Skip to main content
Erschienen in: Virology Journal 1/2007

Open Access 01.12.2007 | Research

Comparative genomic analysis of the family Iridoviridae: re-annotating and defining the core set of iridovirus genes

verfasst von: Heather E Eaton, Julie Metcalf, Emily Penny, Vasily Tcherepanov, Chris Upton, Craig R Brunetti

Erschienen in: Virology Journal | Ausgabe 1/2007

Abstract

Background

Members of the family Iridoviridae can cause severe diseases resulting in significant economic and environmental losses. Very little is known about how iridoviruses cause disease in their host. In the present study, we describe the re-analysis of the Iridoviridae family of complex DNA viruses using a variety of comparative genomic tools to yield a greater consensus among the annotated sequences of its members.

Results

A series of genomic sequence comparisons were made among, and between the Ranavirus and Megalocytivirus genera in order to identify novel conserved ORFs. Of these two genera, the Megalocytivirus genomes required the greatest number of altered annotations. Prior to our re-analysis, the Megalocytivirus species orange-spotted grouper iridovirus and rock bream iridovirus shared 99% sequence identity, but only 82 out of 118 potential ORFs were annotated; in contrast, we predict that these species share an identical complement of genes. These annotation changes allowed the redefinition of the group of core genes shared by all iridoviruses. Seven new core genes were identified, bringing the total number to 26.

Conclusion

Our re-analysis of genomes within the Iridoviridae family provides a unifying framework to understand the biology of these viruses. Further re-defining the core set of iridovirus genes will continue to lead us to a better understanding of the phylogenetic relationships between individual iridoviruses as well as giving us a much deeper understanding of iridovirus replication. In addition, this analysis will provide a better framework for characterizing and annotating currently unclassified iridoviruses.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1743-422X-4-11) contains supplementary material, which is available to authorized users.

Competing interests

The author(s) declare that there are no competing interests.

Authors' contributions

HEE, JM, EP, and CRB carried out the analysis of the Iridoviridae family and generated the tables and figures. VTJ and CU generated the databases and tools to carry out the analysis done in the manuscript. CRB and CU conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Background

Iridoviruses are large DNA viruses (~120–200 nm in diameter) that replicate in the cytoplasm of infected cells. Iridovirus genomes are circularly permuted and terminally redundant, and range in size from 105 to 212 kbp [1, 2]. The family Iridoviridae is currently subdivided into five genera:Chloriridovirus, Iridovirus, Lymphocystivirus, Megalocytivirus, and Ranavirus [3].
Iridoviruses have been found to infect invertebrates and poikilothermic vertebrates, including amphibians, reptiles, and fish [4]. Iridovirus infections produce symptoms that range from subclinical to very severe, which may also result in significant mortality [59]. The high pathogenicity associated with some members of the iridovirus family has had a significant impact on modern aquaculture, fish farming, and wildlife conservation. For example, systemic iridovirus infections have been found in economically important freshwater and marine fish species worldwide. In addition, iridovirus infections have been implicated in amphibian population declines, representing a set of emerging infectious diseases whose spread has been accelerated by human activities [1014].
Despite the economic and ecological significance of iridoviruses, very little is currently known about their molecular biology. One approach towards gaining a deeper understanding of iridoviral pathogenesis is to investigate the core set of essential genes conserved among all members of the family. The genomes of twelve iridoviruses, including at least one from each genus, have been completely sequenced (Table 1). According to the previously published annotations, these genomes contained only 19 core genes associated with a variety of viral activities: transcriptional regulation, DNA metabolism, protein modification, and viral structure. Definition of this core set of genes also highlights those genes that are conserved across some, but not all, genera, and unique genes found within a single species. These non-core genes may be involved in specific virus-host interactions, enhancement of virus replication, and augmented pathogenesis in certain species.
Table 1
Iridovirus Genomes
Virus
Abbreviation
Genus
Genome Size (bp)
# ORFs*
GenBank accession #
Ref
Frog virus 3
FV3
Ranavirus
105903
97
AY548484
[27]
Tiger frog virus
TFV
Ranavirus
105057
103
AF389451
[1]
Ambystoma tigrinum virus
ATV
Ranavirus
106332
92
AY150217
[30]
Grouper iridovirus
GIV
Ranavirus
139793
139
AY666015
[21]
Singapore grouper iridovirus
SGIV
Ranavirus
140131
139
AY521625
[22]
Lymphocystis disease virus 1
LCDV-1
Lymphocystivirus
102653
108
L63545
[34]
Lymphocystis disease virus China
LCDV-China
Lymphocystivirus
186250
178
AY380826
[24]
Infectious spleen and kidney necrosis virus
ISKNV
Megalocytivirus
111362
117
AF371960
[20]
Rock bream iridovirus
RBIV
Megalocytivirus
112080
116
AY532606
[19]
Orange-spotted grouper iridovirus
OSGIV
Megalocytivirus
112636
116
AY894343
[18]
Invertebrate iridescent virus 6
IIV-6
Iridovirus
212482
211
AF303741
[2]
Invertebrate iridescent virus 3
IIV-3
Chloriridovirus
191100
126
DQ643392
[26]
*The number of ORFs in each viral genome reflects the results of the analysis done in this paper
Despite the growing number of sequenced iridovirus genomes, no systematic comparative genomic analysis of the family has yet been performed. Thus, annotation of these genomes has been performed without standardization and has so far been guided primarily by the position of start/stop codons rather than the presence of homologous sequences. As a result, some long overlapping potential ORFs have been automatically designated as coding sequences, and smaller homologous ORFs overlooked. In this paper, we have taken a comparative genomics approach to re-examine the annotation of all twelve iridovirus genomes, using the Viral Orthologous Clusters (VOCs) [15] and Viral Genome Organizer (VGO) [16] software. These re-annotated genomes were then analysed further, both to define the core set of iridovirus genes more accurately, and to provide a deeper understanding into the phylogenetic relationship between individual iridovirus species.

