM200307103490219.CrossRefPubMed Caruso C, Franceschi C, Licastro F: Genetics of neurodegenerative disorders. N Engl J Med. 2003, 349: 193-4. 10.1056/NEJM200307103490219.CrossRefPubMed
7.
Zurück zum Zitat Roman GC: Historical aspects: from Alzheimer to Binswanger. 1992, New York: Thieme, 83-85. Roman GC: Historical aspects: from Alzheimer to Binswanger. 1992, New York: Thieme, 83-85.
8.
Zurück zum Zitat Beach TG: The history of Alzheimer's disease: three debates. Hist Med Allied Sci. 1987, 42: 327-49. 10.1093/jhmas/42.3.327.CrossRef Beach TG: The history of Alzheimer's disease: three debates. Hist Med Allied Sci. 1987, 42: 327-49. 10.1093/jhmas/42.3.327.CrossRef
9.
Zurück zum Zitat Berrios GE: Alzheimer's disease: a conceptual history. Int J Geriat Psych. 1990, 5: 355-65. 10.1002/gps.930050603.CrossRef Berrios GE: Alzheimer's disease: a conceptual history. Int J Geriat Psych. 1990, 5: 355-65. 10.1002/gps.930050603.CrossRef
10.
Zurück zum Zitat Berrios GE, Freeman HL: Alzheimer and the dementias. London. Royal Society of Medicine Ser. 1991 Berrios GE, Freeman HL: Alzheimer and the dementias. London. Royal Society of Medicine Ser. 1991
11.
Zurück zum Zitat Bick KL: The early story of Alzheimer disease. 1994, New York: Raven Press, 1-8. Bick KL: The early story of Alzheimer disease. 1994, New York: Raven Press, 1-8.
12.
Zurück zum Zitat Weber MM: Aloys Alzheimer, a coworker of Emil Kraepelin. J Psychiatr Res. 1997, 31: 635-43. 10.1016/S0022-3956(97)00035-6.CrossRefPubMed Weber MM: Aloys Alzheimer, a coworker of Emil Kraepelin. J Psychiatr Res. 1997, 31: 635-43. 10.1016/S0022-3956(97)00035-6.CrossRefPubMed
13.
Zurück zum Zitat Racchi M, Uberti D, Govoni S, Memo M, Lanni C, Vasto S, Candore G, Caruso C, Romeo L, Scapagnini G: Alzheimer's disease: new diagnostic and therapeutic tools. Immun Ageing. 2008, 13: 5-7. Racchi M, Uberti D, Govoni S, Memo M, Lanni C, Vasto S, Candore G, Caruso C, Romeo L, Scapagnini G: Alzheimer's disease: new diagnostic and therapeutic tools. Immun Ageing. 2008, 13: 5-7.
14.
Zurück zum Zitat Vasto S, Candore G, Listì F, Balistreri CR, Colonna-Romano G, Malavolta M, Lio D, Nuzzo D, Mocchegiani E, Di Bona D: Inflammation, genes and zinc in Alzheimer's disease. Brain Res Rev. 2008, 58: 96-105. 10.1016/j.brainresrev.2007.12.001.CrossRefPubMed Vasto S, Candore G, Listì F, Balistreri CR, Colonna-Romano G, Malavolta M, Lio D, Nuzzo D, Mocchegiani E, Di Bona D: Inflammation, genes and zinc in Alzheimer's disease. Brain Res Rev. 2008, 58: 96-105. 10.1016/j.brainresrev.2007.12.001.CrossRefPubMed
15.
Zurück zum Zitat Lio D, Scola L, Romano GC, Candore G, Caruso C: Immunological and immunogenetic markers in sporadic Alzheimer's disease. Aging Clin Exp Res. 2006, 18: 163-6.CrossRefPubMed Lio D, Scola L, Romano GC, Candore G, Caruso C: Immunological and immunogenetic markers in sporadic Alzheimer's disease. Aging Clin Exp Res. 2006, 18: 163-6.CrossRefPubMed
16.
Zurück zum Zitat Mast H, Tatemichi TK, Mohr JP: Chronic brain ischemia: the contributions of Otto Binswanger and Alois. J Neurol Sci. 1995, 132: 4-10. 10.1016/0022-510X(95)00116-J.CrossRefPubMed Mast H, Tatemichi TK, Mohr JP: Chronic brain ischemia: the contributions of Otto Binswanger and Alois. J Neurol Sci. 1995, 132: 4-10. 10.1016/0022-510X(95)00116-J.CrossRefPubMed
17.
Zurück zum Zitat Dening TR, Berrios GE: The vascular dementia. 1991, Royal Society of Medicine Service Ltd, 69-76. Dening TR, Berrios GE: The vascular dementia. 1991, Royal Society of Medicine Service Ltd, 69-76.
18.
Zurück zum Zitat Bowler J, Hachinski V: Vascular dementia. Cerebrovascular Disease: pathophysiology, diagnosis, and management. Science Ltd. 1998, 1126-44. Bowler J, Hachinski V: Vascular dementia. Cerebrovascular Disease: pathophysiology, diagnosis, and management. Science Ltd. 1998, 1126-44.
