Skip to main content
Erschienen in: Journal of Ethnobiology and Ethnomedicine 1/2014

Open Access 01.12.2014 | Review

Diversity of wetland plants used traditionally in China: a literature review

verfasst von: Yin Zhang, Hualin Xu, Hui Chen, Fei Wang, Huyin Huai

Erschienen in: Journal of Ethnobiology and Ethnomedicine | Ausgabe 1/2014

Abstract

Background

In comparison with terrestrial plants, those growing in wetlands have been rarely studied ethnobotanically, including in China, yet people living in or near wetlands can accumulate much knowledge of the uses of local wetland plants. A characteristic of wetlands, cutting across climatic zones, is that many species are widely distributed, providing opportunities for studying general patterns of knowledge of the uses of plants across extensive areas, in the present case China. There is urgency in undertaking such studies, given the rapid rates of loss of traditional knowledge of wetland plants as is now occurring.

Methods

There have been very few studies specifically on the traditional knowledge of wetland plants in China. However, much information on such knowledge does exist, but dispersed through a wide body of literature that is not specifically ethnobotanical, such as regional Floras. We have undertaken an extensive study of such literature to determine which species of wetland plants have been used traditionally and the main factors influencing patterns shown by such knowledge. Quantitative techniques have been used to evaluate the relative usefulness of different types of wetland plants and regression analyses to determine the extent to which different quantitative indices give similar results.

Results

350 wetland plant species, belonging to 66 families and 187 genera, were found to have been used traditionally in China for a wide range of purposes. The top ten families used, in terms of numbers of species, were Poaceae, Polygonaceae, Cyperaceae, Lamiaceae, Asteraceae, Ranunculaceae, Hydrocharitaceae, Potamogetonaceae, Fabaceae, and Brassicaceae, in total accounting for 58.6% of all species used. These families often dominate wetland vegetation in China. The three most widely used genera were Polygonum, Potamogeton and Cyperus. The main uses of wetlands plants, in terms of numbers of species, were for medicine, food, and forage. Three different ways of assigning an importance value to species (Relative Frequency of Citation RFC; Cultural Importance CI; Cultural Value Index CV) all gave similar results.

Conclusions

A diverse range of wetland plants, in terms of both taxonomic affiliation and type of use, have been used traditionally in China. Medicine, forage and food are the three most important categories of use, the plants providing basic resources used by local people in their everyday lives. Local availability is the main factor influencing which species are used. Quantitative indexes, especially Cultural Value Index, proved very useful for evaluating the usefulness of plants as recorded in the literature.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1746-4269-10-72) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

YZ and HH conceived of the study, participated in its design, data collection and analysis, and helped to draft the manuscript. HLX participated in data analysis and enrichment of manuscript. HC and FW participated in data collection, analysis and revision of the manuscript. All authors read and approved the final manuscript.

Background

Traditional knowledge of plants has played an important role in people’s lives historically and has the potential to continue to contribute much in the future for the sustainable development of societies and economies [13]. However, as with biodiversity, traditional knowledge is becoming endangered with the danger of being total loss [4, 5]. There are many causes of such endangerment, including changes occurring in the environment [6], urbanization and economic globalization [7, 8]. Urbanization is one of the most important factors globally causing loss of traditional knowledge [7, 8].
In contrast with terrestrial ecosystems, wetlands have been poorly studied ethnobotanically, even though, for people living in and around wetlands, wild wetland plants play important roles in their daily lives [912]. Plants are collected from wetlands for a wide variety of purposes, such as provision of medicine, food and building materials and to sell for cash income [9, 11, 13]. Wetlands are very susceptible to loss or degradation through urbanization [1416], which can change their extent and species composition and lead to the loss of biodiversity [1719]. Traditional knowledge about wetlands is declining along with wetland degradation and alteration [11, 12], an inevitable trend given the accelerating rate of urbanization that is now occurring.
Wetlands are widely distributed throughout China, but especially common in the east and south [20], where there are particularly rich traditions of local knowledge about the uses of their plants. There has been little ethnobotanical research specifically on wetland plants, but much information on traditional uses of wetland plants nevertheless does exist, though scattered through regional floras and other types of publication. Like traditional ethnobotanical knowledge generally, that concerned with wetland plants is becoming [11]. Ethnobotanical research on people’s knowledge of wetland plants in China is urgently needed.
Currently, most ethnobotanical research concerned with any habitat type (not just wetlands) is conducted on the basis of case studies undertaken at specific field locations. The results of such studies are important for understanding relationships between local people and their environments, including sometimes for providing guidance on the sustainable use of plants and their conservation. However, case studies unavoidably emphasize unique local features of the relationships between people and their environments [21]. There is a role for systematic reviews and meta-analyses on wider regional to international scales to investigate general patterns of knowledge and use relating to plants, including to provide contexts for local-level studies [2125].
Quantitative methods have been successfully applied in ethnobotanical studies, especially in the evaluation of cultural value or importance of species [11, 24, 26]. However, most quantitative methods have been developed for the analysis of case studies based on field work. Which of these methods is most suitable for systematic reviews or meta-analyses remains little studied, with little published information available.
In this paper, we aim to answer the following questions through a study of the literature: 1. What are the botanical characteristics of wetland plants traditionally considered useful in China? 2. What are the main factors influencing the patterns of use of wetland plants in China? 3. Which of the available quantitative indexes is most suitable for evaluating traditional knowledge, as determined from the literature?

Methods

Data collection

Two criteria were used to identify the species included in this analysis. First, the species had to be wetland plants; we took the definition of a wetland as that given in the Convention on Wetlands of International Importance especially as Waterfowl Habitat (1971). Second, the species had to have been recorded as having traditional use. In this paper, we only paid attention on vascular plants. There have been very few systematic ethnobotanical studies conducted on wetlands in China. Most of the available ethnobotanical information on wetland plants is scattered sporadically through various publications, such as national and provincial floras, economic floras, and papers published in scientific journals. Our approach has been to identify, so far as we were able, all sources of potential information on wetland plants and then to search through this literature to compile an ethnobotanical inventory of wetland plants. Then we used the scientific names of the plants as key words to search further information on traditional use in the China Science and Technology Journal Database. The total number of principal literature sources studied was 56 [2782].
Based on records in the literature, we classified uses into 11 groups: medicine, fodder, food, green manure, fiber, ornamental, liquor-making, environmental, industrial raw material, pesticide, and other. The medicine category includes plants used for treating animal as well as human diseases. Fodder refers to plants eaten by domestic animals. Edible plants are those as human food either in a raw or processed state. Green manure refers to plants employed as fertilizer. Fiber plants are those yielding fibers used by people; there are various ways in which they are extracted from the plants. Ornamental plants are those planted deliberately to beautify the environment. Liquor-making plants are those yielding either basic ingredients or supplementary materials used in making traditional liquor. The environmental category refers to plants used in soil conservation or the stabilization of dams. The industrial raw material category includes those plants providing raw materials for industrial production, such as for the manufacture of essential oils. Although not a typical traditional use, such plants can provide local people with sources of cash income and thus is important category of use for some people. The pesticide category refers to plants used for killing or driving away pests such as insects. Uses other than those in the above ten categories are grouped together in ‘other’.