Results & discussion

Re-annotation of Iridovirus genomes

One objective of this project was to demonstrate the application of comparative genomics to annotating viral genomes, particularly those that have been poorly characterized experimentally. In an earlier study, we utilized comparative genomics to identify previously unannotated small viral ORFs in the Poxviridae [17]. Here, we focused our analysis on the Iridoviridae family, which represents a challenge in genome annotation since there is little experimental evidence available to confirm gene expression. Another problem is that iridovirus promoter elements have not been well characterized, and thus cannot be used as a reliable criterion for assigning ORFs. These combined factors made previous iridovirus gene annotation a somewhat arbitrary process, resulting in closely related iridovirus species with dramatic differences in their genomic annotations. Therefore, we decided to analyse all members of this family using a standardized comparative genomics approach, using the fact that ORFs that are conserved in more than one divergent species are likely to be functional genes.
Analysis was begun with the Megalocytivirus genus, which contains three sequenced genomes: infectious spleen and kidney necrosis virus (ISKNV), rock bream iridovirus (RBIV), and orange-spotted grouper iridovirus (OSGIV). These three viruses display a co-linear arrangement of genes with an overall DNA sequence identity of greater than 90%. In the analysis of this genus, differences in gene content were examined in detail. Dotplots were used to determine presence of orthologous DNA and a variety of BLAST searches and the VGO genome visualization software were used to determine the reason (frameshifts, extra stop codons) behind the apparent absence of some ORFs.
Using this approach, a substantial number of ORFs were either added to, or deleted from members of the Megalocytivirus genus (Table 2). OSGIV and RBIV share 99% DNA sequence identity, and thus are probably different strains of the same virus; however, previous annotation described only 82 out of 118 total annotated ORFs shared by the two genomes [18, 19]. After our re-analysis, the RBIV and OSGIV genomes had an identical complement of annotated genes. Furthermore, this re-annotated ISKNV genome contained 110 ORFs orthologous with both RBIV and OSGIV (compared to 71 in the old annotation.) (Table 2) [18, 20].
Table 2
Re-annotation of the Megalocytivirus genus
ISKNVa
Start
Stopc
aad
RBIVa
Start
Stopc
aad
OSGIVa
Start
Stopc
aad
1L
1270
134
378
1L
1270
134
378
1L
1270
134
378
2R
1394
2044
216
2R b
1394
1597/1781
67
2R
1394
1789
131
-
-
-
-
3R
1841
2056
71
3R
1849
2064
71
3L
2634
2077
185
4L
2605
2102
167
4L
2613
2110
167
4L
2890
2681
69
5L
2800
2624
58
5L
2808
2632
58
5L
3648
2893
251
6L
3541
2876
221
6L
3548
2883
221
6L
5155
3794
453
7L
5147
3786
453
7L
5154
3793
453
7L
6631
5174
485
8L
6621
5164
485
8L
6628
5171
485
8R
6669
8246
525
9R
6692
8239
515
9R
6699
8246
515
9R
8342
8503
53
10R
8335
8496
53
10R
8342
8503
53
10L
9054
8662
130
11L
9047
8655
130
11L/12L b
9055
8849/8662
130
11L
9311
9051
86
11.5L
9304
9044
86
13L
9312
9052
86
12R
9330
9659
110
12R
9323
9655
110
14R
9331
9663
110
13R
9669
11054
461
13R
9662
11059
465
15R
9670
11067
465
14R
11309
12268
319
14R
11314
12288
324
16R
11322
12296
324
15R
12278
13069
263
15R
12298
13089
263
17R
12302
13093
263
16L
13716
13129
195
16L
13733
13146
195
18L
13738
13151
195
17L
14095
13718
125
17L
14086
13748
112
19L
14088
13753
111
17.5R
14089
14325
78
18R
14171
14410
79
20R
14094
14351
85
18.5L b
14563
14233
109
19L
14648
14472
58
21L
14607
14431
58
19R
14579
17425
948
20R
14664
17510
948
22R
14623
17469
948
20L
17642
17454
62
21L
17756
17574
60
23L
17715
17533
60
21L
17900
17778
40
21.5L
18014
17892
40
24L
17973
17851
40
22L
19489
17990
499
22L
19714
18104
536
25L
19715
18063
550
23R
19562
22132
856
23R
19787
22204
805
26R
19788
22922
1044
24R
22300
23238
312
26R
23035
23973
312
27R
23207
24145
312
25R
23354
23779
141
27R
23997
24380
127
28R
24169
24696
175
26L
24145
23822
107
27.5L
24697
24377
106
29L
25013
24693
106
27L
25063
24167
298
28L
25615
24719
298
30L
25931
25035
298
28L
28559
25080
1159
29L
29138
25632
1168
31L
29454
25948
1168
29L
28814
28593
73
29.5L b
29362
29087/29145
91
32L
29682
29461
73
31.5L
29414
28884
176
30.5L
29957
29430
175
33.5L
30277
29750
175
32R
29447
30061
204
31R
29990
30622
210
34R
30310
30942
210
33L
31079
30138
313
32L
31654
30713
313
35L
31935
31033
300
34R
31144
34278
1044
33R
31700
34861
1053
36R
32018
35176
1052
35L
35508
34360
382
34L
36067
34934
377
37L
36382
35249
377
36R
35546
36601
351
35.5R
36061
37113
350
38R
36376
37431
351
37L
37950
36598
450
37L
38219
37110
369
39L
38777
37428
449
38L
39395
37959
478
38L
39974
38469
501
40L
40225
38786
479
39R
39439
40311
290
39.5R b
40012
40506/40857
164
41R
40290
41168
292
40L
41443
40304
379
41L
41995
40850
381
42L
42306
41161
381
41L
42788
41445
447
42L
43346
41997
449
43L
43657
42308
449
42R
42803
43396
197
43R
43361
43959
198
44R
43672
44271
199
43L
43842
43480
120
43.5L
44405
43975
142
45L
44717
44355
120
44L
44645
43845
266
44L
45208
44408
266
46L
45524
44724
266
45L
45564
44650
304
45L
46127
45213
304
47L
46443
45529
304
46L
46241
45558
227
46L
46804
46121
227
48L
47120
46437
227
47R
46401
46664
87
47R
47150
46887
87
49R
47280
47543
87
48R
46661
47005
114
47.5R b
47224
47433/47588
69
50R
47540
47893
117
49R
47021
47191
56
48.5R
47604
47774
56
51R
47909
48079
56
50L
47678
47250
142
49L
48270
47842
142
52L
48575
48147
142
51R
47733
47864
43
-
-
-
-
-
-
-
-
52L
48403
47951
150
50L
48999
48547
150
53L
49306
48854
150
53R
48405
48620
71
51R
49001
49195
64
54R
49308
49502
64
54L
49559
48633
308
52L
50173
49229
314
55L
50480
49536
314
55L
50508
49582
308
53L
51137
50196
313
56L
51444
50503
313
56L
51166
50519
215
54L
51795
51148
215
57L
52102
51455
215
57L
51433
51173
86
55L
52062
51802
86
58L
52369
52109
86
59L
52414
51749
221
56L
52839
52327
170
59L
53146
52634
170
61L
53162
52359
267
57L
53709
52903
268
60L
54016
53210
268
62L
56785
53159
1208
58L
57467
53706
1253
61L/62L b
55131
54013/53893
372
63L
59875
57227
882
59L
60567
57919
882
63L
60876
58228
882
64L
61393
59918
491
60L b
62102
60855/60635
415
64L
62416
60944
490
65L
61900
61439
153
61L
62611
62144
155
65L
62928
62458
156
66L
63025
61982
347
62L
63744
62662
360
66L
64061
62979
360
67L
63855
63271
194
63.5L
64446
63865
193
67.5L
64763
64182
193
68L
65329
63896
477
64L
65917
64484
477
69L
66234
64801
477
69L
66001
65336
221
65L b
66661
66215/65929
148
70L
66977
66246
243
70L
66331
66101
76
-
-
-
-
-
-
-
-
71L
68042
66432
536
68L
68529
67120
469
71L
68973
67417
518
72R
68173
69177
334
-
-
-
-
-
-
-
-
73R
69203
69622
139
69R b
68717
69191/69135
157
72R
69078
69497
139
74R
69669
70682
337
70R
69184
70203
339
73R
69546
70568
340
75L
71043
70777
88
71L
70573
70304
89
74L
70938
70669
89
76L
74017
71045
990
72L
73541
70575
988
75L
73912
70940
990
77R
74035
75369
444
73R
73559
74893
444
76R
73930
75264
444
78R
75366
75830
154
75R
74890
75354
154
77R
75261
75725
154
79L
76053
75832
73
76L
75580
75356
74
78L
75951
75727
74
-
-
-
-
77R
75664
76137
157
79R
76039
76512
157
80L
76368
76165
67
-
-
-
-
-
-
-
-
81R
76367
76864
165
78R
76150
76647
165
80R
76525
77022
165
82L
78007
76901
368
79L
77802
76696
368
81L
78177
77071
368
83R
78152
78418
88
80R
77827
78225
132
82R
78202
78600
132
84L
79881
78526
451
81L
79556
78252
434
83L
79931
78627
434
85R
79884
80486
200
82R
79643
80173
176
84R
80018
80548
176
86R
80483
80947
154
82.5R
80170
80637
155
84.5L
80545
81012
155
87R
80940
81710
256
83R
80603
81400
265
85R
80978
81775
265
88R
81717
83720
667
84R
81503
83425
640
86R/87R b
82234
83805/82279
523
90.5L
84663
83701
320
85L
84457
83630
275
88.5L
84811
83786
341
93L
85786
84860
308
86L
85504
84578
308
90L
85918
84992
308
94L
86296
85796
166
87L
86014
85514
166
91L
86428
85928
166
95L
87481
86321
386
88L
87202
86039
387
92L
87616
86453
387
96L
88298
87489
269
89.5L b
87601
87218/87210
127
93L
88361
87624
245
97.5L
88723