19.
Zurück zum Zitat De la Torre JC: Alzheimer disease as a vascular disorder: nosological evidence. Stroke. 2002, 33: 1152-62. 10.1161/01.STR.0000014421.15948.67.CrossRefPubMed De la Torre JC: Alzheimer disease as a vascular disorder: nosological evidence. Stroke. 2002, 33: 1152-62. 10.1161/01.STR.0000014421.15948.67.CrossRefPubMed
20.
Zurück zum Zitat Pohjasvaara T, Mantyla R, Salonen O, Aronen HJ, Ylikoski R, Hietanen M, Kaste M, Erkinjuntti T: How complex interactions of ischemic brain infarcts, white matter lesions. Arch Neurol. 2000, 57: 1295-00. 10.1001/archneur.57.9.1295.CrossRefPubMed Pohjasvaara T, Mantyla R, Salonen O, Aronen HJ, Ylikoski R, Hietanen M, Kaste M, Erkinjuntti T: How complex interactions of ischemic brain infarcts, white matter lesions. Arch Neurol. 2000, 57: 1295-00. 10.1001/archneur.57.9.1295.CrossRefPubMed
21.
Zurück zum Zitat Roman GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, Amaducci L, Orgogozo JM, Brun A, Hofman A: Vascular dementia: diagnostic criteria for research studies. Neurology. 1993, 43: 250-60.CrossRefPubMed Roman GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, Amaducci L, Orgogozo JM, Brun A, Hofman A: Vascular dementia: diagnostic criteria for research studies. Neurology. 1993, 43: 250-60.CrossRefPubMed
22.
Zurück zum Zitat Erkinjuntti T, Ostbye T, Steenhuis R, Hachinski V: The effect of different diagnostic criteria on the prevalence of dementia. N Engl J Med. 1997, 337: 1667-74. 10.1056/NEJM199712043372306.CrossRefPubMed Erkinjuntti T, Ostbye T, Steenhuis R, Hachinski V: The effect of different diagnostic criteria on the prevalence of dementia. N Engl J Med. 1997, 337: 1667-74. 10.1056/NEJM199712043372306.CrossRefPubMed
23.
Zurück zum Zitat Pohjasvaara T, Erkinjuntti T, Vataja R, Kaste M: Dementia three months after stroke. Baseline frequency and effect of different definitions of dementia in the Helsinki Stroke Aging Memory Study (SAM) cohort. Stroke. 1997, 28: 785-92.CrossRefPubMed Pohjasvaara T, Erkinjuntti T, Vataja R, Kaste M: Dementia three months after stroke. Baseline frequency and effect of different definitions of dementia in the Helsinki Stroke Aging Memory Study (SAM) cohort. Stroke. 1997, 28: 785-92.CrossRefPubMed
24.
Zurück zum Zitat McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices fo Department of Health and Human Service Task Force on Alzheimer's disease. Neurology. 1984, 34: 939-44.CrossRefPubMed McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices fo Department of Health and Human Service Task Force on Alzheimer's disease. Neurology. 1984, 34: 939-44.CrossRefPubMed
25.
Zurück zum Zitat Wetterling T, Kanitz RD, Borgis KJ: The ICD-10 criteria for vascular dementia. Dementia. 1994, 5: 185-88.PubMed Wetterling T, Kanitz RD, Borgis KJ: The ICD-10 criteria for vascular dementia. Dementia. 1994, 5: 185-88.PubMed
26.
Zurück zum Zitat Erkinjuntti T, Roman GC, Chui H: Diagnostic criteria. Vascular Cognitive Impairment. Martin Dunitz. 2002, 43-57. Erkinjuntti T, Roman GC, Chui H: Diagnostic criteria. Vascular Cognitive Impairment. Martin Dunitz. 2002, 43-57.
27.
Zurück zum Zitat World Health Organisation: Classification of Mental and Behavioural Disordes: diagnostic criteria for research. Geneve. 1993 World Health Organisation: Classification of Mental and Behavioural Disordes: diagnostic criteria for research. Geneve. 1993
28.
Zurück zum Zitat Rockwood K, Bowler J, Erkinjuntti T, Hachinski V, Wallin A: Subtypes of vascular dementia. Alzheimer Dis Assoc Disord. 1999, 13: S59-65. 10.1097/00002093-199912003-00010.PubMed Rockwood K, Bowler J, Erkinjuntti T, Hachinski V, Wallin A: Subtypes of vascular dementia. Alzheimer Dis Assoc Disord. 1999, 13: S59-65. 10.1097/00002093-199912003-00010.PubMed
29.
Zurück zum Zitat Brun A: Pathology and pathophysiology of cerebrovascular dementia: pure subgroups of obstructive and hypoperfusive etiology. Dementia. 1994, 5: 145-47.PubMed Brun A: Pathology and pathophysiology of cerebrovascular dementia: pure subgroups of obstructive and hypoperfusive etiology. Dementia. 1994, 5: 145-47.PubMed
30.