Data analysis

Use Value (UV) is a widely used statistic employed by ethnobotanists to provide a measure of the relative usefulness of plants to people [24, 83]. In this paper, we use the formula UVi = ∑Ui/n to calculate the use value of each species (i), Ui referring to the number of categories of use mentioned for a species in a particular literature source and n the total number of literature sources mentioning the species [23, 24, 84]. For example, if two literature sources (n = 2) mention species i, with three use categories mentioned in the first source and one in the second, then UVi = (3 + 1)/2 = 2.
Family Use Value (FUV), a statistic developed by Phillips and Gentry [83], provides a measure of the relative usefulness of plant families. FUV for a particular family (j) is calculated using the formula FUVj = ∑(UVi)/n, where UVi is the use value of species i and n is the number of species in the family.
The statistic Relative Frequency of Citation (RFCi) is used as a measure of consensus between the information provided by different literature sources. RFC is similar conceptually to that of Utilization Frequency proposed by Ladio and Lozada [85]. RFC for a species is calculated as RFCi = FCi/N [24], where FCi is the number of literature sources mentioning species i and N the total number of literature sources consulted (N = 56 in the present case).
The cultural value (or importance value) of species in a given culture and the comparative importance of species interculturally are receiving growing attention in ethnobotanical studies, especially those concerned with medicinal plants [24, 25, 86, 87]. Here, measures of cultural value for wetland plant in China are provided by the statistics Cultural Importance Index (CI) and Cultural Value Index (CV), based on formulae given in Tardio & Pardo-de-Santayana and Reyes-Garcia et al. [24, 26].
Finally, regression analysis has been used to determine the relationships between RFC, CI and CV.

Results

Diversity of the useful wetland plants in China

A total of 350 wetland plant species (including 5 varieties), belonging to 66 families and 187 genera, were recorded as used in China according to the survey. The average number of species recorded per family was 5.3, with 15 families (22.7% of the total) having more species than the average (Table 1). The ten families (Poaceae, Polygonaceae, Cyperaceae, Lamiaceae, Asteraceae, Ranunculaceae, Hydrocharitaceae, Potamogetonaceae, Fabaceae, and Brassicaceae) contributed 58.6% of all species, the 5 with the highest number of species being Poaceae (46 species; 13.1% of the total), Polygonaceae (9.1%), Cyperaceae (8.3%), Lamiaceae (5.7%), and Asteraceae (5.1%), Twenty-five families (37.9% of the total) were represented by only one useful species each. The remaining 33 families contributed between 2 and 11 species each (0.6-3.1% of the total).
Table 1
The taxonomic composition of wetland plants used traditionally and family use values (FUV) based on literature research
Family
No. of genus (%)
No. of Species (%)
FUV
Poaceae
27 (14.4)
46 (13.1)
1.59
Polygonaceae
3 (1.6)
32 (9.1)
1.57
Cyperaceae
6 (3.2)
29 (8.3)
1.34
Lamiaceae
14 (7.5)
20 (5.7)
1.25
Asteraceae
14 (7.5)
18 (5.1)
1.30
Ranunculaceae
6 (3.2)
14 (4.0)
1.10
Hydrocharitaceae
6 (3.2)
13 (3.7)
1.51
Potamogetonaceae
1 (0.5)
12 (3.4)
1.33
Fabaceae
11 (5.9)
11 (3.1)
1.97
Brassicaceae
4 (2.1)
10 (2.9)
1.81
Apiaceae
5 (2.7)
7 (2.0)
1.38
Araceae
5 (2.7)
7 (2.0)
1.19
Rosaceae
3 (1.6)
7 (2.0)
1.56
Scrophulariaceae
6 (3.2)
7 (2.0)
1.05
Alismataceae
3 (1.6)
6 (1.7)
1.29
Chenopodiaceae
3 (1.6)
5 (1.4)
1.86
Commelinaceae
2 (1.1)
5 (1.4)
1.24
Eriocaulaceae
1 (0.5)
5 (1.4)
1.00
Primulaceae
2 (1.1)
5 (1.4)
1.24
Typhaceae
2 (1.1)
5 (1.4)
1.84
Urticaceae
4 (2.1)
5 (1.4)
1.51
Equisetaceae
1 (0.5)
4 (1.1)
1.21
Lemnaceae
3 (1.6)
4 (1.1)
1.44
Lythraceae
3 (1.6)
4 (1.1)
1.13
Onagraceae
2 (1.1)
4 (1.1)
1.04
Pontederiaceae
2 (1.1)
4 (1.1)
1.83
Trapaceae
1 (0.5)
4 (1.1)
1.75
Acanthaceae
3 (1.6)
3 (0.9)
1.00
Caryophllaceae
3 (1.6)
3 (0.9)
1.33
Nymphaeaceae
3 (1.6)
3 (0.9)
2.71
Plantaginaceae
1 (0.5)
3 (0.9)
1.23
Acoraceae
1 (0.5)
2 (0.6)
1.28
Amaranthaceae
1 (0.5)
2 (0.6)
2.82
Cannaceae
1 (0.5)
2 (0.6)
1.42
Haloragaceae
1 (0.5)
2 (0.6)
1.13
Lentibulariaceae
1 (0.5)
2 (0.6)
1.00
Menyanthaceae
1 (0.5)
2 (0.6)
2.06
Solanaceae
2 (1.1)
2 (0.6)
1.50
Valerianaceae
1 (0.5)
2 (0.6)
1.00
Verbenaceae
2 (1.1)
2 (0.6)
1.00
Violaceae
1 (0.5)
2 (0.6)
1.00
Amaryllidaceae
1 (0.5)
1 (0.3)
2.50
Apocynaceae
1 (0.5)
1 (0.3)
2.67
Azollaceae
1 (0.5)
1 (0.3)
2.22
Butomaceae
1 (0.5)
1 (0.3)
1.50
Cabombaceae
1 (0.5)
1 (0.3)
1.00
Campanulaceae
1 (0.5)
1 (0.3)
1.00
Ceratophyllaceae
1 (0.5)
1 (0.3)
1.71
Cucurbitaceae
1 (0.5)
1 (0.3)
3.20
Euphorbiaceae
1 (0.5)
1 (0.3)
1.00
Gentianaceae
1 (0.5)
1 (0.3)
1.00
Geraniaceae
1 (0.5)
1 (0.3)
1.00
Iridaceae
1 (0.5)
1 (0.3)
1.25
Juncaceae
1 (0.5)
1 (0.3)
1.71
Marsileaceae
1 (0.5)
1 (0.3)
1.71
Menispermaceae
1 (0.5)
1 (0.3)
1.00
Nelumbonaceae
1 (0.5)
1 (0.3)
2.22
Papaveraceae
1 (0.5)
1 (0.3)
1.00
Parkeriaceae
1 (0.5)
1 (0.3)
1.33
Penthoraceae
1 (0.5)
1 (0.3)
2.33
Phytolaccaceae
1 (0.5)
1 (0.3)
2.75
Plumbaginaceae
1 (0.5)
1 (0.3)
1.00
Salviniaceae
1 (0.5)
1 (0.3)
1.89
Saururaceae
1 (0.5)
1 (0.3)
1.33
Saxifragaceae
1 (0.5)
1 (0.3)
1.67
Schizaeaceae
1 (0.5)
1 (0.3)
1.50
The family names on the list are arranged in the order of the descending number of species.
Some taxa were obviously dominant at the generic level, 32 genera (17.1% of the total) being represented by 3 or more species. The top scorer was Polygonum (24 species), followed by: Potamogeton (12); Cyperus (10); Scirpus and Rumex (both 7); Ranunculus (6); Carex, Eriocaulon, Echinochloa, Cardamine, and Potentilla (all 5); Blyxa, Bromus, Eleocharis, Equisetum, Lysimachia, Najas, Paspalum, Stachys, Trapa, and Typha (all 4); and then Alisma, Arisaema, Clematis, Leersia, Ludwigia, Miscanthus, Monochoria, Murdannia, Oenanthe, Plantago, and Rorippa (all 3). The dominant genera belonged to the same families as scored highest at the family level, for example Polygonaceae, Cyperaceae, Potamogetonaceae, Poaceae, Hydrocharitaceae and Ranunculaceae.
Scores for Family Use Value (FUV) fell between 1 (for 14 families) and 3.2 (Cucurbitaceae) (Table 1). The top 10 families according to this measure (all with FUV >2.0) were completely different from those scoring highly according to number of species. There was no obvious correlation between FUV and number of species used per family. All top 10 families based on FUV were families with few wetland species (3 or fewer). However, there were also families having few species with low FUV scores.