88232
163
90L
88443
87952
163
94L
88857
88366
163
99L
89097
88774
107
91L
88814
88491
107
95L
89229
88906
107
100L
89689
89144
181
92L
89515
88868
215
96L
90024
89377
215
101L
90251
89736
171
93.5L
89999
89470
175
97L
90508
89993
171
102R
90311
91753
480
94R
90068
91513
481
98R
90577
92022
481
103R
91760
92161
133
95.5R
91477
91935
152
99R
92029
92442
137
104R
92215
92991
258
96R
91994
92773
259
100R
92501
93280
259
105R
92993
93358
121
97R
92775
93146
123
101R
93282
93653
123
-
-
-
-
98R
93240
94127
295
102R
93747
94634
295
106L
94501
93482
339
99L
95042
94221
273
103L
95548
94676
290
108.5L
95093
94494
199
100.5L
95699
95068
209
104.5L
96217
95574
213
109L
97950
95185
921
101L
98557
95792
921
106L
99060
96298
920
110R
97997
98152
51
101.5L
98609
98764
51
107R
99113
99268
51
111L
99039
98149
296
102L
99657
98761
298
108L b
99885
99265/99849
206
112R
99059
99802
247
103R b
99677
100426/100422
249
109R
100183
100926
247
113R
99937
100290
117
104.5R
100493
100909
138
110R
100998
101414
138
114L
103159
100334
941
106L b
103615
102539/100953
358
111L
104041
101594
815
115R
103203
104213
336
108.5R
104050
104781
243
112R
104476
105486
336
116R
104219
105667
482
110R
105060
106493
477
113R
105547
106701
384
117L
106395
105721
224
111L
107221
106547
224
114L
107652
106978
224
118L
108093
106723
456
112L
108913
107549
454
115L
109299
107986
437
119R
108105
108392
95
113R
108931
109104
57
116R
109369
109656
95
120R
108424
108933
169
114R
109248
109637
129
117R
109687
110193
168
121L
109584
108934
216
115L
110419
109756
220
118L
110849
110214
211
122R
109594
110313
239
116R
110429
111148
239
119R
110859
111578
239
123R
110391
110576
61
117R
111226
111420
64
120R
111656
111850
64
124L
111351
110665
228
118L
112037
111576
153
121L
112625
111939
228
aORFs that have been added or altered are highlighted in bold. If a previously annotated ORF is not listed in the table, it has been deleted.
bPotentially frameshifted ORF
cWhere an ORF has a potential sequencing error resulting in a frameshift mutation, 2 stop codons are provided in the format X/Y. The first number represents the actual physical stop in the reported sequence. The second number is the proposed stop if a sequencing error occurred.
dLength of ORF in amino acids
In the process of re-examining these genomes, we annotated a number of genes containing apparent frameshift mutations between species. In RBIV we annotated ten genes with potential frameshift mutations, while OSGIV had four such genes (Table 2). All of the genes containing potential frameshift mutations had orthologs in the other two members of the Megalocytivirus genus (Table 2). In some cases, these mutations may be the result of natural mutations within the viruses; however, it is also possible that these apparent frameshift mutations are actually sequencing errors. For both RBIV and OSGIV, PCR primers based on the ISKNV sequence were used to amplify genomic fragments, which were subsequently sequenced [18, 19]. It is possible that errors were introduced during the PCR process, leading to apparent frameshifts in the reported sequence. It is interesting to note that the genomic sequence of ISKNV (sequenced using subcloned fragments rather than PCR products) [20], had significantly fewer annotation changes made during our re-analysis. Though we have not experimentally proven that the frameshift mutations in OSGIV and RBIV are the result of sequencing errors, it would be useful to focus future sequencing efforts on these regions, to determine if the reported sequences are indeed correct.
After re-annotating the Megalocytivirus genus, we applied the same comparative genomic analysis to the Ranavirus genus. The genus contains five sequenced members divided into two groups, each with a high degree of sequence conservation and a co-linear arrangement of genes. The first group is comprised of frog virus 3 (FV3), tiger frog virus (TFV), and Ambystoma tigrinum virus (ATV). The second group contains Singapore grouper iridovirus (SGIV) and grouper iridovirus (GIV).
The first step in the re-annotation of the Ranavirus genus was a comparative genomic analysis of FV3, TFV, and ATV. This resulted in an increase in the number of conserved annotated genes from 76 to 87 (Table 3). Subsequent re-analysis of the second Ranavirus group, containing SGIV and GIV, resulted in an increase from 131 to 138 conserved annotated ORFs (Table 4). It should be noted that two of the newly annotated ORFs, SGIV 0.5L and GIV 120.5L, appear to "wrap around", beginning at one end of the genome with the remainder of the ORF located at the opposite end [21, 22]. These apparent "split ORFs" are actually the result of the circularly permutated iridovirus genome being represented as a linear genomic sequence, when the arbitrarily chosen start point happens to fall in the middle of an ORF [23].
Table 3
Re-annotation of FV3, TFV, and ATV of the Ranavirus genus
FV3a
Start
Stopc
aad
TFVa
Start
Stopc
aad
ATVa
Start
Stopc
aad
1R
272
1042
256
105R
103809
104576
256
91R
104836
105606
256
2L
2611
1649
320
2L b
1028
315/11
237
1L
981
70
303
2.5L
3488
2649
279
2.5L
1943
1065
292
2L
1858
1019
279
3R
3418
4734
438
4R
1937
3151
404
3R
1892
3106
404
4R
4775
4957
60
5R
3190
3372
60
4R
3149
3331
60
5R
5390
6004
204
6R
3816
4418
200
-
-
-
-
6R
6007
6234
75
-
-
-
-
-
-
-
-
-
-
-
-
6.5R
4411
4578
55
-
-
-
-
7.5L
7025
7411
128
7L
5452
5024
142
5L
4416
3994
140
8R
7503
11384
1293
8R
5531
9415
1294
6R
4495
8379
1294
9L
14599
11753
948
9L
12599
9753
948
7L
11725
8879
948
10R
14615
15028
137
10R
12615
13028
137
8R
11741
12154
137
11R
15378
15590
70
11R
13380
13592
79
88L
102924
102712
70
12L
16549
15656
297
12L
14551
13658
297
87R
101753
102646
297
-
-
-
-
13L
14947
14747
66
86R
101169
101363
64
13R
17090
17296
68
14.5R b
15041
15184/15247
47
85.5L
101128
100871
85
14R
17311
17670
119
15R
15261
15620
119
84L
100856
100482
124
15R
17766
18734
322
16R
15716
16663
315
83R
100400
99474
308
16R
19014
19841
275
17R
16838
17665
275
82.5L
98809
98438
123
17L
21590
20082
502
18L
19414
17906
502
81R
96410
97918
502
18L
21864
21628
78
18.5L
19687
19451
78
80.5R
96137
96373
78
19R
21916
24471
851
19R
19686
22271
861
80L
96083
94086
665
20R
24519
24965
148
20R
22319
22774
151
79L
94038
93589
149
21L
25861
25202
219
21L
23657
23998
219
78R
92383
93042
219
22R
25991
28912
973
22R
23789
26716
975
77L
92253
89326
975
23R
29290
30438
382
23R
27093
28241
382
53R
58082
59230
382
24R
30821
31918
365
24R
28636
29733
365
54R
59613
60710
365
25R
32112
32900
262
25R
29930
30709
259
55R
62328
63335
335
-
-
-
-
26R
30778
30936
52
56R
63402
63500
32
26R b
32967
33197
76
27R
31033
31812
259
57R
63659
64438
259
-
-
-
-
28L
32190
32002
62
-
-
-
-
27R
33728
36640
970
29R
32345
35257
970
58R
64968
67880
970
28R
36689
37177
162
30R
35306
35794
162
59R
67929
68417
162
29L
37652
37356
98
31L
36122
35823
99
-
-
-
-
30R
37854
38006
50
-
-
-
-
-
-
-
-
31R
38068
38487
139
32R
36565
36984
139
60R
68786
69205
139
32R
38537
40426
629
33R
37098
39047
649
61R
69255
71471
738
33R
40509
40700
63
34R
39133
39324
63
62R
71555
71746
63
34R
40844
41164
106
35.5R
39467
39787
106
62.5R
71894
72235
113
35L
41717
41256
153
37L
40308
39772
178
63L
72576
72220
118
36L
42353
41256
365
38.5L b
40938
40543/40367
131
-
-
-
-
-
-
-
-
39R
41112
41246
44
-
-
-
-
37R
42749
43378
209
40R
41296
41952
218
64R
74110
74739
209
38R
43519
45216
565
41R
42091
43788
565
65R
74878
76575
565
39R
45322
45672
116
42R
43899
44249
116
66R
76682
76948
88
40R
45761
46309
182
43R
44335
44883
182
67R
77048
77671
207
-
-
-
-
44R
44973
45239
88
68R
77899
78039
46
41R
46691
50188
1165
45R
45270
48767
1165
69R
78111
81608
1165
43.5L b
50940
51455/5684
171
46L
50362
49133
409
70L
82913
82152
253
45L
52348
51938
136
47L
50899
50489
136
71L
83450
83040
136
46L
52968
52723
81
48L
51411
50953
152
72L
84331
83504
275
47L
53509
53093
138
49L
51953
51537
138
73L
84874
84458
138
48L
53763
53512
83
50L
52207
51956
83
74L
85187
84804
127
49L
54621
53872
249
51L
52899
52315
194
75L
86776
85235
513
50L
55459
54770
229
52L