Zurück zum Zitat Cummings JL: Vascular subcortical dementias: clinical aspects. Dementia. 1994, 5: 177-80.PubMed Cummings JL: Vascular subcortical dementias: clinical aspects. Dementia. 1994, 5: 177-80.PubMed
31.
Zurück zum Zitat Wallin A, Blennow K: The clinical diagnosis of vascular dementia. Dementia. 1994, 5: 181-184.PubMed Wallin A, Blennow K: The clinical diagnosis of vascular dementia. Dementia. 1994, 5: 181-184.PubMed
32.
Zurück zum Zitat Erkinjuntti T, Inzitari D, Pantoni L, Wallin A, Scheltens P, Rockwood K, Desmond DW: Limitations of clinical criteria for the diagnosis of vascular dementia in clinical trials: is a focus on subcortical vascular dementia a solution?. Ann N Y Acad Sci. 2000, 903: 262-72. 10.1111/j.1749-6632.2000.tb06376.x.CrossRefPubMed Erkinjuntti T, Inzitari D, Pantoni L, Wallin A, Scheltens P, Rockwood K, Desmond DW: Limitations of clinical criteria for the diagnosis of vascular dementia in clinical trials: is a focus on subcortical vascular dementia a solution?. Ann N Y Acad Sci. 2000, 903: 262-72. 10.1111/j.1749-6632.2000.tb06376.x.CrossRefPubMed
33.
Zurück zum Zitat Brayne C, Gill C, Huppert FA, Barkley C, Gehlhaar E, Girling DM, O Connor DW, Paykel ES: Incidence of clinically diagnosed subtypes of dementia in an elderly. Br J Psychiatry. 1995, 167: 255-62. 10.1192/bjp.167.2.255.CrossRefPubMed Brayne C, Gill C, Huppert FA, Barkley C, Gehlhaar E, Girling DM, O Connor DW, Paykel ES: Incidence of clinically diagnosed subtypes of dementia in an elderly. Br J Psychiatry. 1995, 167: 255-62. 10.1192/bjp.167.2.255.CrossRefPubMed
34.
Zurück zum Zitat Liu CK, Lai CL, Tai CT, Lin RT, Yen YY, Howng SL: Incidence and subtypes of dementia in southern Taiwan. Neurology. 1998, 50: 1572-79.CrossRefPubMed Liu CK, Lai CL, Tai CT, Lin RT, Yen YY, Howng SL: Incidence and subtypes of dementia in southern Taiwan. Neurology. 1998, 50: 1572-79.CrossRefPubMed
35.
Zurück zum Zitat Tatemichi TK, Desmond DW, Stern Y, Paik M, Sano M, Bagiella E: Cognitive impairment after stroke: frequency, patterns, and relationship. J Neurol Neurosurg Psychiatry. 1994, 57: 202-07. 10.1136/jnnp.57.2.202.PubMedCentralCrossRefPubMed Tatemichi TK, Desmond DW, Stern Y, Paik M, Sano M, Bagiella E: Cognitive impairment after stroke: frequency, patterns, and relationship. J Neurol Neurosurg Psychiatry. 1994, 57: 202-07. 10.1136/jnnp.57.2.202.PubMedCentralCrossRefPubMed
36.
Zurück zum Zitat Fratiglioni L: Epidemiology of Alzheimer's disease and current possibilities. Acta Neurol Scand Suppl. 1996, 165: 33-40.CrossRefPubMed Fratiglioni L: Epidemiology of Alzheimer's disease and current possibilities. Acta Neurol Scand Suppl. 1996, 165: 33-40.CrossRefPubMed
37.
Zurück zum Zitat Pohjasvaara T, Erkinjuntti T, Ylikoski R, Hietanen M, Vataja R, Kaste M: Clinical determinants of poststroke dementia. Stroke. 1998, 29: 75-81.CrossRefPubMed Pohjasvaara T, Erkinjuntti T, Ylikoski R, Hietanen M, Vataja R, Kaste M: Clinical determinants of poststroke dementia. Stroke. 1998, 29: 75-81.CrossRefPubMed
38.
Zurück zum Zitat Pepin M, Schwarze U, Superti-Furga A, Byers PH: Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med. 2000, 342: 673-80. 10.1056/NEJM200003093421001.CrossRefPubMed Pepin M, Schwarze U, Superti-Furga A, Byers PH: Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med. 2000, 342: 673-80. 10.1056/NEJM200003093421001.CrossRefPubMed
39.
Zurück zum Zitat Erkinjuntti T, Inzitari D, Pantoni L, Wallin A, Scheltens P, Rockwood K, Roman GC, Desmond DW: Research criteria for subcortical vascular dementia in clinical trials. J Neural Transm Suppl. 2000, 59: 23-30.PubMed Erkinjuntti T, Inzitari D, Pantoni L, Wallin A, Scheltens P, Rockwood K, Roman GC, Desmond DW: Research criteria for subcortical vascular dementia in clinical trials. J Neural Transm Suppl. 2000, 59: 23-30.PubMed
41.
