Skip to main content
Erschienen in: Virology Journal 1/2007

Open Access 01.12.2007 | Short report

Propagating the missing bacteriophages: a large bacteriophage in a new class

verfasst von: Philip Serwer, Shirley J Hayes, Julie A Thomas, Stephen C Hardies

Erschienen in: Virology Journal | Ausgabe 1/2007

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

The number of successful propagations/isolations of soil-borne bacteriophages is small in comparison to the number of bacteriophages observed by microscopy (great plaque count anomaly). As one resolution of the great plaque count anomaly, we use propagation in ultra-dilute agarose gels to isolate a Bacillus thuringiensis bacteriophage with a large head (95 nm in diameter), tail (486 × 26 nm), corkscrew-like tail fibers (187 × 10 nm) and genome (221 Kb) that cannot be detected by the usual procedures of microbiology. This new bacteriophage, called 0305φ8-36 (first number is month/year of isolation; remaining two numbers identify the host and bacteriophage), has a high dependence of plaque size on the concentration of a supporting agarose gel. Bacteriophage 0305φ8-36 does not propagate in the traditional gels used for bacteriophage plaque formation and also does not produce visible lysis of liquid cultures. Bacteriophage 0305φ8-36 aggregates and, during de novo isolation from the environment, is likely to be invisible to procedures of physical detection that use either filtration or centrifugal pelleting to remove bacteria. Bacteriophage 0305φ8-36 is in a new genomic class, based on genes for both structural components and DNA packaging ATPase. Thus, knowledge of environmental virus diversity is expanded with prospect of greater future expansion.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1743-422X-4-21) contains supplementary material, which is available to authorized users.

Competing interests

The author(s) declare that they have no competing interests.

Authors' contributions

PS isolated bacteriophages, designed the study and wrote the manuscript. SJH performed the plaque size vs. gel percentage experiments and the PFGE. JT performed the sequencing, informatics analysis and some of the background research. SCH supervised the sequencing and informatic analysis.