53876
53136
246
-
-
-
-
51R
55539
57224
561
53R
53956
55641
561
76R
86858
88543
561
52L
58548
57481
355
54L
56965
55898
355
52R
57441
57602
53
53R
58886
60454
522
55R
57301
58869
522
51L
57102
55522
526
54L
60899
60669
76
-
-
-
-
-
-
-
-
55L
62232
60937
431
56L
60615
59320
431
50R
53770
55065
431
-
-
-
-
57L
60772
60623
49
49R
53613
53762
49
56R
62320
62757
145
58R
60809
61213
134
48L
53576
53172
134
57R
62871
64367
498
59R
61254
62750
498
47L
53130
51634
498
-
-
-
-
60L
62888
62757
43
-
-
-
-
58.5R
64819
65373
184
61R
63264
63818
184
46L
50770
50216
184
59L
67014
65956
352
62L
65445
64387
352
45R
48676
49734
352
60R
67176
70217
1013
63R
65605
68646
1013
44L
48512
45471
1013
61L
70408
70226
60
-
-
-
-
-
-
-
-
-
-
-
-
64R
69029
69151
40
-
-
-
-
62L
74516
70851
1221
65L
72940
69281
1219
43R
41447
45112
1221
62.5R
74515
74778
87
66.5R
72927
73202
91
42.5L
41460
41185
91
63R
74895
75389
164
68R
73319
73813
164
42L
41068
40631
145
64R
75529
75816
95
69.5R
73946
74209
87
40L
40492
40205
95
65L
76373
76209
54
-
-
-
-
-
-
-
-
66L
76921
76370
183
70.5L
75301
74685
204
38.5R
39094
36681
195
67L
78139
76976
387
71L
76525
75362
387
38R
37876
39039
387
68R
78422
78709
95
72R
76785
76982
65
37bL
37592
37416
58
-
-
-
-
73L
77175
77020
51
36R
36736
36891
51
69R
78845
79111
88
74R
77244
77507
88
35L
36677
36411
88
70R
79129
79503
124
75R
77507
77902
131
34.5L
36392
36018
124
71R
79543
79776
77
76R
77942
78175
77
34L
35978
35742
78
72L
80549
79833
238
77L
78948
78232
238
32R
34970
35293
107
73L
81971
80997
324
78L
80299
79325
324
31R
33319
34311
330
74L
83258
82146
370
79L
81498
80506
330
30R
31947
33128
393
75L
83544
83290
84
80L
81809
81555
84
29R
31637
31891
84
76R
83607
83828
73
81R
81872
82093
73
28L
31574
31353
73
77L
84172
83825
115
82L
82437
82090
115
27R
31009
31356
115
78L
85395
84757
212
83L
83568
82894
224
-
-
-
-
79R
85531
87249
572
84R
83668
85386
572
26L
30729
28999
576
80L
88987
87872
371
85L
86988
85873
371
25R
27224
28345
373
81R
89043
89321
92
86R
87046
87324
92
24L
27168
26890
92
82R
89450
89923
157
87R
87454
87927
157
23L
26762
26289
157
-
-
-
-
88R
88138
88512
124
22L
25564
25277
95
83R
90373
91017
214
89R
88857
89501
214
21L
24912
24268
214
84R
91389
92126
245
90R
89903
90640
245
20L
23923
23141
260
85R
92201
92788
195
91.5R
90715
91302
195
19L
23066
22479
195
86L
93363
93178
61
92L
91943
91650
97
18R
21742
22119
125
87L
95533
93716
605
93L
94096
92279
605
17R
19571
21397
608
88R
95566
96018
150
94R
94129
94581
150
16L
19538
19086
150
89R
96086
97252
388
95R
94649
95845
398
15L
19018
17744
424
90R
97345
98736
463
96R
95938
97329
463
14L
17651
16260
463
91R
98860
100047
395
97R
97453
98640
395
13L
16136
14949
395
92R
100398
100637
79
98R
98927
99232
101
-
-
-
-
93L
100986
100819
55
99L
99593
99426
55
12R
14091
14246
51
94L
101563
101096
155
100R
100169
99702
155
11L
13512
13979
155
95R
101656
102747
363
101R
100180
101352
390
10L
13419
12325
364
96R
103549
104220
223
103R
102169
102840
223
89R
103279
103965
228
97R
104303
104716
137
104R
102923
103372
149
90R
104031
104444
137
aORFs that have been added or altered are highlighted in bold. If a previously annotated ORF is not listed in the table, it has been deleted.
bPotentially frameshifted ORF
cWhere an ORF has a potential sequencing error resulting in a frameshift mutation, 2 stop codons are provided in the format X/Y. The first number represents the actual physical stop in the reported sequence. The second number is the proposed stop if a sequencing error occurred.
dLength of ORF in amino acids
Table 4
Re-annotation of SGIV and GIV of the Ranavirus genus
SGIVa
Start
Stopc
aad
GIVa
Start
Stopc
aad
14L
12773
12348
141
1.3L
2020
1595
141
15L
13000
12821
59
1.5L
2247
2068
59
16L
14289
13048
413
2L
3536
2295
413
18R
14317
15174
285
3R
3564
4421
285
19R
15196
16224
342
4R
4443
5399
318
20L
17246
16278
322
5L
6421
5453
322
21L
17725
17306
139
6L
6900
6475
141
22L
18277
17777
166
7L
7486
6950
178
24L
18774
18319
151
8L
7983
7528
151
25L
20488
18956
510
9L
9682
8165
505
26R
20567
22267
556
10R
9761
11461
566
28L
23363
22350
337
11L
12559
11546
337
29L
24445
23447
332
12L
13659
12643
338
30L
25635
24610
341
13L
14850
13816
344
31L
27160
26144
338
14L
16384
15362
340
32.5L
28666
27609
352
15L
17904
16846
352
33L
29760
28726
344
16L
19010
17964
348
34L
30161
29823
112
16.5L
19411
19073
112
35L
31388
30261
375
17L
20638
19511
375
36L
32515
31526
329
18L
21835
20771
354
37L
33696
32668
342
19L
23016
21988
342
38L
34236
33724
170
20L
23556
23044
170
39L
37417
34262
1051
21L
26738
23583
1051
41L
37978
37547
143
22L
27296
26865
143
42R
38058
38285
75
-
-
-
-
43R
38285
40288
667
23R
27608
29605
665
45L
41090
40362
242
24L
30407
29679
242
46L
41866
41120
248
25L
31204
30467
245
47L
43063
41909
384
26L
32401
31247
384
48L
43489
43214
91
27L
32824
32549
91
49L
44002
43535
155
28L
33336
32857
159
50L
44695
44033
220
29L
34029
33367
220
51L
45563
44868
231
30L
34896
34201
231
52L
37997
35097
968
31L
37997
35097
966
54R
48777
49424
215
32R
38100
38747
215
55R
49447
50169
240
33R
38770
39492
240
56R
50198
50938
246
34R
39521
40261
246
57L
54510
51004
1168
35L
43833
40327
1168
59L
55000
54560
146
35.5L
44323
43391
146
60R
54967
57879
970
36R
44348
47200
950
61R
57914
58528
204
37R
47235
47849
204
62R
58593
59363
256
38R
47914
48708
264
64R
59415
61133
572
39R
48760
50478
572
65R
61268
61510
80
39.5R
50614
50856
80
66R
61603
61845
80
39.7R
50949
51191
80
67L
62482
61907
191
40L
51829
51254
191
68L
63334
62516
272
41L
52681
51863
272
69L
64967
63321
548
42L
54314
52668
548
70R
64994
65452
152
43R
54341
54799
152
71R
65483
66307
274
44R
54830
55654
274
72R
66404
67795
463
45R
55751
57142
463
73L
71185
67874
1103
46L
60532
57221
1103
74R
68472
68738
88
47R
57819
58085
88
75R
71239
71775
178
48R
60586
61122
178
76L
72715
71858
285
49L
62064
61207
285
77L
73747
72839
302
50L
63096
62188
302
-
-
-
-
51L
62944
62282
220
78L+81L a
76809
76246/73855
984
52L
66156
63202
984
82L
77592
76924
222
53L
66939
66271
222
83R
77672
79009
445
54R
67019
68356
445
84L
80193
79066
375
55L
69540
68413
375
85R
80251
80529
92
56R
69598
69876
92
86R
80591
81055
154
57R
69938
70402
154
87R
81385
82032
215
58R
70728
71375
215
88L
84187
82667
506
59L
73355
71835
506
89L
85420
84248
390
60L
74588
73416
390
90L
86627
85506
373
61L
75794
74673
373
91L
87886
86750
378
62L
77051
75915
378
92L
89216
88086
376
63L
78373
77240
377
93L
90497
89280
405
64L
79654
78437
405
95R
90635
91111
158
64.5L
80265
79792
157
96R
91148
91618
156
65R
80301
80771
156
97L
92774
91626
382
66L
81926
80778
382
98R
92428
93231
267
67R
81580
82383
267
99R
93244
93492
82
67.5R
82380
82646
88
101R
93753
94694
313
68R
82906
83847
313
102L
95007
94774
77
69L
84161
83928
77
103R
95092
95385
97
70R
84246
84539
97
104L
99252
95446
1268
71L
88406
84600
1268
105R
95498
95731
77
72R
84652
84885
77
107R
99308
100453
381
73R
88462
89088
208
111R
100766
101533
255
74R
89401
90168
255
112R
101588
102655
355
75R
90223
91326
367
114L
103050
102712
112
77.5L
91721
91383
112
115R
103122
103580
152
78R
91793
92251
152
116R
103700
104476
258
79R
92371
93147
258
117L
104733
104575
52
79.5L
93401
93241
52
118R
104795
105754
319
80R
93463
94422
319
119R
105799
106050
83
80.5R
94467
94718
83
120L
106525
106103
140
81L
95162
94779
127
121R
106615
106869
84
81.5R
95291
95547
84
122L
107599
106967
210
82L
96275
95643
210
123L
108740
107652
362
83L
97416
96328
362
124R
108863
109399
178
83.5L
98976
97684
130
125R
109474
110028
184
84R
98151
98705
184
126R
110101
110658
185
85R
98692
99330
212
127R
110731
111252
173
86R
99403
99924
173
128R
112041
115070
1009
87R
100788
103817
1009
129L
115490
115308
60
87.5L
104245
103884
119
131R
115749
116303
184
88R
104499
105053
184
132R
116321
117148
275
89R
105071
105898
275
134L
118498
117527
323
90L
107244
106273
323
135L
118885
118547
112
90.5L
107631
107258
123
136R
118946
119260
104
91R
107692
108006
104
137R
119282
120667
461
92R
108028
109413
461
138L
120907
120713
64
92.3L
109653
109457
64
139R
121013
121324
103
92.5R
109757
110068
103
140R+141R b
121397
122311/124558
 