Zurück zum Zitat Rocca WA, Kokmen E: Frequency and distribution of vascular dementia. Alzheimer Dis Assoc Disord. 1999, 13: S9-14. 10.1097/00002093-199912003-00003.PubMed Rocca WA, Kokmen E: Frequency and distribution of vascular dementia. Alzheimer Dis Assoc Disord. 1999, 13: S9-14. 10.1097/00002093-199912003-00003.PubMed
42.
Zurück zum Zitat Rocca WA, Hofman A, Brayne C, Breteler MM, Clarke M, Copeland JR, Dartigues JF, Engedal K, Hagnell O, Heeren TJ: The prevalence of vascular dementia in Europe: facts and fragments from. Ann Neurol. 1991, 30: 817-24. 10.1002/ana.410300611.CrossRefPubMed Rocca WA, Hofman A, Brayne C, Breteler MM, Clarke M, Copeland JR, Dartigues JF, Engedal K, Hagnell O, Heeren TJ: The prevalence of vascular dementia in Europe: facts and fragments from. Ann Neurol. 1991, 30: 817-24. 10.1002/ana.410300611.CrossRefPubMed
43.
Zurück zum Zitat Hebert R, Brayne C: Epidemiology of vascular dementia. Neuroepidemiology. 1995, 14: 240-57. 10.1159/000109800.CrossRefPubMed Hebert R, Brayne C: Epidemiology of vascular dementia. Neuroepidemiology. 1995, 14: 240-57. 10.1159/000109800.CrossRefPubMed
44.
45.
Zurück zum Zitat Wetterling T, Kanitz RD, Borgis KJ: Comparison of different diagnostic criteria for vascular dementia ADDTC. Stroke. 1996, 27: 30-6.CrossRefPubMed Wetterling T, Kanitz RD, Borgis KJ: Comparison of different diagnostic criteria for vascular dementia ADDTC. Stroke. 1996, 27: 30-6.CrossRefPubMed
46.
Zurück zum Zitat World Health Organisation: International Statistical Classification of Diseases and Related Health Problems. 1992, WHO World Health Organisation: International Statistical Classification of Diseases and Related Health Problems. 1992, WHO
47.
Zurück zum Zitat Ott A, Breteler MM, van Harskamp F, Claus JJ, Cammen van der TJ, Grobbee DE, Hofmann A: Prevalence of Alzheimer's disease and vascular dementia: association with education. The Rotterdam study. BMJ. 1995, 310: 970-73.PubMedCentralCrossRefPubMed Ott A, Breteler MM, van Harskamp F, Claus JJ, Cammen van der TJ, Grobbee DE, Hofmann A: Prevalence of Alzheimer's disease and vascular dementia: association with education. The Rotterdam study. BMJ. 1995, 310: 970-73.PubMedCentralCrossRefPubMed
48.
Zurück zum Zitat Tatemichi TK, Paik M, Bagiella E, Desmond DW, Stern Y, Sano M, Hauser WA, Mayeux R: Risk of dementia after stroke in a hospitalized cohort: results of a longitudinal study. Neurology. 1994, 44: 1885-91.CrossRefPubMed Tatemichi TK, Paik M, Bagiella E, Desmond DW, Stern Y, Sano M, Hauser WA, Mayeux R: Risk of dementia after stroke in a hospitalized cohort: results of a longitudinal study. Neurology. 1994, 44: 1885-91.CrossRefPubMed
49.
Zurück zum Zitat Knopman DS, Rocca WA, Cha RH, Edland SD, Kokmen E: Survival study of vascular dementia in Rochester, Minnesota. Arch Neurol. 2003, 60: 85-90. 10.1001/archneur.60.4.569.CrossRefPubMed Knopman DS, Rocca WA, Cha RH, Edland SD, Kokmen E: Survival study of vascular dementia in Rochester, Minnesota. Arch Neurol. 2003, 60: 85-90. 10.1001/archneur.60.4.569.CrossRefPubMed
50.
Zurück zum Zitat Fratiglioni L, Grut M, Forsell Y, Viitanen M, Grafstrom M, Holmen K, Ericsson K, Bäckman L, Ahlbom A, Winblad B: Prevalence of Alzheimer's disease and other dementias in an elderly urban population: relationship with age, sex, and education. Neurology. 1991, 41: 1886-92.CrossRefPubMed Fratiglioni L, Grut M, Forsell Y, Viitanen M, Grafstrom M, Holmen K, Ericsson K, Bäckman L, Ahlbom A, Winblad B: Prevalence of Alzheimer's disease and other dementias in an elderly urban population: relationship with age, sex, and education. Neurology. 1991, 41: 1886-92.CrossRefPubMed
51.