Findings

Current data indicate that roughly 1031 bacteriophages exist worldwide, including about 108 genotypes and possibly most of the earth's gene diversity [14]. These estimates are derived from either fluorescence or electron microscopy. Less than 1% of the observed bacteriophages have ever been grown in culture (sometimes called "the great plaque count anomaly" [14]). The great plaque count anomaly is especially dramatic in the case of soil-borne bacteriophages. Propagated bacteriophages are sometimes not obtained from soil samples in spite of concentrations in the 108 – 109 range per gram, when detected by microscopy [5]. As shown below, some bacteriophages, though viable, are probably not detected by any past procedures. Genomes of currently unpropagated bacteriophages are potentially a major source of unexplored environmental gene diversity.
Knowledge of environmental virus gene diversity recently has been most expanded by sequencing of large eukaryotic phycodnaviruses and related viruses. These viruses have double-stranded DNA genomes with a length between 200 and 1,200 Kb [69]. Large double-stranded DNA bacteriophages also exist, including Bacillus megaterium bacteriophage G (~670 Kb genome [10]), Pseudomonas aeruginosa bacteriophage φKZ (280 Kb genome [11]) and several bacteriophages that are relatives of bacteriophage T4 by the criteria of DNA replication/recombination strategy, structure and interface of DNA replication to DNA packaging [12, 13].
However, of the 5,400 or so bacteriophages that have been isolated [14] (96% have double-stranded DNA genomes) and of 405 deposited in databases [15], only 6 (4 T4-like) have genomes as long as 200 Kb. Two other T4-like bacteriophage genomes in draft status are also in this range [12]. Statistical analysis reveals a significant under-sampling of long-genome bacteriophages [6]. The strong possibility exists that long-genome bacteriophages (>200 Kb genome) are more frequent and are major contributors to microbial ecology, but are under-sampled because of the use of classical bacteriophage propagation procedures and possibly also classical processing of environmental samples for microscopy. For example, bacteriophage G was discovered by accident ~40 years ago through electron microscopy of a preparation of another bacteriophage [16]. Thus, we raise the question of whether a major pool of environmental bacteriophages remains undetected.
To probe the pool of comparatively large environmental bacteriophages, in the present study, extraction and propagation were performed in comparatively dilute, 0.15% agarose gels. The gels contained 10 g Bacto tryptone, 5 g KCl in 1000 ml water with 0.002 M CaCl2 added post-autoclaving [17]. Numerous bacteriophages were screened during single plaque cloning by determining the change in plaque size with change in supporting agarose gel concentration. Bacillus thuringiensis bacteriophage 0305φ8-36 made small (<1 mm) plaques in a 0.4% agarose supporting gel (Figure 1a). Plaques became progressively larger as the agarose gel concentration decreased to 0.2% (Figure 1b) and 0.15% (Figure 1c; plaques are seen at the left; most of the plate is confluent). This dependence is comparatively steep, as confirmed in a side-by-side comparison with bacteriophages T4 and G (Figure 1d). Post-isolation, 0305φ8-36 grew only in gels of either 0.25% or more dilute agarose. Thus, 0305φ8-36 was assumed to be comparatively large and was selected for further study.
Bacteriophage 0305φ8-36 was, indeed, comparatively large. Electron microscopy of a negatively stained specimen of purified bacteriophage particles (Figure 1e) revealed a contractile-tail virus (myovirus)[18, 19] with a polyhedral DNA-containing capsid that had a diameter of 95 ± 4 nm. In addition, bacteriophage 0305φ8-36 had (a) a tail that was long, 486 ± 23 nm in length and 26 ± 3 nm in diameter, in comparison to those for other Myoviridae [20], and (b) tail fibers that were also comparatively large, 187 ± 13 nm in length and 10 ± 1 nm in diameter. Bacteriophage tail fiber diameter has been generally conserved at about 2 nm among other tailed bacteriophages [20]. In addition, the tail fibers had an unusual sine wave-like appearance in projection and are presumably corkscrew-like in three dimensions. The genome of 0305φ8-36 was correspondingly large (221 Kb) by pulsed field gel electrophoresis (PFGE) (not shown). Reports of bacteriophages with morphology of this general type have previously appeared [21]. But, to the authors' knowledge, further investigation was not performed.