93R
110141
113554
1137
143L
124882
124643
79
94L
113878
113639
79
144R
124963
125421
152
95R
113959
114417
152
145R
125480
125977
165
96R
114476
114973
165
146L
127052
126078
324
97L
116050
115076
324
147L
128221
127187
344
98L
117220
116186
344
148R
128324
128803
159
99R
117323
117802
159
149R
128843
129220
125
99.5R
117842
118219
125
150L
130827
129301
508
100L
119826
118300
508
151L
131435
130848
195
101L
120434
119847
195
152R
131534
132772
412
102R
120533
121771
412
153L
132661
132089
190
103L
121660
121088
190
154R
132788
133081
97
103.5R
121787
122080
97
155R
133172
134899
575
104R
122172
123896
574
156L
135860
135048
270
105L
124852
124043
269
157R
135948
136472
174
106R
124940
125464
174
158L
136944
136528
138
106.5L
125936
125520
138
159R
137020
137511
163
106.7R
126012
126503
163
160L
137996
137508
162
107L
126988
126500
162
161.5L
138598
138309
95
107.5L
127561
127296
87
162L
139822
138674
382
108L
128797
127649
382
0.5L
1029
0/140141-140020
391
109L
130138
128963
391
1L
1971
1057
304
110L
131080
130166
304
3R
2018
3163
381
111R
131127
132272
381
4L
4332
3235
365
113L
133442
132345
365
5L
5542
4400
380
114L
134652
133510
380
6R
5570
6349
259
115R
134680
135453
257
7L
7339
6416
307
116L
136425
135520
301
8L
7886
7194
230
117L
136972
136280
230
9L
8444
7980
154
118L
137530
137066
154
10L
8888
8517
123
118.5L
137974
137603
123
11L
9132
8944
62
119L
138218
138030
62
12L
12293
9219
1024
120.5L
138307/139793
1/1540
1008
aORFs that have been added or altered are highlighted in bold. If a previously annotated ORF is not listed in the table, it has been deleted.
bPotentially frameshifted ORF
cWhere an ORF has a potential sequencing error resulting in a frameshift mutation, 2 stop codons are provided in the format X/Y. The first number represents the actual physical stop in the reported sequence. The second number is the proposed stop if a sequencing error occurred.
dLength of ORF in amino acids
As seen above, our comparative genomic approach was able to identify previously unannotated ORFs, homologous ORFs with potential frameshifts, and ORFs split between the two ends of a circular genome. Although this approach proved extremely successful for the Ranavirus and Megalocytivirus genera, we were unable to use it for the Chloriridovirus, Iridovirus, and Lymphocystivirus genera. This is due to the lack of co-linearity and the highly divergent sets of genes that exist between the members of these genera, as well as the low number of available genome sequences. However, we did modify the annotations of lymphocystis disease virus-China (LCDV-China) and invertebrate iridescent virus-6 (IIV-6). The previous annotations of these genomes of both species had contained a large number of overlapping ORFs [2, 24], which we decided to exclude on several grounds. First, LCDV-China and IIV-6 are the only iridoviruses, out of the twelve so far sequenced, in which overlapping ORFs have been annotated. In addition, the original sequencing paper for IIV-6 [2] and a follow-up paper by the same group [25] did not include a number of the overlapping ORFs reported in the database sequence, presumably due to their small size and lack of similarity with other viral and cellular genes. Finally, there is no experimental or bioinformatics evidence to suggest that any of these ORFs encode proteins. Therefore, to improve the overall consistency of the Iridoviridae family annotations, we removed the small overlapping ORF annotations from the LCDV-China and IIV-6 genomic sequences (Table 5, Additional File 1 &2).
Table 5
Overlapping ORFs deleted from the Iridovirus and Lymphocystivirus genera
Virus
Deleted
LCDV-C
4L, 8R, 17R, 20L, 21L, 26L, 28L, 30L, 31L, 32L, 35R, 36R, 44R, 46L, 48L, 52R, 55L, 68L, 74R, 76R, 78R, 79R, 81R, 88R, 92R, 94R, 98R, 102R, 103R, 113L, 120R, 130L, 132L, 134L, 138R, 141R, 144L, 152L, 155L, 156L, 163L, 167R, 174L, 183L, 188L, 192L, 193L, 194L, 195L, 198R, 199L, 200R, 204R, 207L, 210L, 213L, 223R, 225R, 232R, 233L, 236L, 238R, 240L
IIV-6
1R, 2R, 3R, 4R, 5R, 7R, 8R, 11L, 13R, 14R, 15R, 16L, 17R, 18R, 20L, 21R, 23L, 24L, 25R, 26R, 27L, 28L, 31R, 33L, 35L, 36R, 38R, 39R, 40R, 46R, 47R, 48R, 51R 52R, 53R, 54R, 55R, 57L, 58L, 59R, 63R, 64L, 66L, 68L, 70R, 72R, 73R, 74R, 76L, 78R, 79L, 80L, 81L, 86R, 87R, 88L, 89L, 90R, 91R, 92R, 93R, 97L, 99L, 102R, 103R, 105R, 108R, 109R, 112R, 114L, 119R, 124L, 125L, 128L, 129R, 131L, 133R, 134L, 144R, 147L, 150R, 151R, 152R, 153L, 154R, 158R, 163L, 164R, 166L, 167L, 168R, 171R, 173R, 174R, 177L, 178L, 180L, 181L, 182L, 183L, 185L, 186L, 187R, 188L, 189L, 190R, 191L, 194R, 199L, 202L, 204L, 207L, 108L, 210L, 214L, 215R, 217L, 220L, 222R, 223L, 230L, 231R, 233L, 237R, 239R, 243R, 245R, 248R, 252L, 256R, 257R, 258R, 260R, 262R, 263L, 264R, 265L, 266L, 267R, 269R, 270R, 271R, 275R, 276L, 277R, 278L, 279R, 280R, 281R, 282R, 283L, 286L, 288R, 290R, 291R, 292L, 294R, 296R, 297L, 298R, 299R, 303R, 304R, 305L, 310R, 311R, 314L, 316R, 318R, 319L, 320L, 321R, 323L, 324L, 326L, 327R, 328L, 330L, 331R, 333L, 334R, 336R, 338L, 339L, 341R, 344R, 345R, 351R, 352R, 353L, 354L, 355R, 356L, 360R, 362R, 363L, 364L, 365L, 367L, 370R, 371R, 372R, 377R, 379L, 381L, 382R, 383L, 386R, 387R, 390R, 392R, 394R, 397L, 398R, 399R, 402L, 403L, 405L, 406R, 407R, 408R, 409R, 410L, 412L, 416R, 417L, 418R, 419L, 421L, 424R, 425R, 427R, 429R, 430R, 431L, 432R, 433R, 434L, 435R, 440R, 442L, 444R, 445L, 446L, 447L, 448L, 449L, 450L, 452R, 455L, 456R, 459L, 461R, 462R, 464R, 465R