Characteristics of traditional use of wetland plants

Medicine, fodder and food were the main uses made of wetland plants according to number of species (Table 2). Seventy percent of all species were recorded to be of medicinal use, nearly half of were employed as forage and somewhat fewer as food. Fewer plants were recorded as employed for green manure, fiber, or as sources of raw materials for industry, but all these were noticeably important types of use. The other five categories of use accounted for only a small proportion of total uses. Twenty-six species (7.4% of all species) provided insecticides and 22 species (6.3%) were employed in the making of liquor. Several plants were sold for cash, such as species of Polygonum, among others. The ‘Other’ category included some plants used for skin care, such as Coix lacryma-jobi and Zizania latifolia, and others in house construction, such as Arundo donax, Miscanthus sacchariflorus, and Phragmites australis. Although few species were included in the construction category, nevertheless wetland plants used in construction can be of major importance to local people.Different families made very different contribution to different use categories (Figure 1). Over half of the families contributed to the top three categories that were medicine (97% of families), food (62.1%) and forage (59.1%); about one-third contributed to each of green manure, ornamental, and industrial use. However, other categories of use were more obviously concentrated within certain families. For example, fewer than 20% of families contributed to fiber use, pesticides, liquor–making, or environmental use. Nearly half of species providing pesticides were in the Polygonaceae and 54.2% of those used for environmental protection (such as preventing soil erosion and stabilizing dams) in the Poaceae. Species of the Poaceae and Cyperaceae contributed greatly to the fiber group (63.5% of all species so used), while those in the Polygonaceae, Poaceae, and Trapaceae were well represented in liquor-making (54% of species used). Genera showed similar patterns to those shown by families. The results as a whole showed that the top three use categories of medicine, food and forage made use of a broader spectrum of plants taxonomically than other uses.
Table 2
Use categories of wetland plants and the numbers of related species
Type of use
No. of species
Percentage of the total (%)
Medicine
263
75.1
Forage
173
49.4
Food
101
28.9
Green manure
53
15.1
Fiber
52
14.9
Industrial raw material
48
13.7
Ornamental
32
9.1
Pesticide
26
7.4
Environmental use
24
6.9
Liquor –making material
22
6.3
Other
15
4.3
Some of the top families contributed greatly to some of the use categories (Table 3). The top ten families contributed about half of all species used medicinally, over 66% of those providing fodder (though lacking any contribution from Ranunculaceae) and nearly fifty percent of those used as food. Seven of the top ten families contributed 52.8% of species used as green manure. The top ten families together contributed 73% of species used for fiber, although actually only three (Poaceae, Cyperaceae, and Fabaceae) made substantial contributions. Similar patterns were apparent in the other use categories. Some top families, such as Lamiaceae, Hydrocharitaceae, Potamogetonaceae, and Brassicaceae, contributed only to certain of the major categories of use, for example Rancunculaceae (one of the top ten families) was only used for medicine, food and pesticide. Thus, families with large numbers of species used did not necessarily contribute to all categories of use.
Table 3
Contributions of the top 10 families (in terms of numbers of species) to different use categories
Family
ME (%)
FO (%)
ED (%)
GR (%)
FI (%)
ID (%)
OR (%)
PE (%)
EN (%)
LI (%)
OT (%)
Poaceae
14 (5.3)
42 (24.3)
7 (6.9)
2 (3.8)
18 (34.6)
2 (4.2)
4 (12.5)
0 (0.0)
13 (54.2)
4 (18.2)
6 (40.0)
Polygonaceae
32 (12.2)
11 (6.4)
11 (10.9)
1 (1.9)
0 (0.0)
14 (29.2)
1 (3.1)
12 (46.2)
1 (4.2)
5 (22.7)
1 (6.7)
Cyperaceae
17 (6.5)
19 (11.0)
3 (3.0)
1 (1.9)
15 (28.8)
1 (2.1)
2 (6.3)
0 (0.0)
2 (8.3)
2 (9.1)
0 (0.0)
Lamiaceae
20 (7.6)
2 (1.2)
5 (5.0)
0 (0.0)
0 (0.0)
4 (8.3)
0 (0.0)
1 (3.8)
0 (0.0)
0 (0.0)
0 (0.0)
Asteraceae
13 (4.9)
6 (3.5)
7 (6.9)
2 (3.8)
0 (0.0)
1 (2.1)
0 (0.0)
1 (3.8)
1 (4.2)
1 (4.5)
0 (0.0)
Ranunculaceae
13 (4.9)
0 (0.0)
1 (1.0)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
5 (19.2)
0 (0.0)
0 (0.0)
0 (0.0)
Hydrocharitaceae
3 (1.1)
12 (6.9)
3 (3.0)
7 (13.2)
0 (0.0)
0 (0.0)
1 (3.1)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
Potamogetonaceae
5 (1.9)
10 (5.8)
1 (1.0)
7 (13.2)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
Fabaceae
9 (3.4)
8 (4.6)
1 (1.0)
8 (15.1)
5 (9.6)
2 (4.2)
0 (0.0)
0 (0.0)
4 (16.7)
0 (0.0)
0 (0.0)
Brassicaceae
8 (3.0)
5 (2.9)
8 (7.9)
0 (0.0)
0 (0.0)
5 (10.4)
1 (3.1)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
Total
134 (51.0)
115 (66.5)
47 (46.5)
28 (52.8)
38 (73.0)
29 (60.4)
9 (28.1)
19 (73.1)
21 (87.5)
12 (54.5)
7 (46.7)
Note: ME = medicine; ED = food; FO = fodder; GR = green manure; OR = ornamental; ID = industrial raw material; FI = fiber; PE = pesticide; LI = liquor–making material; OT = other; EN = environmental use.