Zurück zum Zitat Skoog I, Nilsson L, Palmertz B, Andreasson LA, Svanborg A: A population-based study of dementia in 85-year-olds. N Engl J Med. 1993, 328: 153-58. 10.1056/NEJM199301213280301.CrossRefPubMed Skoog I, Nilsson L, Palmertz B, Andreasson LA, Svanborg A: A population-based study of dementia in 85-year-olds. N Engl J Med. 1993, 328: 153-58. 10.1056/NEJM199301213280301.CrossRefPubMed
52.
Zurück zum Zitat Hachinski V: Preventable senility: a call for action against the vascular dementias. Lancet. 1992, 340: 645-48. 10.1016/0140-6736(92)92177-H.CrossRefPubMed Hachinski V: Preventable senility: a call for action against the vascular dementias. Lancet. 1992, 340: 645-48. 10.1016/0140-6736(92)92177-H.CrossRefPubMed
53.
Zurück zum Zitat Fratiglioni L, Viitanen M, von Strauss E, Tontodonati V, Herlitz A, Winblad B: Very old women at highest risk of dementia and Alzheimer's disease. Neurology. 1997, 48: 132-38.CrossRefPubMed Fratiglioni L, Viitanen M, von Strauss E, Tontodonati V, Herlitz A, Winblad B: Very old women at highest risk of dementia and Alzheimer's disease. Neurology. 1997, 48: 132-38.CrossRefPubMed
54.
Zurück zum Zitat Pasquier F, Leys D: Why are stroke patients prone to develop dementia?. J Neurol. 1997, 244: 135-42. 10.1007/s004150050064.CrossRefPubMed Pasquier F, Leys D: Why are stroke patients prone to develop dementia?. J Neurol. 1997, 244: 135-42. 10.1007/s004150050064.CrossRefPubMed
55.
Zurück zum Zitat Schmidt H, Schmidt R: Genetic factors. Vascular Cognitive Impairment. Edited by: Erkinjuntti T, Gauthier S. 2002, London: Martin Dunitz Ltd, 85-100. Schmidt H, Schmidt R: Genetic factors. Vascular Cognitive Impairment. Edited by: Erkinjuntti T, Gauthier S. 2002, London: Martin Dunitz Ltd, 85-100.
56.
Zurück zum Zitat Vinters HV, Ellis WG, Zarow C, Zaias BW, Jagust WJ, Mack WJ, Chui HC: Neuropathologic substrates of ischemic vascular dementia. J Neuropathol Exp Neurol. 2000, 59: 931-45.PubMed Vinters HV, Ellis WG, Zarow C, Zaias BW, Jagust WJ, Mack WJ, Chui HC: Neuropathologic substrates of ischemic vascular dementia. J Neuropathol Exp Neurol. 2000, 59: 931-45.PubMed
57.
Zurück zum Zitat Munoz DG, Leys D: Large vessel pathology. Vascular Cognitive Impairment. Edited by: Erkinjuntti T, Gauthier S. 2002, London: Martin Dunitz Ltd, 101-14. Munoz DG, Leys D: Large vessel pathology. Vascular Cognitive Impairment. Edited by: Erkinjuntti T, Gauthier S. 2002, London: Martin Dunitz Ltd, 101-14.
58.
Zurück zum Zitat Bronge L, Wahlund LO: White matter lesions in dementia: an MRI study on blood-brain barrier. Dement Geriatr Cogn Disord. 2000, 11: 263-67. 10.1159/000017248.CrossRefPubMed Bronge L, Wahlund LO: White matter lesions in dementia: an MRI study on blood-brain barrier. Dement Geriatr Cogn Disord. 2000, 11: 263-67. 10.1159/000017248.CrossRefPubMed
59.
Zurück zum Zitat Markus HS, Barley J, Lunt R, Bland JM, Jeffery S, Carter ND, Brown MM: Angiotensin-converting enzyme gene deletion polymorphism. A new risk. Stroke. 1995, 26: 1329-33.CrossRefPubMed Markus HS, Barley J, Lunt R, Bland JM, Jeffery S, Carter ND, Brown MM: Angiotensin-converting enzyme gene deletion polymorphism. A new risk. Stroke. 1995, 26: 1329-33.CrossRefPubMed
60.
Zurück zum Zitat Pantoni L, Lammie GA: Cerebral small vessel disease: pathological and pathophysiological aspects in relation to vascular cognitive impairment. Vascular Cognitive Impairment. Edited by: Erkinjuntti T, Gauthier S. 2002, London: Martin Dunitz, 115-33. Pantoni L, Lammie GA: Cerebral small vessel disease: pathological and pathophysiological aspects in relation to vascular cognitive impairment. Vascular Cognitive Impairment. Edited by: Erkinjuntti T, Gauthier S. 2002, London: Martin Dunitz, 115-33.
61.
Zurück zum Zitat Garcia JH, Lassen NA, Weiller C, Sperling B, Nakagawara J: Ischemic stroke and incomplete infarction. Stroke. 1996, 27: 761-65.CrossRefPubMed Garcia JH, Lassen NA, Weiller C, Sperling B, Nakagawara J: Ischemic stroke and incomplete infarction. Stroke. 1996, 27: 761-65.CrossRefPubMed
62.