Defining the conserved genes in Iridoviruses

As a result of this re-annotation of the Iridoviridae family, species within each genus now have a much greater consensus among their annotated ORFs. Prior to re-annotation, only 19 ORFs appeared to be conserved across all iridovirus species (Table 6). Although a previous report has suggested that 27 core genes exist within the Iridoviridae family [26], those core genes reported are found in most, but not all published iridoviridal species. In light of our previous results, we re-examined this core set of genes using the VOCs software. We identified seven novel core genes (Table 7), increasing the total number to 26 (Table 6 &7). This increase in the number of core genes was primarily due to the five new genes annotated during the re-analysis of RBIV (Table 7 bold highlighted genes). As expected most of the core genes are predicted to have essential functions, required for transcription, replication, and virus formation. Interestingly, three core genes, the orthologs of FV3 12L, 41R, and 94L, have no predicted functions. As previously stated Delhon et al. [26] identified 27 core genes, one more than we identified after our re-analysis. Delhon et al. [26] report the orthologs of FV3 20L represent a core [26]. However, our analysis shows that orthologs of FV3 20L exist in all genera except the Megalocytivirus (Figure 1) suggesting that FV3 20L is not a core gene. Future research to determine the functions of these genes, which are also likely to be essential, will provide important data for understanding the replication cycle of iridoviruses.
Table 6
Iridoviridae Core Genes
 