Use value of wetland plants

The Use Values (UV) of species are shown on Table 4. UV varies between 1.0 and 3.71, with ten species having UV ≥ 3.00. Phragmites australis, which was highest scoring (UV = 3.71), is one of the dominant species of wetland plant communities in China and distributed widely in many parts of the country. At least seven types of use for this species are mentioned frequently in the literature. Glycine soja was second in rank order (UV = 3.5), followed by Zizania latifolia and Rorippa islandica (both UV = 3.33), Actinostemma tenerum (UV = 3.2), Rumex acetosa (UV = 3.17) and Nymphaea tetragona (UV = 3.13). Among species with a UV value of 3.00, Euryale ferox was recorded in ten literature sources, Saccharum spontaneum in three and Oenanthe sinensis in one; all are plants with multiple uses. There were 165 species (about 47% of the total) with the lowest possible score (UV = 1.0). Among these, one hundred and thirty-nine species (84.2%) had only one type of use and twenty-two species (13.3%) had two.
Table 4
Ethnobotanical inventory and some quantitative indexes of useful wetland plants in China
Species
UV
RFC
CI
CV
Use
Reference(s)
Acorus calamus L.
1.55
0.20
0.30
0.03795
ED,ME,FI,FO,PE,OR,ID
[2729, 45, 46, 59, 63, 65, 68, 62, 67]
Acorus gramineus Aiton
1.00
0.11
0.11
0.00209
ED,ME
[27, 44, 46, 59, 63, 78]
Actinostemma tenerum Griff.
3.20
0.09
0.29
0.01160
ED,ME,FO,GR,ID
[2729, 58, 64]
Adenostemma lavenia (L.) Kuntze
1.00
0.07
0.07
0.00046
ED
[27, 29, 46, 58]
Aeginetia indica L.
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Aeschynomene indica L.
2.00
0.05
0.11
0.00157
ME,GR,FI
[29, 46, 58]
Ageratum conyzoides L.
2.00
0.05
0.11
0.00209
ME,FO,GR,EN
[28, 29, 46]
Ajuga ciliata Bunge
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Ajuga multiflora Bunge
1.00
0.04
0.04
0.00012
ME
[28, 29]
Alisma canaliculatum A. Braun & C. D. Bouché
1.50
0.04
0.05
0.00035
ME,OR
[29, 46]
Alisma gramineum Lej.
1.00
0.02
0.02
0.00003
ME
[64]
Alisma plantago-aquatica L.
1.13
0.14
0.16
0.00417
ME,OR
[2729, 45, 46, 59, 64, 65]
Alternanthera philoxeroides (Mart.) Griseb.
2.83
0.11
0.30
0.01183
ME,GR,FO,EN
[2729, 46, 57, 58]
Alternanthera sessilis (L.) DC.
2.80
0.09
0.25
0.00812
ED,ME,FO,GR
[27, 29, 46, 58, 62]
Amethystea coerulea L.
1.00
0.04
0.04
0.00012
ME
[28, 29]
Ammannia baccifera L.
1.00
0.04
0.04
0.00023
ME,FO
[46, 62]
Amphicarpaea trisperma Baker
1.00
0.02
0.02
0.00003
FO
[28]
Anemone hupehensis (Lemoine) Lemoine
1.67
0.05
0.09
0.00087
ME,PE
[28, 29, 46]
Apium leptophyllum (Pers.) F. Muell.
1.00
0.02
0.02
0.00003
FO
[28]
Apocynum venetum L.
2.67
0.05
0.14
0.00278
ED,ME,FI,ID
[28, 29, 46]
Arisaema amurense Maxim.
1.00
0.07
0.07
0.00046
ME
[27, 28, 46, 59]
Arisaema du-bois-reymondiae Engl.
1.00
0.02
0.02
0.00003
ME
[29]
Arisaema heterophyllum Blume
1.00
0.02
0.02
0.00003
ME
[69]
Artemisia capillaris Thunb.
2.20
0.09
0.20
0.00957
ED,ME,FO,LI,PE,ID
[2729, 58, 67]
Artemisia selengensis Turcz. ex Besser
1.60
0.09
0.14
0.00348
ED,ME,FO
[27, 29, 46, 65, 70]
Arthraxon hispidus (Thunb.) Makino
1.50
0.07
0.11
0.00209
ME,FI,FO
[28, 46, 57, 67]
Arundinella anomala Steud.
2.00
0.04
0.07
0.00046
FI,FO
[28, 29]
Arundo donax L.
2.63
0.14
0.38
0.02922
ME,FI,FO,OR,EN,OT
[2729, 36, 37, 45, 46, 59]
Arundo donax var. versicolor (Mill.) Stokes
1.00
0.04
0.04
0.00012
OR
[27, 38]
Astilbe chinensis Franch. & Sav.
1.67
0.05
0.09
0.00130
ME,OR,ID
[28, 29, 46]
Astragalus adsurgens Pall.
1.67
0.05
0.09
0.00130
ME,FO,EN
[28, 29, 46]
Atropanthe sinensis Pascher
1.67
0.05
0.09
0.00087
ME,ID
[28, 29, 46]
Azolla imbricata (Roxb.) Nakai
2.22
0.16
0.36
0.02087
ME,FO,GR,PE
[2729, 31, 32, 46, 58, 59, 62]