The purified bacteriophage 0305φ8-36 particles in Figure 1e are in contact with each other, although most of the specimen is empty (not shown). This feature was reproducible and is explained by aggregation. This level of aggregation is not characteristic of either bacteriophage T4 or bacteriophage G (see ref. [22] for G). Analytical velocity centrifugation (B. Demeler, J. Thomas, S.C. Hardies and P. Serwer, unpublished observations) confirms aggregation via a sedimentation coefficient that varies continuously between 350 and 1,200. Fluorescence microscopy of material removed from plaques reveals that aggregation also occurs during growth (not shown).
Whatever the details of aggregation, aggregates were potential contributors to the steep dependence of plaque size on supporting agarose gel concentration (Figure 1d). Aggregates must, however, dissociate during dilution because plaque forming efficiency per DNA molecule was over 0.5 when the concentration of DNA molecules was determined from ethidium-stained DNA fluorescence after expulsion of DNA molecules from capsids and PFGE. Possibly, aggregation assists stabilization in harsh conditions. Before its extraction and isolation, bacteriophage 0305φ8-36 had been dry in the laboratory for 7 months.
The unusual biology of 0305φ8-36 is accompanied by an unusual genome, based on sequence determination. For example, the 0305φ8-36 DNA packaging ATPase was identified by use of the SAM HMM procedures previously described [17] with E = 5.17e-54. Motifs found and aligned include the following: (1) ATPase motif, including adenine-binding motif, P-loop motif, and DExx box [23] and (2) conserved aspartate residues of the endonuclease ruvC fold [24]. The aligned 0305φ8-36 DNA packaging ATPase intersects the homology tree for this protein [17] only at the center. That is to say, no other known DNA packaging ATPase is in the same class. Most other genes are too diverged from known genes to identify. A few 0305φ8-36 genes for myovirus structural components have been identified, but without any indication of membership in any previously known group (data not shown). Comprehensive analysis of the 0305φ8-36 genomic sequence is in progress.
Without the dilute gel propagation used here, bacteriophage 0305φ8-36 and its accompanying novelty would probably have been inaccessible to detection because the classical detection procedures, i.e., community sequencing [25], liquid enrichment culture and microscopy [26], are not expected to work for the following reasons:
(a) In addition to not growing in the 0.4 – 0.7% agarose gels classically used [26] for plaque formation, bacteriophage 0305φ8-36 does not produce visible lysis of liquid cultures. Thus, liquid enrichment cultures [26] would be ineffective at detection. Titers of 2–3 × 109 plaque-forming units per ml were achieved at 25°C during growth in an aerated liquid culture. The culture had been inoculated at a multiplicity of 0.01, based on observed bacteriophage titer. The bacteriophage growth proceeded with a lag of 100 min. and then a rapid growth phase of ~260 min. (apparent burst size = 22–30 after 60 min.), followed by a period of slower growth that ended at ~1,440 min. (24 hr.). Bacteria overgrew the culture without any visible lysis and these bacteria were 0305φ8-36-resistant (5 independent bacterial clones). The cause for growth limitation in liquid culture is not known, but a likely cause is aggregation that lowers the infection rate when the bacteriophage reaches 2–3 × 109 per ml.
(b) Community sequencing, fluorescence microscopy and electron microscopy are performed on preparations from which μm-sized particles like bacteria are usually removed by either centrifugation or filtration ([4]; reviewed in ref. [26]). These procedures will also remove aggregates like those of bacteriophage 0305φ8-36 and thus are also expected to be ineffective.
The data presented here show that (a) some bacteriophages in the uncultivatable category can now be moved to the cultivatable category and (b) a new category must be added for aggregating viruses not yet detected by any procedure. Given the heterogeneity of the geology and bacterial microbiology of soil particles even within a single sample [27, 28], multiple niches can be envisaged for independent bacteriophage evolution even in a single sample. Thus, the various soil niches have the potential to produce genomic diversity significantly above current estimates. Access to at least some of this diversity is now expanded.