Zurück zum Zitat Lassen NA: Incomplete cerebral infarction--focal incomplete ischemic tissue necrosis. Stroke. 1982, 13: 522-23.CrossRefPubMed Lassen NA: Incomplete cerebral infarction--focal incomplete ischemic tissue necrosis. Stroke. 1982, 13: 522-23.CrossRefPubMed
63.
Zurück zum Zitat Lammie GA, Brannan F, Wardlaw JM: Incomplete lacunar infarction (Type Ib lacunes). Acta Neuropathol (Berl). 1998, 96: 163-71. 10.1007/s004010050877.CrossRef Lammie GA, Brannan F, Wardlaw JM: Incomplete lacunar infarction (Type Ib lacunes). Acta Neuropathol (Berl). 1998, 96: 163-71. 10.1007/s004010050877.CrossRef
64.
Zurück zum Zitat Poirier J, Derouesne C: Cerebral lacunae. A proposed new classification. Clin Neuropathol. 1984, 3: 266-PubMed Poirier J, Derouesne C: Cerebral lacunae. A proposed new classification. Clin Neuropathol. 1984, 3: 266-PubMed
65.
Zurück zum Zitat Pantoni L: Incomplete lacunar infarction: an alternative hypothesis. Acta Neuropathol (Berl). 1999, 97: 322-10.1007/s004010050992.CrossRef Pantoni L: Incomplete lacunar infarction: an alternative hypothesis. Acta Neuropathol (Berl). 1999, 97: 322-10.1007/s004010050992.CrossRef
67.
68.
Zurück zum Zitat Longstreth WT, Manolio TA, Arnold A, Burke GL, Bryan N, Jungreis CA, Enright PL, O'Leary D, Fried L: Clinical correlates of white matter findings on cranial magnetic resonance. Stroke. 1996, 27: 1274-82.CrossRefPubMed Longstreth WT, Manolio TA, Arnold A, Burke GL, Bryan N, Jungreis CA, Enright PL, O'Leary D, Fried L: Clinical correlates of white matter findings on cranial magnetic resonance. Stroke. 1996, 27: 1274-82.CrossRefPubMed
69.
Zurück zum Zitat Liao D, Cooper L, Cai J, Toole JF, Bryan NR, Hutchinson RG, Tyroler HA: Presence and severity of cerebral white matter lesions and hypertension. Stroke. 1996, 27: 2262-70.CrossRefPubMed Liao D, Cooper L, Cai J, Toole JF, Bryan NR, Hutchinson RG, Tyroler HA: Presence and severity of cerebral white matter lesions and hypertension. Stroke. 1996, 27: 2262-70.CrossRefPubMed
70.
Zurück zum Zitat Liao D, Cooper L, Cai J, Toole J, Bryan N, Burke G, Shahar E, Nieto J, Mosley T, Heiss G: The prevalence and severity of white matter lesions, their relationship with age, ethnicity, gender, and cardiovascular disease risk factors: the ARIC Study. Neuroepidemiology. 1997, 16: 149-62.CrossRefPubMed Liao D, Cooper L, Cai J, Toole J, Bryan N, Burke G, Shahar E, Nieto J, Mosley T, Heiss G: The prevalence and severity of white matter lesions, their relationship with age, ethnicity, gender, and cardiovascular disease risk factors: the ARIC Study. Neuroepidemiology. 1997, 16: 149-62.CrossRefPubMed
71.
Zurück zum Zitat Inzitari D, Di Carlo A, Mascalchi M, Pracucci G, Amaducci L: The cardiovascular outcome of patients with motor impairment and extensive. Arch Neurol. 1995, 52: 687-91.CrossRefPubMed Inzitari D, Di Carlo A, Mascalchi M, Pracucci G, Amaducci L: The cardiovascular outcome of patients with motor impairment and extensive. Arch Neurol. 1995, 52: 687-91.CrossRefPubMed
72.
Zurück zum Zitat Inzitari D, Cadelo M, Marranci ML, Pracucci G, Pantoni L: Vascular deaths in elderly neurological patients with leukoaraiosis. J Neurol Neurosurg Psychiatry. 1997, 62: 177-81. 10.1136/jnnp.62.2.177.PubMedCentralCrossRefPubMed Inzitari D, Cadelo M, Marranci ML, Pracucci G, Pantoni L: Vascular deaths in elderly neurological patients with leukoaraiosis. J Neurol Neurosurg Psychiatry. 1997, 62: 177-81. 10.1136/jnnp.62.2.177.PubMedCentralCrossRefPubMed
73.
Zurück zum Zitat Yao H, Sadoshima S, Ibayashi S, Kuwabara Y, Ichiya Y, Fujishima M: Leukoaraiosis and dementia in hypertensive patients. Stroke. 1992, 23: 1673-77.CrossRefPubMed Yao H, Sadoshima S, Ibayashi S, Kuwabara Y, Ichiya Y, Fujishima M: Leukoaraiosis and dementia in hypertensive patients. Stroke. 1992, 23: 1673-77.CrossRefPubMed
74.