Bacopa monnieri (L.) Wettst.
1.00
0.04
0.04
0.00012
ME
[28, 29]
Beckmannia syzigachne (Steud.) Fernald
1.67
0.05
0.09
0.00130
ED,ME,FO
[28, 57, 68]
Berteroa incana DC.
1.00
0.02
0.02
0.00003
ID
[28]
Bidens parviflora Willd.
1.33
0.05
0.07
0.00070
ED,ME
[28, 29, 46]
Bidens tripartita L.
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Blyxa aubertii Rich.
1.00
0.02
0.02
0.00003
FO
[28]
Blyxa echinosperma (C. B. Clarke) Hook. f.
1.00
0.04
0.04
0.00012
FO
[27, 28]
Blyxa japonica Maxim. ex Asch. & Gürke
1.00
0.02
0.02
0.00003
FO
[28]
Blyxa leiosperma Koidz.
1.00
0.02
0.02
0.00003
FO
[27]
Boehmeria gracilis C. H. Wright
1.67
0.05
0.09
0.00130
ME,FI,ID
[28, 29, 46]
Brasenia schreberi J. F. Gmel.
1.00
0.05
0.05
0.00052
ED,ME
[27, 29, 46]
Bromus catharticus Vahl
1.00
0.04
0.04
0.00012
FO
[27, 29]
Bromus inermis Leyss.
2.50
0.04
0.09
0.00087
ED,FO,EN
[27, 28]
Bromus japonicus Thunb.
1.83
0.11
0.20
0.00957
ED,ME,FO,FI,LI
[27, 28, 45, 46, 57, 62]
Bromus remotiflorus (Steud.) Ohwi
1.33
0.05
0.07
0.00070
FI,FO
[45, 57, 62]
Butomus umbellatus L.
1.50
0.04
0.05
0.00035
FI,OR
[28, 64]
Calamagrostis epigeios (L.) Roth
2.60
0.09
0.23
0.00754
FI,FO,OT,EN
[2729, 57, 67]
Calamagrostis pseudophragmites (Hall. f.) Koel.
2.00
0.07
0.14
0.00186
FO,EN
[2729, 57]
Caldesia reniformis Makino
1.00
0.02
0.02
0.00003
OR
[29]
Caltha palustris L.
1.33
0.05
0.07
0.00104
ED,ME,PE
[29, 68, 82]
Canna generalis L. H. Bailey
1.50
0.04
0.05
0.00035
FI,OR
[27, 29]
Canna indica L.
1.33
0.05
0.07
0.00139
ED,ME,FI,FO
[27, 46, 62]
Capillipedium parviflorum (R. Br.) Stapf
1.00
0.02
0.02
0.00003
FO
[28]
Cardamine flexuosa With.
1.00
0.05
0.05
0.00026
ME
[28, 29, 58]
Cardamine impatiens L.
1.75
0.07
0.13
0.00244
ED,ME,FO
[2729, 63]
Cardamine leucantha (Tausch) O. E. Schulz
1.25
0.07
0.09
0.00116
ED,ME
[28, 29, 46, 70]
Cardamine lyrata Bunge
1.75
0.07
0.13
0.00162
ED,ME
[2729, 46]
Cardamine macrophylla Willd.
1.67
0.05
0.09
0.00130
ED,ME,FO
[29, 81, 82]
Carex baccans Nees
1.00
0.04
0.04
0.00023
ED,ME
[28, 46]
Carex dispalata Boott
1.50
0.04
0.05
0.00035
FI,FO
[28, 67]
Carex leiorhyncha C. A. Mey.
1.00
0.04
0.04
0.00012
FO
[28, 67]
Carex scabrifolia Steud.
1.00
0.04
0.04
0.00012
FI
[28, 29]
Carex tangiana Ohwi
1.50
0.04
0.05
0.00035
FO,OR
[28, 67]
Catabrosa aquatica P. Beauv.
1.00
0.02
0.02
0.00003
FO
[28]
Centaurium meyeri Druce
1.00
0.04
0.04
0.00012
ME
[28, 46]
Centipeda minima (L.) A. Braun & Asch.
1.00
0.07
0.07
0.00046
ME
[28, 29, 46, 78]
Ceratophyllum demersum L.
1.71
0.13
0.21
0.00487
ME,FO
[2729, 46, 58, 63, 64]
Ceratopteris thalictroides (L.) Brongn.
1.33
0.11
0.14
0.00278
ED,ME
[2729, 46, 58, 63]
Chenopodium ambrosioides L.
2.20
0.09
0.20
0.00638
ME,ED,PE,ID
[2729, 46, 58]
Chenopodium serotinum L.
1.00
0.04
0.04
0.00023
ME,FO
[46, 62]
Cicuta virosa L.
1.00
0.04
0.04
0.00012
ME
[28, 46]
Clematis cadmia Buch.-Ham. ex Hook.f. & Thomson
1.00
0.04
0.04
0.00012
ME
[28, 46]
Clematis finetiana H. Lév. & Vaniot
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Clematis orientalis L.
1.00
0.02
0.02
0.00003
ME
[28]
Clinopodium chinense Kuntze
1.00
0.04
0.04
0.00012
ME
[28, 46]
Clinopodium gracile (Bentham) Matsumura
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Cnidium monnieri (L.) Cuss.
1.33
0.05
0.07
0.00070
ME,FO
[28, 29, 46]
Coix lacryma-jobi L.
2.30
0.18
0.41
0.04000
ED,ME,FI,FO,LI,OT
[27, 41, 42, 45, 46, 59, 62, 63, 65, 71]
Colocasia esculenta (L.) Schott
1.83
0.11
0.20
0.00574
ED,ME,FO
[27, 29, 46, 65, 59, 62]
Commelina benghalensis L.
1.00
0.07
0.07
0.00093
ME,OR
[2729, 46]
Commelina communis L.
1.20
0.09
0.11
0.00261
ED,ME,FO
[2729, 46, 70]
Corydalis racemosa Pers.
1.00
0.07
0.07
0.00046
ME
[28, 29, 46, 58]
Crotalaria assamica Benth.