Acknowledgements

For support, we thank the National Institutes of Health (GM24365 to PS), The Robert J. Kleberg Jr. and Helen C. Kleberg Foundation (To PS and SCH) and The Welch Foundation (AQ-764 to PS). The Robert J. Kleberg Jr. and Helen C. Kleberg Foundation facilitated access to samples obtained at the King Ranch. The funding bodies had no other role in the work presented here.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The author(s) declare that they have no competing interests.

Authors' contributions

PS isolated bacteriophages, designed the study and wrote the manuscript. SJH performed the plaque size vs. gel percentage experiments and the PFGE. JT performed the sequencing, informatics analysis and some of the background research. SCH supervised the sequencing and informatic analysis.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Breitbart M, Rohwer F: Here a virus, there a virus, everywhere the same virus? Trends Microbiol 2005, 13: 278-284. 10.1016/j.tim.2005.04.003PubMedCrossRef Breitbart M, Rohwer F: Here a virus, there a virus, everywhere the same virus? Trends Microbiol 2005, 13: 278-284. 10.1016/j.tim.2005.04.003PubMedCrossRef
2.
Zurück zum Zitat Brüssow HE, Kutter E: Phage ecology. In Bacteriophages: Biology and Applications. Edited by: Kutter E, Sulakvelidze A. Boca Raton, FL: CRC Press; 2005:129-163. Brüssow HE, Kutter E: Phage ecology. In Bacteriophages: Biology and Applications. Edited by: Kutter E, Sulakvelidze A. Boca Raton, FL: CRC Press; 2005:129-163.
3.
4.
Zurück zum Zitat Williamson KE, Radosevich M, Wommack KE: Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol 2005, 71: 3119-3125. 10.1128/AEM.71.6.3119-3125.2005PubMedPubMedCentralCrossRef Williamson KE, Radosevich M, Wommack KE: Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol 2005, 71: 3119-3125. 10.1128/AEM.71.6.3119-3125.2005PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Ashelford KE, Day MJ, Fry JC: Elevated abundance of bacteriophage infecting bacteria in soil. Appl Environ Microbiol 2003, 69: 285-289. 10.1128/AEM.69.1.285-289.2003PubMedPubMedCentralCrossRef Ashelford KE, Day MJ, Fry JC: Elevated abundance of bacteriophage infecting bacteria in soil. Appl Environ Microbiol 2003, 69: 285-289. 10.1128/AEM.69.1.285-289.2003PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Claverie JM, Ogata H, Audic S, Abergel C, Suhre K, Fournier PE: Mimivirus and the emerging concept of "giant" virus. Virus Res 2006, 117: 133-144. 10.1016/j.virusres.2006.01.008PubMedCrossRef Claverie JM, Ogata H, Audic S, Abergel C, Suhre K, Fournier PE: Mimivirus and the emerging concept of "giant" virus. Virus Res 2006, 117: 133-144. 10.1016/j.virusres.2006.01.008PubMedCrossRef
7.
Zurück zum Zitat Dunigan DD, Fitzgerald LA, Van Etten JL: Phycodnaviruses: a peek at genetic diversity. Virus Res 2006, 117: 119-132. 10.1016/j.virusres.2006.01.024PubMedCrossRef Dunigan DD, Fitzgerald LA, Van Etten JL: Phycodnaviruses: a peek at genetic diversity. Virus Res 2006, 117: 119-132. 10.1016/j.virusres.2006.01.024PubMedCrossRef
8.
Zurück zum Zitat Ghedin E, Fraser CM: A virus with big ambitions. Trends Microbiol 2005, 13: 56-57. 10.1016/j.tim.2004.12.008PubMedCrossRef Ghedin E, Fraser CM: A virus with big ambitions. Trends Microbiol 2005, 13: 56-57. 10.1016/j.tim.2004.12.008PubMedCrossRef
9.
Zurück zum Zitat Iyer LM, Balaji S, Koonin EV, Aravind L: Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res 2006, 117: 156-184. 10.1016/j.virusres.2006.01.009PubMedCrossRef Iyer LM, Balaji S, Koonin EV, Aravind L: Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res 2006, 117: 156-184. 10.1016/j.virusres.2006.01.009PubMedCrossRef
10.