Zurück zum Zitat Pantoni L, Garcia JH, Gutierrez JA: Cerebral white matter is highly vulnerable to ischemia. Stroke. 1996, 27: 1641-46.CrossRefPubMed Pantoni L, Garcia JH, Gutierrez JA: Cerebral white matter is highly vulnerable to ischemia. Stroke. 1996, 27: 1641-46.CrossRefPubMed
75.
Zurück zum Zitat Pantoni L: Experimental approaches to white matter disease. Dement Geriatr Cogn Disord. 1998, 9: 20-4. 10.1159/000051185.CrossRefPubMed Pantoni L: Experimental approaches to white matter disease. Dement Geriatr Cogn Disord. 1998, 9: 20-4. 10.1159/000051185.CrossRefPubMed
76.
Zurück zum Zitat Petito CK, Olarte JP, Roberts B, Nowak TS, Pulsinelli WA: Selective glial vulnerability following transient global ischemia in rat. J Neuropathol Exp Neurol. 1998, 57: 231-38. 10.1097/00005072-199803000-00004.CrossRefPubMed Petito CK, Olarte JP, Roberts B, Nowak TS, Pulsinelli WA: Selective glial vulnerability following transient global ischemia in rat. J Neuropathol Exp Neurol. 1998, 57: 231-38. 10.1097/00005072-199803000-00004.CrossRefPubMed
77.
Zurück zum Zitat Casas JP, Hingorani AD, Bautista LE, Sharma P: Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18 000 cases and 58 000 controls. Arch Neurol. 2004, 61: 1652-1661. 10.1001/archneur.61.11.1652.CrossRefPubMed Casas JP, Hingorani AD, Bautista LE, Sharma P: Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18 000 cases and 58 000 controls. Arch Neurol. 2004, 61: 1652-1661. 10.1001/archneur.61.11.1652.CrossRefPubMed
78.
Zurück zum Zitat Dichgans M: Genetics of ischaemic stroke. Lancet Neurol. 2007, 6: 149-61. 10.1016/S1474-4422(07)70028-5.CrossRefPubMed Dichgans M: Genetics of ischaemic stroke. Lancet Neurol. 2007, 6: 149-61. 10.1016/S1474-4422(07)70028-5.CrossRefPubMed
79.
Zurück zum Zitat Ungaro C, Mazzei R, Conforti FL, Sprovieri T, Servillo P, Liguori M, Citrigno L, Gabriele AL, Magariello A, Patitucci A: Cadasil: Extended Polymorphisms and Mutational Analysis of the NOTCH3 Gene. J Neuroscience Research. 2009, 87: 1162-67. 10.1002/jnr.21935.CrossRef Ungaro C, Mazzei R, Conforti FL, Sprovieri T, Servillo P, Liguori M, Citrigno L, Gabriele AL, Magariello A, Patitucci A: Cadasil: Extended Polymorphisms and Mutational Analysis of the NOTCH3 Gene. J Neuroscience Research. 2009, 87: 1162-67. 10.1002/jnr.21935.CrossRef
80.
Zurück zum Zitat Herzig MC, Winkler DT, Burgermeister P, Pfeifer M, Kohler E, Schmidt SD, Danner S, Abramowski D, Sturchler-Pierrat C, Burki K: Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat Neurosci. 2004, 7: 954-960. 10.1038/nn1302.CrossRefPubMed Herzig MC, Winkler DT, Burgermeister P, Pfeifer M, Kohler E, Schmidt SD, Danner S, Abramowski D, Sturchler-Pierrat C, Burki K: Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat Neurosci. 2004, 7: 954-960. 10.1038/nn1302.CrossRefPubMed
81.
Zurück zum Zitat Ikram MA, Seshadri S, Bis JC, Fornage M, DeStefano AL, Aulchenko YS, Debette S, Lumley T, Folsom AR, Herik van den EG: Genomewide Association Studies of Stroke. N Engl Med. 2009, 360: 1718-28. 10.1056/NEJMoa0900094.CrossRef Ikram MA, Seshadri S, Bis JC, Fornage M, DeStefano AL, Aulchenko YS, Debette S, Lumley T, Folsom AR, Herik van den EG: Genomewide Association Studies of Stroke. N Engl Med. 2009, 360: 1718-28. 10.1056/NEJMoa0900094.CrossRef
82.
Zurück zum Zitat Rolfs A, Böttcher T, Zschiesche M, Morris P, Winchester B, Bauer P, Walter U, Mix E, Löhr M, Harzer K: Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet. 2005, 366: 1794-96. 10.1016/S0140-6736(05)67635-0.CrossRefPubMed Rolfs A, Böttcher T, Zschiesche M, Morris P, Winchester B, Bauer P, Walter U, Mix E, Löhr M, Harzer K: Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet. 2005, 366: 1794-96. 10.1016/S0140-6736(05)67635-0.CrossRefPubMed
83.