2.00
0.04
0.07
0.00093
ME,FI,FO,GR
[28, 29]
Crypsis aculeata Aiton
1.50
0.04
0.05
0.00035
FO,EN
[28, 29]
Cyperus compressus L.
1.00
0.04
0.04
0.00012
FO
[62, 67]
Cyperus difformis L.
1.00
0.11
0.11
0.00209
ME,FI
[28, 46, 6264, 67]
Cyperus exaltatus Retz.
1.00
0.07
0.07
0.00093
FI,FO
[28, 29, 62, 67]
Cyperus glomeratus L.
1.60
0.09
0.14
0.00464
ME,FO,FI,GR
[28, 46, 62, 64, 67]
Cyperus imbricatus Retz.
1.00
0.04
0.04
0.00012
FI
[28, 29]
Cyperus iria L.
1.00
0.05
0.05
0.00052
ME,FO
[46, 62, 67]
Cyperus michelianus (L.) Link
1.00
0.02
0.02
0.00003
ME
[46]
Cyperus microiria Steud.
1.00
0.02
0.02
0.00003
FO
[62]
Cyperus pilosus Vahl
1.00
0.07
0.07
0.00139
ME,FI,FO
[27, 45, 62, 63]
Cyperus pygmaeus Rottb.
1.00
0.02
0.02
0.00003
FO
[62]
Dichrocephala auriculata Druce
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Dichrocephala benthamii C. B. Clarke
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Dicliptera chinensis (L.) Juss.
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Duchesnea indica (Andrews) Focke
1.20
0.09
0.11
0.00261
ED,ME,PE
[28, 29, 46, 69, 78]
Echinochloa caudata Roshev.
1.00
0.02
0.02
0.00003
FO
[28]
Echinochloa crus-galli (L.) P. Beauv.
2.40
0.09
0.21
0.01044
ED,ME,FI,FO,GR,LI
[28, 45, 46, 57, 62]
Echinochloa crus-galli var. mitis (Pursh) Peterm.
1.00
0.02
0.02
0.00003
FO
[62]
Echinochloa crus-galli var. zelayensis (Kunth) Hitchc.
1.00
0.02
0.02
0.00003
FO
[62]
Echinochloa crus-pavonis (Kunth) Schult.
1.00
0.02
0.02
0.00003
FO
[62]
Eichhornia crassipes (Mart.) Solms
2.67
0.11
0.29
0.01670
ED,ME,FO,OR,GR,EN
[2729, 46, 57, 62]
Eleocharis dulcis Trin. ex Henschel.
2.00
0.11
0.21
0.00626
ED,ME,FO
[27, 29, 43, 62, 65, 73]
Eleocharis plantagineiformis Tang & F. T. Wang
1.00
0.02
0.02
0.00003
FO
[28]
Eleocharis valleculosa Ohwi
1.33
0.05
0.07
0.00070
FI,FO
[27, 57, 62]
Eleocharis yokoscensis (Franch. & Savat.) Tang & F. T. Wang
1.00
0.02
0.02
0.00003
ME
[46]
Elsholtzia kachinensis Prain
1.40
0.09
0.13
0.00304
ED,ME,FO
[28, 29, 46, 63, 72]
Equisetum debile Roxb. ex Vaucher
1.50
0.07
0.11
0.00139
ME,OT
[27, 28, 46, 58]
Equisetum hyemale L.
1.33
0.05
0.07
0.00070
ME,OT
[28, 46, 67]
Equisetum pratense Ehrh.
1.00
0.04
0.04
0.00012
ME
[28, 67]
Equisetum ramosissimum Desf.
1.00
0.05
0.05
0.00026
ME
[27, 28, 65]
Eriocaulon australe R. Br.
1.00
0.04
0.04
0.00012
ME
[28, 46]
Eriocaulon buergerianum Körn.
1.00
0.11
0.11
0.00104
ME
[2729, 45, 46, 59]
Eriocaulon cinereum R. Br.
1.00
0.04
0.04
0.00012
ME
[28, 63]
Eriocaulon decemflorum Maxim.
1.00
0.02
0.02
0.00003
ME
[27]
Eriocaulon robustius Makino
1.00
0.02
0.02
0.00003
ME
[28]
Euphorbia thymifolia L.
1.00
0.07
0.07
0.00046
ME
[28, 29, 46, 68]
Euryale ferox Salisb.
3.00
0.18
0.54
0.06088
ED,ME,FO,GR,LI,OR,ID
[27, 29, 45, 46, 57, 58, 6265]
Fimbristylis miliacea (L.) Vahl
1.67
0.05
0.09
0.00130
ME,FI,FO
[27, 28, 46]
Geranium sibiricum L.
1.00
0.04
0.04
0.00012
ME
[28, 46]
Geum aleppicum Jacq.
1.75
0.07
0.13
0.00244
ED,ME,ID
[28, 29, 46, 67]
Glaux maritima L.
1.00
0.04
0.04
0.00012
ED
[28, 70]
Glechoma longituba (Nakai) Kuprian.
1.00
0.07
0.07
0.00046
ME
[28, 29, 46, 63]
Glycine soja Siebold & Zucc.
3.50
0.07
0.25
0.00974
ED,ME,FI,FO,GR,EN
[28, 29, 57, 67]
Glycyrrhiza pallidiflora Maxim.
1.00
0.05
0.05
0.00078
ME,FI,GR
[28, 29, 46]
Halerpestes cymbalaria Greene
1.00
0.02
0.02
0.00003
ME
[28]
Halerpestes ruthenica (Jacq.) Ovcz.
1.00
0.02
0.02
0.00003
PE
[28]
Hemarthria altissima (Poir.) Stapf & C. E. Hubb.
1.50
0.04
0.05
0.00035
FO,FI
[27, 28]
Hemarthria compressa (L. f.) R. Br.
1.00
0.02
0.02
0.00003
FO
[28]
Hydrilla verticillata (L. f.) Royle
2.00
0.05
0.11
0.00104
FO,GR
[27, 28, 64]
Hydrocharis dubia (Blume) Backer
1.67