Zurück zum Zitat Hutson MS, Holzwarth G, Duke T, Viovy J-L: Two-dimensional motion of DNA bands during 120° pulsed-field electrophoresis. I. Effect of molecular weight. Biopolymers 1995, 35: 297-306. 10.1002/bip.360350305CrossRef Hutson MS, Holzwarth G, Duke T, Viovy J-L: Two-dimensional motion of DNA bands during 120° pulsed-field electrophoresis. I. Effect of molecular weight. Biopolymers 1995, 35: 297-306. 10.1002/bip.360350305CrossRef
11.
Zurück zum Zitat Mesyanzhinov VV, Robben J, Grymonprez B, Kostyuchenko VA, Bourkaltseva MV, Sykilinda NN, Krylov VN, Volckaert G: The genome of bacteriophage φ KZ of Pseudomonas aeruginosa . J Mol Biol 2002, 317: 1-19. 10.1006/jmbi.2001.5396PubMedCrossRef Mesyanzhinov VV, Robben J, Grymonprez B, Kostyuchenko VA, Bourkaltseva MV, Sykilinda NN, Krylov VN, Volckaert G: The genome of bacteriophage φ KZ of Pseudomonas aeruginosa . J Mol Biol 2002, 317: 1-19. 10.1006/jmbi.2001.5396PubMedCrossRef
12.
Zurück zum Zitat Petrov VM, Nolan JM, Bertrand C, Levy D, Desplats C, Krisch HM, Karam JD: Plasticity of the gene functions for DNA replication in the T4-like phages. J Mol Biol 2006, 361: 46-68. 10.1016/j.jmb.2006.05.071PubMedCrossRef Petrov VM, Nolan JM, Bertrand C, Levy D, Desplats C, Krisch HM, Karam JD: Plasticity of the gene functions for DNA replication in the T4-like phages. J Mol Biol 2006, 361: 46-68. 10.1016/j.jmb.2006.05.071PubMedCrossRef
13.
Zurück zum Zitat Nolan JM, Petrov V, Bertrand C, Krisch HM, Karam JD: Genetic diversity among five T4-like bacteriophages. Virol J 2006, 3: 30. 10.1186/1743-422X-3-30PubMedPubMedCentralCrossRef Nolan JM, Petrov V, Bertrand C, Krisch HM, Karam JD: Genetic diversity among five T4-like bacteriophages. Virol J 2006, 3: 30. 10.1186/1743-422X-3-30PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Ackermann HW: Classification of bacteriophages. In The bacteriophages. Edited by: Calendar R. Oxford: Oxford University Press; 2006:8-16. Ackermann HW: Classification of bacteriophages. In The bacteriophages. Edited by: Calendar R. Oxford: Oxford University Press; 2006:8-16.
16.
Zurück zum Zitat Donelli G: Isolamento di un batteriofago di eccezionali dimensioni attivo su B. megatherium . Atti Accad Naz Lincei-Rend Clas Sci Fis Mat Nat 1968, 44: 95-97. Donelli G: Isolamento di un batteriofago di eccezionali dimensioni attivo su B. megatherium . Atti Accad Naz Lincei-Rend Clas Sci Fis Mat Nat 1968, 44: 95-97.
17.
Zurück zum Zitat Serwer P, Hayes SJ, Zaman S, Lieman K, Rolando M, Hardies SC: Improved isolation of under sampled bacteriophages: Finding of distant terminase genes. Virology 2004, 329: 412-424.PubMedCrossRef Serwer P, Hayes SJ, Zaman S, Lieman K, Rolando M, Hardies SC: Improved isolation of under sampled bacteriophages: Finding of distant terminase genes. Virology 2004, 329: 412-424.PubMedCrossRef
19.
Zurück zum Zitat Fauquet CM, Mayo MA, Maniloff J, Desselberger J, Ball LA, (Eds): Virus Taxonomy: The Eighth Report of the International Committee on Taxonomy of Viruses. San Diego: Academic Press; 2005. Fauquet CM, Mayo MA, Maniloff J, Desselberger J, Ball LA, (Eds): Virus Taxonomy: The Eighth Report of the International Committee on Taxonomy of Viruses. San Diego: Academic Press; 2005.
20.
Zurück zum Zitat Ackermann H-W: Tailed bacteriophages: The order Caudovirales . Adv Virus Res 2000, 51: 135-201.CrossRef Ackermann H-W: Tailed bacteriophages: The order Caudovirales . Adv Virus Res 2000, 51: 135-201.CrossRef
21.
Zurück zum Zitat Ackermann H-W, Yoshino S, Ogata S: A Bacillus phage that is a living fossil. Can J Microbiol 1995, 41: 294-297.CrossRef Ackermann H-W, Yoshino S, Ogata S: A Bacillus phage that is a living fossil. Can J Microbiol 1995, 41: 294-297.CrossRef