Zurück zum Zitat Hoppe C, Klitz W, Cheng S, Apple R, Steiner L, Robles L, Girard T, Vichinsky E, Styles L, CSSCD Investigators: Gene interactions and stroke risk in children with sickle cell anemia. Blood. 2004, 103: 2391-96. 10.1182/blood-2003-09-3015.CrossRefPubMed Hoppe C, Klitz W, Cheng S, Apple R, Steiner L, Robles L, Girard T, Vichinsky E, Styles L, CSSCD Investigators: Gene interactions and stroke risk in children with sickle cell anemia. Blood. 2004, 103: 2391-96. 10.1182/blood-2003-09-3015.CrossRefPubMed
84.
Zurück zum Zitat Kelly PJ, Furie KL, Kistler JP, Barron M, Picard EH, Mandell R, Shih VE: Stroke in young patients with hyperhomocysteinemia due to cystathionine beta-synthase defi ciency. Neurology. 2003, 60: 275-79.CrossRefPubMed Kelly PJ, Furie KL, Kistler JP, Barron M, Picard EH, Mandell R, Shih VE: Stroke in young patients with hyperhomocysteinemia due to cystathionine beta-synthase defi ciency. Neurology. 2003, 60: 275-79.CrossRefPubMed
85.
Zurück zum Zitat Martinez-Fernandez E, Gil-Peralta A, Garcia-Lozano R, Chinchón I, Aguilera I, Fernández-López O, Arenas J, Campos Y, Bautista J: Mitochondrial disease and stroke. Stroke. 2001, 32: 2507-10. 10.1161/hs1101.098328.CrossRefPubMed Martinez-Fernandez E, Gil-Peralta A, Garcia-Lozano R, Chinchón I, Aguilera I, Fernández-López O, Arenas J, Campos Y, Bautista J: Mitochondrial disease and stroke. Stroke. 2001, 32: 2507-10. 10.1161/hs1101.098328.CrossRefPubMed
87.
Zurück zum Zitat Berg Van den JS, Hennekam RC, Cruysberg JR, Steijlen PM, Swart J, Tijmes N, Limburg M: Prevalence of symptomatic intracranial aneurysm and ischaemic stroke in pseudoxanthoma elasticum. Cerebrovasc Dis. 2000, 10: 315-19. 10.1159/000016076.CrossRefPubMed Berg Van den JS, Hennekam RC, Cruysberg JR, Steijlen PM, Swart J, Tijmes N, Limburg M: Prevalence of symptomatic intracranial aneurysm and ischaemic stroke in pseudoxanthoma elasticum. Cerebrovasc Dis. 2000, 10: 315-19. 10.1159/000016076.CrossRefPubMed
88.
Zurück zum Zitat Sadowski M, Pankiewicz J, Scholtzova H, Li YS, Quartermain D, Duff K, Wisniewski T: Links between the pathology of Alzheimer's disease and Vascular Dementia. Neurochemical Research. 2004, 29: 1257-66. 10.1023/B:NERE.0000023612.66691.e6.CrossRefPubMed Sadowski M, Pankiewicz J, Scholtzova H, Li YS, Quartermain D, Duff K, Wisniewski T: Links between the pathology of Alzheimer's disease and Vascular Dementia. Neurochemical Research. 2004, 29: 1257-66. 10.1023/B:NERE.0000023612.66691.e6.CrossRefPubMed
89.
Zurück zum Zitat Wan Y, Wang G, Chen SD: Genetic predisposition to inflammation: a new risk factor of Alzheimer's disease. Neurosci Bull. 2008, 24: 314-22. 10.1007/s12264-008-0619-z.CrossRefPubMed Wan Y, Wang G, Chen SD: Genetic predisposition to inflammation: a new risk factor of Alzheimer's disease. Neurosci Bull. 2008, 24: 314-22. 10.1007/s12264-008-0619-z.CrossRefPubMed
90.
Zurück zum Zitat Nuzzo D, Mocchegiani E, Di Bona D, Caruso C: Inflammation, genes and zinc inAlzheimer's disease. Brain Res Rev. 2008, 58: 96-105. 10.1016/j.brainresrev.2007.12.001.CrossRefPubMed Nuzzo D, Mocchegiani E, Di Bona D, Caruso C: Inflammation, genes and zinc inAlzheimer's disease. Brain Res Rev. 2008, 58: 96-105. 10.1016/j.brainresrev.2007.12.001.CrossRefPubMed
Metadaten
Titel
Pathophysiology of vascular dementia
verfasst von
Francesco Iemolo
Giovanni Duro
Claudia Rizzo
Laura Castiglia
Vladimir Hachinski
Calogero Caruso
Publikationsdatum
01.12.2009
Verlag
BioMed Central
Erschienen in
Immunity & Ageing / Ausgabe 1/2009
Elektronische ISSN: 1742-4933
DOI
https://doi.org/10.1186/1742-4933-6-13

Weitere Artikel der Ausgabe 1/2009

Immunity & Ageing 1/2009 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.