0.05
0.09
0.00130
ED,FO,GR
[2729]
Hygrophila salicifolia (Vahl) Nees
1.00
0.04
0.04
0.00012
ME
[28, 46]
Inula japonica Thunb.
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Iris tectorum Maxim.
1.25
0.07
0.09
0.00116
ME,OR
[27, 29, 46, 59]
Ixeris japonica Nakai
1.00
0.04
0.04
0.00012
ME
[28, 46]
Ixeris polycephala Cass.
1.00
0.02
0.02
0.00003
ME
[29]
Juncus effusus L.
1.71
0.13
0.21
0.00731
ME,FI,OT
[2729, 46, 64, 65, 67]
Kyllinga brevifolia Rottb.
1.00
0.04
0.04
0.00012
ME
[28, 46]
Kyllinga colorata (L.) Druce
1.00
0.02
0.02
0.00003
ME
[28]
Lactuca tatarica C. A. Mey.
2.00
0.02
0.04
0.00012
ED,FO
[28]
Lagedium sibiricum (L.) Soják
1.00
0.02
0.02
0.00003
ED
[70]
Lamium amplexicaule L.
1.00
0.05
0.05
0.00026
ME
[28, 29, 79]
Lamium barbatum Siebold & Zucc.
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Lapsana apogonoides Maxim.
1.00
0.05
0.05
0.00026
FO
[28, 29, 57]
Leersia hexandra Sw.
1.50
0.04
0.05
0.00052
ME,FO,ID
[28, 46]
Leersia japonica Makino
1.00
0.02
0.02
0.00003
ME
[46]
Leersia oryzoides (L.) Sw.
1.00
0.02
0.02
0.00003
FO
[28]
Lemna minor L.
1.75
0.07
0.13
0.00244
ME,FO,GR
[28, 48, 59, 62]
Lemna trisulca L.
1.00
0.02
0.02
0.00003
FO
[28]
Leptochloa chinensis (L.) Nees
1.00
0.05
0.05
0.00026
FO
[27, 29, 62]
Limonium sinense Kuntze
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Lobelia chinensis Lour.
1.00
0.07
0.07
0.00046
ME
[28, 29, 46, 58]
Lotus tenuis Waldst. & Kit. ex Willd.
1.00
0.04
0.04
0.00012
ME
[28, 46]
Ludwigia adscendens (L.) H. Hara
1.17
0.11
0.13
0.00244
ME,FO
[2729, 46, 58, 62]
Ludwigia hyssopifolia (G. Don) Exell
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Ludwigia prostrata Roxb.
1.00
0.05
0.05
0.00052
ME,FO
[27, 46, 62]
Lycopus lucidus Turcz.
1.20
0.09
0.11
0.00174
ED,ME
[28, 29, 46, 69, 70]
Lycoris radiata (L'Hér.) Herb.
2.50
0.07
0.18
0.00812
ED,ME,PE,LI,FI,OT,ID
[2729, 46]
Lygodium japonicum (Thunb.) Sw.
1.50
0.07
0.11
0.00209
ME,PE,ED
[28, 29, 46, 77]
Lysimachia christinae Hance
1.00
0.09
0.09
0.00072
ME
[2729, 46, 58]
Lysimachia congestiflora Hemsl.
1.00
0.07
0.07
0.00046
ME
[2729, 46]
Lysimachia fortunei Maxim.
1.20
0.09
0.11
0.00174
ME,FO
[2729, 46, 58]
Lysimachia heterogenea Klatt
2.00
0.02
0.04
0.00012
ME,GR
[28]
Lythrum salicaria L.
1.50
0.14
0.21
0.01113
ME,OR,FO,ID
[2729, 46, 58, 62, 64, 65]
Marsilea quadrifolia L.
1.71
0.13
0.21
0.00974
ED,ME,FO,GR
[2729, 46, 56, 58, 59]
Mazus japonicus (Thunb.) Kuntze
1.00
0.04
0.04
0.00012
ME
[27, 46]
Melilotus indicus (L.) All.
2.33
0.05
0.13
0.00244
ME,FO,GR,EN
[28, 46, 57]
Mentha haplocalyx Briq.
1.67
0.21
0.36
0.02087
ED,ME,ID
[2729, 45, 46, 58, 59, 65, 67, 70, 78, 77]
Microstegium ciliatum A. Camus
1.50
0.04
0.05
0.00035
FI,FO
[28, 29]
Mimulus tenellus Bunge
1.00
0.05
0.05
0.00052
ED,ME
[28, 29, 46]
Miscanthus floridulus Warb. ex K. Schum. & Lauterb.
1.83
0.11
0.20
0.00765
ME,FO,FI,EN
[2729, 46, 57, 62]
Miscanthus sacchariflorus (Maxim.) Hack.
2.00
0.09
0.18
0.00435
FI,FO,EN
[27, 28, 45, 57, 62]
Miscanthus sinensis Andersson
2.00
0.11
0.21
0.00835
ME,FI,FO,EN
[2729, 45, 46, 62]
Monochoria hastata (L.) Solms
1.00
0.04
0.04
0.00012
ED
[28, 56]
Monochoria korsakowii Regel & Maack
2.00
0.14
0.29
0.01855
ED,ME,FO,OR,GR
[2729, 46, 56, 57, 62, 64]
Monochoria vaginalis (Burm. f.) C. Presl ex Kunth
1.67
0.11
0.18
0.00696
ED,ME,FO,GR
[27, 46, 56, 57, 62, 70]
Mosla dianthera (Buch.-Ham. ex Roxb.) Maxim.
1.33
0.05
0.07
0.00070
ME,PE
[28, 29, 46]
Murdannia keisak (Hassk.) Hand.-Mazz.
1.00
0.02
0.02
0.00003
FO
[28]
Murdannia nudiflora (L.) Brenan
1.00
0.04
0.04
0.00012
ME
[28, 29]
Murdannia triquetra G. Brückn.
2.00
0.07
0.14
0.00278
ME,ED,FO
[27, 29, 46, 49]
Myosoton aquaticum Moench
2.00
0.05