23.
Zurück zum Zitat Mitchell MS, Matsuzaki S, Imai S, Rao VB: Sequence analysis of bacteriophage T4 DNA packaging/terminase genes 16 and 17 reveals a common ATPase center in the large subunit of viral terminases. Nucl Acids Res 2002, 30: 4009-4021. 10.1093/nar/gkf524PubMedPubMedCentralCrossRef Mitchell MS, Matsuzaki S, Imai S, Rao VB: Sequence analysis of bacteriophage T4 DNA packaging/terminase genes 16 and 17 reveals a common ATPase center in the large subunit of viral terminases. Nucl Acids Res 2002, 30: 4009-4021. 10.1093/nar/gkf524PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Ponchon L, Boulanger P, Labesse G, Letellier L: The endonuclease domain of bacteriophage terminases belongs to the resolvase/integrase/ribonuclease H superfamily: A bioinformatics analysis validated by a functional study on bacteriophage T5. J Biol Chem 2006, 281: 5829-5836. 10.1074/jbc.M511817200PubMedCrossRef Ponchon L, Boulanger P, Labesse G, Letellier L: The endonuclease domain of bacteriophage terminases belongs to the resolvase/integrase/ribonuclease H superfamily: A bioinformatics analysis validated by a functional study on bacteriophage T5. J Biol Chem 2006, 281: 5829-5836. 10.1074/jbc.M511817200PubMedCrossRef
25.
Zurück zum Zitat Rodriguez-Brito BF, Rohwer F, Edwards RA: An application of statistics to comparative metagenomics. BMC Bioinformatics 2006, 7: 162. 10.1186/1471-2105-7-162PubMedPubMedCentralCrossRef Rodriguez-Brito BF, Rohwer F, Edwards RA: An application of statistics to comparative metagenomics. BMC Bioinformatics 2006, 7: 162. 10.1186/1471-2105-7-162PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Carlson K: Appendix: Working with bacteriophages: Common techniques and methodological approaches. In Bacteriophages: Biology and Applications. Edited by: Kutter E, Sulakvelidze A. Boca Raton, FL: CRC Press; 2005:437-494. Carlson K: Appendix: Working with bacteriophages: Common techniques and methodological approaches. In Bacteriophages: Biology and Applications. Edited by: Kutter E, Sulakvelidze A. Boca Raton, FL: CRC Press; 2005:437-494.
27.
Zurück zum Zitat Mummey DL, Stahl PD: Analysis of soil whole- and inner-microaggregate bacterial communities. Microb Ecol 2004, 48: 41-50. 10.1007/s00248-003-1000-4PubMedCrossRef Mummey DL, Stahl PD: Analysis of soil whole- and inner-microaggregate bacterial communities. Microb Ecol 2004, 48: 41-50. 10.1007/s00248-003-1000-4PubMedCrossRef
28.
Zurück zum Zitat Ranjard L, Richaume A: Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol 2001, 152: 707-716. 10.1016/S0923-2508(01)01251-7PubMedCrossRef Ranjard L, Richaume A: Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol 2001, 152: 707-716. 10.1016/S0923-2508(01)01251-7PubMedCrossRef
Metadaten
Titel
Propagating the missing bacteriophages: a large bacteriophage in a new class
verfasst von
Philip Serwer
Shirley J Hayes
Julie A Thomas
Stephen C Hardies
Publikationsdatum
01.12.2007
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2007
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-4-21

Weitere Artikel der Ausgabe 1/2007

Virology Journal 1/2007 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Wo hapert es noch bei der Umsetzung der POMGAT-Leitlinie?

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Das Risiko für Vorhofflimmern in der Bevölkerung steigt

02.05.2024 Vorhofflimmern Nachrichten

Das Risiko, im Lauf des Lebens an Vorhofflimmern zu erkranken, ist in den vergangenen 20 Jahren gestiegen: Laut dänischen Zahlen wird es drei von zehn Personen treffen. Das hat Folgen weit über die Schlaganfallgefährdung hinaus.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.