Gene Namea
FV3
TFV
ATV
SGIV
GIV
LCDV-1
LCDV-C
ISKNV
RBIV
OSGIV
IIV-6
MIV
1.
Putative replication factor and/or DNA binding-packing
1R
105R
91R
116R
79R
162L
181R
61L
57L
60L
282R
79L
2.
DNA-dep RNA pol-II Largest subunit
8R
8R
6R
104L
71L
16L
191R
28L
29L
31L
176R, 343L
90L
3.
Putative NTPase I
9L
9L
7L
60R
36R
132L
075L
63L
59L
63L
22L
87L
4.
ATPase-like protein
15R
16R
83R
134L
90L
54R
114L
122R
116R
119R
75L
88R
5.
Helicase family
21L
21L
78R
54R
32R
6L
7L
56L
54L
57L
67R
4R
6.
D5 family NTPase involved in DNA replication
22R
22R
77L
52L
31L
128L
80L
109L
101L
106L
184R
121R
7.
Putative tyrosin kinase/lipopolysaccharide modifying enzyme
27R
29R
58R
78L+81L b
52L
195R
173R
61L, 114L
57L, 106Lb
60L, 111L
179R, 439L
35R
8.
NIF-NLI interacting factor
37R
40R
64R
61R
37R
82L
148L
5L
6L
6L
355R
104R
9.
Unknown
41R
45R
69R
57L
35L
163R
235R
76L
72L
75L
295L
16R
10.
Myristilated membrane protein
53R
55R
51L
88L
59L
67L
158R
7L
8L
8L
118L, 458R
6R
11.
DNA pol Family B exonuclease
60R
63R
44L
128R
87R
135R
203L
19R
20R
22R
37L
120L
12.
DNA-dep RNA pol-II second largest subunit
62L
65L
43R
73L
46L
25L
25R
34R
33R
36R
428L
9R
13.
Ribonucleotide reductase small subunit
67L
71L
38R
47L
26L
27R
41L
24R
26R
27R
376L
48L
14.
Ribonuclease III
80L
85L
25R
84L
55L
137R
187R
87R
83R
85R
142R
101R
15.
Proliferating cell nuclear antigen
84R
90R
20L
68L
41L
3L
197L
112R
103R b
109R
436L
60L
16.
Major capsid protein
90R
96R
14L
72R
45R
147L
43L
6L
7L
7L
274R
14L
17.
Putative XPPG-RAD2-type nuclease
95R
101R
10L
97L
66L
191R
169R
27L
28L
30L
369L
76L
18.
Serine-threonine protein kinase
19R
19R
80L
39L
21L
10L
45R
55L
53L
56L
380R
10L
19.
Serine-threonine protein kinase
57R
59R
47L
150L
100L
143L
178L
13R
13R
15R
98R
98L
The Iridoviridae core genes are shown.
aORFs that have been added or altered are highlighted in bold
bPotentially frameshifted ORF
Table 7
Additional Iridoviridae Core Genes Identified After Genome Re-analysis
 
Newly Characterized Gene Namea
FV3
TFV
ATV
SGIV
GIV
LCDV-1
LCDV-C
ISKNV
RBIV
OSGIV
IIV-6
MIV
1.
Myristilated membrane protein
2L
2L b
1L
19R
4R
160L
38R
90.5L
85L
88.5L
337L
47R
2.
Unknown
12L
12L
87R
118R
80R
108L
100L
96L
89.5L b
93L
287R
56L
3.
Transcription elongation factor TFIIS
81R
86R
24L
85R
56R
171R
115R
29L
29.5L b
32L
349L
55R
4.
Deoxynucleoside kinase
85R
91.5R
19L
67L
40L
136R
027R
32R
31R
34R
143R
29R
5.
Erv1/Alr family
88R
94R
16L
70R
43R
106L
142L
43L
43.5L
45L
347L
96R
6.
Immediate early protein ICP-46
91R
97R
13L
162L
108L
47L
162R
115R
108.5R
112R
393L
39R
7.
Hypothetical protein-Clostridium tetani
94L
100R
11L
98R
67R
19R
153L
86R
82.5R
84.5L
307L
33L
The Iridoviridae core genes are shown.
aORFs that have been added or altered are highlighted in bold
bPotentially frameshifted ORF
Identifying genes conserved between some, but not all, iridovirus species can give us important information when investigating evolutionary relationships within the family. A number of past phylogenetic analyses of Iridoviridae have used phylogenic trees constructed from aligned protein sequences [1, 1820, 22, 24, 27]. However, there are potential problems with phylogenic analysis based on comparisons of single genes. This type of analysis is rarely consistent due to horizontal gene transfer [28] and variable rates of evolution [29]. Therefore, we decided to take a whole genome comparative phylogenetic analysis to understand the relationship between iridoviruses. Our approach was to identify all the genes conserved between different genera to gain a better understanding of the relationships within the iridovirus family. This approach yields an indication of how similar in gene content 2 genomes are. Our whole-genome comparative analysis, grouped orthologous genes between genera (Figures 1 &2 and Additional File 3), and was consistent with phylogenic trees constructed from single protein sequences. Based on gene conservation, the Ranavirus and Lymphocystivirus genera appear to be most closely related to one another (Figure 2). In addition, the Iridovirus and Chloriridovirus genera are also closely related to one another based on presence of orthologous genes (Figure 2). In contrast, the Megalocytivirus genus and the Iridovirus/Chloriridovirus genera are equally divergent from each other as well as all other Iridoviridae family members (Figure 2).
As the list of sequenced iridovirus genomes grows, the non-co-linearity between many of these genomes becomes more apparent. The Megalocytivirus and Ranavirus, but not the Chloriridovirus, Iridovirus, and Lymphocystivirus genera, show a co-linear arrangement of genes within each genus. However, comparisons of genomic sequences from different genera suggest no co-linearity. This trend may be the result of the high recombination rates [30] seen in some iridovirus members [31]. For example, within the Ranavirus genus, ATV has two inversions relative to the FV3 and TFV sequences [30], reducing the co-linearity of these genomes to some degree. Figure 3A shows how two recombination events could convert FV3 to the ATV arrangement of genes. In contrast, a comparison between the more distantly related members within the Ranavirus genus (such as FV3 and GIV) demonstrate a much more dramatic loss of co-linearity. No long stretches of co-linear genes exist between these sequences, although small sections of co-linearity remain as seen through a dotplot analysis between FV3 and GIV (Figure 3B). The dotplot shows small regions of co-linearity scattered throughout the genome of FV3 and GIV as seen by short diagonal lines on the dotplot (Figure 3B). A schematic representation of the co-linearity between FV3 and GIV demonstrates that co-linearity occurs in small clusters of genes often only 2–4 genes in length (Figure 3C).

Conclusion

The Iridoviridae family can cause severe diseases resulting in significant economic and environmental losses. Very little is known about how iridoviruses cause disease in their host. Our re-analysis of genomes within the Iridoviridae family provides a unifying framework to understand the biology of these viruses. For example, the re-analysis of the Iridoviridae family has increased the consistency of annotated sequences from viruses within the same genus. In addition, the re-analysis has helped create a much greater consensus among Iridoviridae family members and enhanced our understanding of this virus family as a whole. The updated annotations that we have produced for the iridovirus sequences can be found in the additional files to this paper; in addition, the databases and tools to analyse Iridoviridae genomes are available to all researchers [32]. This database will contain genomes from the original GenBank files and also the edited genomes described in this paper. Further re-defining the core set of iridovirus genes will continue to lead us to a better understanding of the phylogenetic relationships between individual iridoviruses as well as giving us a much deeper understanding of iridovirus replication. In addition, this analysis will provide a better framework for characterizing and annotating currently unclassified iridoviruses.

Methods

Re-annotation of the iridoviridae

Annotated sequences for the twelve completely sequenced iridovirus genomes (Table 1) were obtained from GenBank files and imported into the Viral Orthologous Clusters (VOCs) database [15]. Species from the same genus were examined using VOCs to identify all of the orthologous genes. The analysis then focused on the differences found between genomes within the same genus. For those genomes that contained co-linear arrangements of genes (those in the Ranavirus and Megalocytivirus genera), we compared those regions containing annotated ORFs. If more than two sequenced genomes were available for a given genus, and the ORF was present in at least two of the genomes, then we set out to determine if that ORF was also present in the remainder of the genomes. By this method, we were able to re-annotate small segments of each genome without needing to re-analyse the entire genome. The Viral Genome Organizer (VGO) software [16] was used to visualize the annotated ORFs, as well as the start and stop codons found within each genome.

Analysis of orthologous genes

We used a combination of BLAST searches and queries using the VOCs software [32] to define orthologous genes between Iridoviridae genera. VOCs is a JAVA client-server that accesses a sequence query language (SQL) database containing iridovirus genomes. This SQL database permits complex queries to be assembled in an easy to use graphical user interface. VOCs initially groups orthologous genes into families based on BLASTP scores, these can be manually checked and altered if necessary.

Dotplot analysis

Dotplots of FV3 and GIV were done using JDotter [33]. JDotter provides an interactive input window that links JDotter to the VOCs database. The sequences for the FV3 and GIV were obtained through the VOCs database.

Acknowledgements

We would like to thank Daniel Rock for sharing information about mosquito iridescent virus prior to publication and Cristalle Watson for critically reviewing the manuscript. This work was supported by Discovery Grants (Natural Science and Engineering Research Council (NSERC) of Canada) to C.R.B. and C.U. H.E.E. is the recipient of an NSERC postgraduate scholarship.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The author(s) declare that there are no competing interests.

Authors' contributions

HEE, JM, EP, and CRB carried out the analysis of the Iridoviridae family and generated the tables and figures. VTJ and CU generated the databases and tools to carry out the analysis done in the manuscript. CRB and CU conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat He JG, Lu L, Deng M, He HH, Weng SP, Wang XH, Zhou SY, Long QX, Wang XZ, Chan SM: Sequence analysis of the complete genome of an iridovirus isolated from the tiger frog. Virology 2002, 292: 185-197. 10.1006/viro.2001.1245PubMedCrossRef He JG, Lu L, Deng M, He HH, Weng SP, Wang XH, Zhou SY, Long QX, Wang XZ, Chan SM: Sequence analysis of the complete genome of an iridovirus isolated from the tiger frog. Virology 2002, 292: 185-197. 10.1006/viro.2001.1245PubMedCrossRef
2.
Zurück zum Zitat Jakob NJ, Muller K, Bahr U, Darai G: Analysis of the first complete DNA sequence of an invertebrate iridovirus: coding strategy of the genome of Chilo iridescent virus. Virology 2001, 286: 182-196. 10.1006/viro.2001.0963PubMedCrossRef Jakob NJ, Muller K, Bahr U, Darai G: Analysis of the first complete DNA sequence of an invertebrate iridovirus: coding strategy of the genome of Chilo iridescent virus. Virology 2001, 286: 182-196. 10.1006/viro.2001.0963PubMedCrossRef
3.
Zurück zum Zitat Williams T, Chinchar VG, Darai G, Hyatt A, Kalmakoff J, Seligy V: Iridoviridae. In Virus Taxonomy: The Classification and Nomenclature of Viruses. Edited by: van Regenmortel MHV, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB. Seventh report of the International Committee on the Taxonomy of Viruses; 2000:167-182. Williams T, Chinchar VG, Darai G, Hyatt A, Kalmakoff J, Seligy V: Iridoviridae. In Virus Taxonomy: The Classification and Nomenclature of Viruses. Edited by: van Regenmortel MHV, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB. Seventh report of the International Committee on the Taxonomy of Viruses; 2000:167-182.
5.
Zurück zum Zitat Ahne W, Schlotfeldt HJ, Thomsen I: Fish viruses: isolation of an icosahedral cytoplasmic deoxyribovirus from sheatfish (Silurus glanis). J Vet Med 1989, 36: 333-336.CrossRef Ahne W, Schlotfeldt HJ, Thomsen I: Fish viruses: isolation of an icosahedral cytoplasmic deoxyribovirus from sheatfish (Silurus glanis). J Vet Med 1989, 36: 333-336.CrossRef
6.
Zurück zum Zitat Hedrick RP, McDowell TS: Properties of iridoviruses from ornamental fish. Vet Res 1995, 26: 423-427.PubMed Hedrick RP, McDowell TS: Properties of iridoviruses from ornamental fish. Vet Res 1995, 26: 423-427.PubMed
7.
Zurück zum Zitat Hedrick RP, McDowell TS, Ahne W, Torhy C, De Kinkelin P: Properties of three iridovirus-like agents associated with systemic infections of fish. Dis Aquat Org 1992, 13: 203-209.CrossRef Hedrick RP, McDowell TS, Ahne W, Torhy C, De Kinkelin P: Properties of three iridovirus-like agents associated with systemic infections of fish. Dis Aquat Org 1992, 13: 203-209.CrossRef
8.
Zurück zum Zitat Langdon JS, Humphrey JD, Williams LM, Hyatt AD, Westbury HA: First virus isolation from Australian fish: an iridovirus-like pathogen from redfin perch Perca fluviatilis. J Fish Dis 1986, 9: 263-268. 10.1111/j.1365-2761.1986.tb01011.xCrossRef Langdon JS, Humphrey JD, Williams LM, Hyatt AD, Westbury HA: First virus isolation from Australian fish: an iridovirus-like pathogen from redfin perch Perca fluviatilis. J Fish Dis 1986, 9: 263-268. 10.1111/j.1365-2761.1986.tb01011.xCrossRef
9.
Zurück zum Zitat Pozet F, Morand M, Moussa A, Torhy C, De Kinkelin P: Isolation and preliminary characterization of a pathogenic icosahedral deoxyribovirus from the catfish Ictalurus melas. Dis Aquat Org 1992, 14: 35-42.CrossRef Pozet F, Morand M, Moussa A, Torhy C, De Kinkelin P: Isolation and preliminary characterization of a pathogenic icosahedral deoxyribovirus from the catfish Ictalurus melas. Dis Aquat Org 1992, 14: 35-42.CrossRef
10.
Zurück zum Zitat Bollinger TK, Mao J, Schock D, Brigham RM, Chinchar VG: Pathology, isolation, and preliminary molecular characterization of a novel iridovirus from tiger salamanders in Saskatchewan. J Wildlife Disease 1999.,35(413-429): Bollinger TK, Mao J, Schock D, Brigham RM, Chinchar VG: Pathology, isolation, and preliminary molecular characterization of a novel iridovirus from tiger salamanders in Saskatchewan. J Wildlife Disease 1999.,35(413-429):
11.
Zurück zum Zitat Jancovich JK, Davidson EW, Seiler A, Jacobs BL, Collins JP: Transmission of the Ambystoma tigrinum virus to alternate hosts. Dis Aquat Organ 2001, 46: 159-163.PubMedCrossRef Jancovich JK, Davidson EW, Seiler A, Jacobs BL, Collins JP: Transmission of the Ambystoma tigrinum virus to alternate hosts. Dis Aquat Organ 2001, 46: 159-163.PubMedCrossRef
12.
Zurück zum Zitat Collins JP, Brunner JL, Miera V, Parris MJ, Schock DM, Storfer A: Ecology and evolution of infectious disease. In Amphibian Conservation. Edited by: Semlitsch R. Washington , Smithsonian Institution Press; 2003:137-151. Collins JP, Brunner JL, Miera V, Parris MJ, Schock DM, Storfer A: Ecology and evolution of infectious disease. In Amphibian Conservation. Edited by: Semlitsch R. Washington , Smithsonian Institution Press; 2003:137-151.
13.
Zurück zum Zitat Daszak P, Cunningham AA, Hyatt AD: Infectious disease and amphibian population declines. Divers Distrib 2003, 9: 141-150. 10.1046/j.1472-4642.2003.00016.xCrossRef Daszak P, Cunningham AA, Hyatt AD: Infectious disease and amphibian population declines. Divers Distrib 2003, 9: 141-150. 10.1046/j.1472-4642.2003.00016.xCrossRef
14.
Zurück zum Zitat Jancovich JK, Davidson EW, Parameswaran N, Mao J, Chinchar VG, Collins JP, Jacobs BL, Storfer A: Evidence for emergence of an amphibian iridoviral disease because of human-enhanced spread. Molecular Ecology 2005, 14: 213-224. 10.1111/j.1365-294X.2004.02387.xPubMedCrossRef Jancovich JK, Davidson EW, Parameswaran N, Mao J, Chinchar VG, Collins JP, Jacobs BL, Storfer A: Evidence for emergence of an amphibian iridoviral disease because of human-enhanced spread. Molecular Ecology 2005, 14: 213-224. 10.1111/j.1365-294X.2004.02387.xPubMedCrossRef
15.
Zurück zum Zitat Ehlers A, Osborne J, Slack S, Roper RL, Upton C: Poxirus orthologous clusters (POCs). Bioinformatics 2002, 18: 1544-1545. 10.1093/bioinformatics/18.11.1544PubMedCrossRef Ehlers A, Osborne J, Slack S, Roper RL, Upton C: Poxirus orthologous clusters (POCs). Bioinformatics 2002, 18: 1544-1545. 10.1093/bioinformatics/18.11.1544PubMedCrossRef
16.
Zurück zum Zitat Upton C, Hogg D, Perrin D, Boone M, Harris NL: Viral genome organizer: a system for analyzing complete viral genomes. Virus Research 2000, 70: 55-64. 10.1016/S0168-1702(00)00210-0PubMedCrossRef Upton C, Hogg D, Perrin D, Boone M, Harris NL: Viral genome organizer: a system for analyzing complete viral genomes. Virus Research 2000, 70: 55-64. 10.1016/S0168-1702(00)00210-0PubMedCrossRef
17.
Zurück zum Zitat Brunetti CR, Amano H, Ueda Y, Qin J, Miyamura T, Suzuki T, Li X, Barrett JW, McFadden G: Complete genomic sequence and comparative analysis of the tumorigenic poxvirus Yaba monkey tumor virus. Journal of Virology 2003, 77: 13335-13347. 10.1128/JVI.77.24.13335-13347.2003PubMedPubMedCentralCrossRef Brunetti CR, Amano H, Ueda Y, Qin J, Miyamura T, Suzuki T, Li X, Barrett JW, McFadden G: Complete genomic sequence and comparative analysis of the tumorigenic poxvirus Yaba monkey tumor virus. Journal of Virology 2003, 77: 13335-13347. 10.1128/JVI.77.24.13335-13347.2003PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Lu L, Zhou SY, Chen C, Weng SP, Chan SM, He JG: Complete genome sequence analysis of an iridovirus isolated from the orange-spotted grouper, Epinephelus coicodes. Virology 2005, 339: 81-100. 10.1016/j.virol.2005.05.021PubMedCrossRef Lu L, Zhou SY, Chen C, Weng SP, Chan SM, He JG: Complete genome sequence analysis of an iridovirus isolated from the orange-spotted grouper, Epinephelus coicodes. Virology 2005, 339: 81-100. 10.1016/j.virol.2005.05.021PubMedCrossRef
19.
Zurück zum Zitat Do JW, Moon CH, Kim HJ, Ko MS, Kim SB, Son JH, Kim JS, An EJ, Kim MK, Lee SK, Han MS, Cha SJ, Park MS, Park MA, Kim YC, Kim JW, Park JW: Complete genomic DNA sequence of rock bream iridovirus. Virology 2004, 325: 351-363. 10.1016/j.virol.2004.05.008PubMedCrossRef Do JW, Moon CH, Kim HJ, Ko MS, Kim SB, Son JH, Kim JS, An EJ, Kim MK, Lee SK, Han MS, Cha SJ, Park MS, Park MA, Kim YC, Kim JW, Park JW: Complete genomic DNA sequence of rock bream iridovirus. Virology 2004, 325: 351-363. 10.1016/j.virol.2004.05.008PubMedCrossRef
20.
Zurück zum Zitat He JG, Deng M, Weng SP, Li Z, Zhou SY, Long QX, Wang XZ, Chan SM: Complete genome analysis of Mandarin fish infectious spleen and kidney necrosis iridovirus. Virology 2001, 291: 126-139. 10.1006/viro.2001.1208PubMedCrossRef He JG, Deng M, Weng SP, Li Z, Zhou SY, Long QX, Wang XZ, Chan SM: Complete genome analysis of Mandarin fish infectious spleen and kidney necrosis iridovirus. Virology 2001, 291: 126-139. 10.1006/viro.2001.1208PubMedCrossRef
21.
Zurück zum Zitat Tsai CT, Ting JW, Wu MH, Wu MF, Guo IC, Chang CY: Complete genomic sequence of the grouper iridovirus and comparison of genomic organization with those of other iridoviruses. Journal of Virology 2005, 79: 2010-2023. 10.1128/JVI.79.4.2010-2023.2005PubMedPubMedCentralCrossRef Tsai CT, Ting JW, Wu MH, Wu MF, Guo IC, Chang CY: Complete genomic sequence of the grouper iridovirus and comparison of genomic organization with those of other iridoviruses. Journal of Virology 2005, 79: 2010-2023. 10.1128/JVI.79.4.2010-2023.2005PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Song WJ, Qin QW, Qiu J, Huang CH, Wang F, C.L. H: Functional genomics analysis of Singapore grouper iridovirus: complete sequence determination and proteomic analysis. Journal of Virology 2004,78(22):12576-12590. 10.1128/JVI.78.22.12576-12590.2004PubMedPubMedCentralCrossRef Song WJ, Qin QW, Qiu J, Huang CH, Wang F, C.L. H: Functional genomics analysis of Singapore grouper iridovirus: complete sequence determination and proteomic analysis. Journal of Virology 2004,78(22):12576-12590. 10.1128/JVI.78.22.12576-12590.2004PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Goorha R, Murti KG: The genome of frog virus 3, an animal DNA virus, is circularly permuted and terminally redundant. Proc Natl Acad Sci USA 1982, 79: 248-252. 10.1073/pnas.79.2.248PubMedPubMedCentralCrossRef Goorha R, Murti KG: The genome of frog virus 3, an animal DNA virus, is circularly permuted and terminally redundant. Proc Natl Acad Sci USA 1982, 79: 248-252. 10.1073/pnas.79.2.248PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Zhang QY, Xiao F, Xie J, Li ZQ, Gui JF: Complete genome sequence of lymphocystis disease virus isolated from China. Journal of Virology 2004,78(13):6982-6994. 10.1128/JVI.78.13.6982-6994.2004PubMedPubMedCentralCrossRef Zhang QY, Xiao F, Xie J, Li ZQ, Gui JF: Complete genome sequence of lymphocystis disease virus isolated from China. Journal of Virology 2004,78(13):6982-6994. 10.1128/JVI.78.13.6982-6994.2004PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Jakob NJ, Kleespies RG, Tidona CA, Muller K, Gelderblom HR, Darai G: Comparative analysis of the genome and host range characteristics of two insect iridoviruses: Chilo iridescent virus and a cricket iridovirus isolate. Journal of General Virology 2002, 83: 463-470.PubMedCrossRef Jakob NJ, Kleespies RG, Tidona CA, Muller K, Gelderblom HR, Darai G: Comparative analysis of the genome and host range characteristics of two insect iridoviruses: Chilo iridescent virus and a cricket iridovirus isolate. Journal of General Virology 2002, 83: 463-470.PubMedCrossRef
26.
Zurück zum Zitat Delhon G, Tulman ER, Afonso CL, Lu Z, Becnel JJ, Moser BA, Kutish GF, Rock DL: Genome of invertebrate iridescence virus type 3 (Mosquito iridescent virus). Journal of Virology 2006, 80: 8439-8449. 10.1128/JVI.00464-06PubMedPubMedCentralCrossRef Delhon G, Tulman ER, Afonso CL, Lu Z, Becnel JJ, Moser BA, Kutish GF, Rock DL: Genome of invertebrate iridescence virus type 3 (Mosquito iridescent virus). Journal of Virology 2006, 80: 8439-8449. 10.1128/JVI.00464-06PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Tan WGH, Barkman TJ, Chinchar VG, Essani K: Comparative genomic analyses of frog virus 3, type species of the genus Ranavirus (family Iridoviridae). Virology 2004, 323: 70-84. 10.1016/j.virol.2004.02.019PubMedCrossRef Tan WGH, Barkman TJ, Chinchar VG, Essani K: Comparative genomic analyses of frog virus 3, type species of the genus Ranavirus (family Iridoviridae). Virology 2004, 323: 70-84. 10.1016/j.virol.2004.02.019PubMedCrossRef
28.
Zurück zum Zitat Doolittle WF, Logsdon JM: Archaeal genomics: Do Archaea have a mixed heritage? Current Biology 1998, 8: R209-R211. 10.1016/S0960-9822(98)70127-7PubMedCrossRef Doolittle WF, Logsdon JM: Archaeal genomics: Do Archaea have a mixed heritage? Current Biology 1998, 8: R209-R211. 10.1016/S0960-9822(98)70127-7PubMedCrossRef
30.
Zurück zum Zitat Jancovich JK, Mao J, Chinchar VG, Wyatt C, Case ST, Kumar S, Valente G, Subramanian S, Davidson EW, Collins JP, Jacobs BL: Genomic sequence of a ranavirus (family Iridoviridae) associated with salamander mortalities in North America. Virology 2003, 316: 90-103. 10.1016/j.virol.2003.08.001PubMedCrossRef Jancovich JK, Mao J, Chinchar VG, Wyatt C, Case ST, Kumar S, Valente G, Subramanian S, Davidson EW, Collins JP, Jacobs BL: Genomic sequence of a ranavirus (family Iridoviridae) associated with salamander mortalities in North America. Virology 2003, 316: 90-103. 10.1016/j.virol.2003.08.001PubMedCrossRef
31.
Zurück zum Zitat Chinchar VG, Granoff A: Temperature-sensitive mutants of frog virus 3: biochemical and genetic characterization. Journal of Virology 1986, 58: 192-202.PubMedPubMedCentral Chinchar VG, Granoff A: Temperature-sensitive mutants of frog virus 3: biochemical and genetic characterization. Journal of Virology 1986, 58: 192-202.PubMedPubMedCentral
32.
Zurück zum Zitat Viral Bioinformatics Resource Center [www.virology.ca] Viral Bioinformatics Resource Center [www.virology.ca]
33.
Zurück zum Zitat Brodie R, Roper RL, Upton C: JDotter: a Java interface to multiple dotplots generated by dotter. Bioinformatics 2004, 20: 279-281. 10.1093/bioinformatics/btg406PubMedCrossRef Brodie R, Roper RL, Upton C: JDotter: a Java interface to multiple dotplots generated by dotter. Bioinformatics 2004, 20: 279-281. 10.1093/bioinformatics/btg406PubMedCrossRef
34.
Zurück zum Zitat Tidona CA, Darai G: The complete DNA sequence of lymphocystis disease virus. Virology 1997, 230: 207-216. 10.1006/viro.1997.8456PubMedCrossRef Tidona CA, Darai G: The complete DNA sequence of lymphocystis disease virus. Virology 1997, 230: 207-216. 10.1006/viro.1997.8456PubMedCrossRef
Metadaten
Titel
Comparative genomic analysis of the family Iridoviridae: re-annotating and defining the core set of iridovirus genes
verfasst von
Heather E Eaton
Julie Metcalf
Emily Penny
Vasily Tcherepanov
Chris Upton
Craig R Brunetti
Publikationsdatum
01.12.2007
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2007
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-4-11

Weitere Artikel der Ausgabe 1/2007

Virology Journal 1/2007 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.