0.11
0.00157
ME,ED,FO
[28, 29, 46]
Myriophyllum spicatum L.
1.25
0.07
0.09
0.00116
ME,FO
[2729, 64]
Myriophyllum verticillatum L.
1.00
0.05
0.05
0.00026
FO
[27, 28, 64]
Najas foveolata A. Braun ex Magnus
2.00
0.02
0.04
0.00012
FO,GR
[28]
Najas graminea Delile
2.00
0.04
0.07
0.00046
FO,GR
[28, 29]
Najas marina L.
1.50
0.07
0.11
0.00139
FO,GR
[27, 28, 62, 64]
Najas minor All.
1.50
0.07
0.11
0.00139
FO,GR
[27, 28, 62, 64]
Nanocnide japonica Blume
1.00
0.05
0.05
0.00026
ME
[27, 28, 46]
Nanocnide lobata Wedd.
1.33
0.05
0.07
0.00070
ME,GR
[28, 29, 46]
Nasturtium officinale R. Br.
2.25
0.07
0.16
0.00417
ED,ME,OR,ID
[28, 46, 58, 65]
Nelumbo nucifera Gaertn.
2.22
0.16
0.36
0.02087
ED,ME,OR,FO
[27, 29, 45, 58, 46, 59, 62, 65, 66]
Nepeta cataria L.
1.50
0.07
0.11
0.00139
ME,ID
[28, 29, 46, 66]
Nuphar pumila (Timm) DC.
2.00
0.13
0.25
0.01136
ME,ED,OR,FO
[27, 29, 46, 54, 58, 59, 62]
Nymphaea tetragona Georgi
3.13
0.14
0.45
0.02899
ED,LI,ME,OR,GR
[27, 29, 45, 46, 58, 62, 64, 65]
Nymphoides indica (L.) Kuntze
2.00
0.02
0.04
0.00012
FO,GR
[27]
Nymphoides peltata (S. G. Gmel.) Kuntze
2.13
0.14
0.30
0.01971
ME,FO,GR,OR,ED
[2729, 46, 58, 59, 62, 70]
Oenanthe benghalensis Benth. & Hook.f.
1.00
0.04
0.04
0.00012
ME
[28, 46]
Oenanthe javanica DC.
1.36
0.25
0.34
0.02313
ED,ME,FO
[2729, 45, 46, 5658, 6466, 72, 70, 76]
Oenanthe sinensis Dunn
3.00
0.02
0.05
0.00026
ED,ME,FO
[28]
Oenothera rosea Aiton
1.00
0.04
0.04
0.00012
ME
[28, 29]
Origanum vulgare L.
2.00
0.05
0.11
0.00157
ME,ID,LI
[28, 29, 46]
Ottelia acuminata (Gagnep.) Dandy
1.00
0.04
0.04
0.00023
ED,ME
[65, 75]
Ottelia alismoides (L.) Pers.
2.60
0.09
0.23
0.00942
ED,ME,OR,GR,FO
[2729, 46, 59]
Panicum paludosum Roxb.
1.00
0.02
0.02
0.00003
FO
[28]
Paspalum dilatatum Poir.
1.00
0.05
0.05
0.00026
FO
[29, 40, 62]
Paspalum distichum L.
1.00
0.04
0.04
0.00023
FO,EN
[27, 62]
Paspalum paspaloides Scribn.
2.00
0.02
0.04
0.00012
FO,EN
[28]
Paspalum thunbergii Kunth ex Steud.
1.00
0.04
0.04
0.00012
FO
[57, 62]
Penthorum chinense Pursh
2.33
0.05
0.13
0.00244
ED,ME,FO,GR
[28, 29, 46]
Phalaris arundinacea L.
2.00
0.05
0.11
0.00104
FO,FI
[2729]
Phragmites australis Trin. ex Steud.
3.71
0.13
0.46
0.03693
ED,FI,ME,LI,EN,OT,OR
[27, 29, 45, 46, 62, 64, 65]
Phragmites karka (Retz.) Trin. ex Steud.
2.00
0.04
0.07
0.00070
ME,FI,EN
[28, 46]
Phyla nodiflora (L.) Greene
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Phytolacca acinosa Roxb.
2.75
0.07
0.20
0.00510
ED,ME,PE,ID
[2729, 69]
Pilea notata C. H. Wright
1.20
0.09
0.11
0.00174
ME,FO
[2729, 58, 46]
Pistia stratiotes L.
1.50
0.14
0.21
0.00835
ME,FO,GR
[2729, 46, 58, 57, 59, 62]
Plantago asiatica L.
1.20
0.09
0.11
0.00261
ME,FO,ED
[28, 46, 57, 65, 70]
Plantago lanceolata L.
1.50
0.04
0.05
0.00035
ME,FO
[28, 46]
Plantago major L.
1.00
0.09
0.09
0.00145
ME,ED
[28, 46, 69, 70, 76]
Pluchea indica (L.) Less.
1.33
0.05
0.07
0.00070
ED,ME
[28, 29, 46]
Poa acroleuca Steud.
1.00
0.02
0.02
0.00003
FO
[28]
Pogonatherum crinitum Kunth
1.33
0.05
0.07
0.00070
ME,FO
[28, 29, 46]
Polygonum amphibium L.
1.00
0.05
0.05
0.00026
ME
[28, 46, 55]
Polygonum aviculare L.
1.50
0.14
0.21
0.01391
ED,ME,FO,ID,PE
[28, 29, 46, 57, 58, 67, 70, 74]
Polygonum barbatum L.
1.00
0.04
0.04
0.00012
ME
[28, 46]
Polygonum capitatum Buch.-Ham. ex D. Don
1.00
0.07
0.07
0.00046
ME
[28, 29, 46, 58]
Polygonum chinense L.
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Polygonum excurrens Steward
1.00
0.02
0.02
0.00003
ME
[55]
Polygonum hydropiper L.
1.41
0.30
0.43
0.07096
ME,ED,FO,OT,PE,ID
[28, 29, 45, 46, 5053, 55, 5759, 62, 63, 67, 70, 75]
Polygonum japonicum Meisn.
1.17
0.11
0.13
0.00244
ME,PE
[2729, 46, 55, 58]
Polygonum jucundum Meisn.
1.00
0.04
0.04
0.00023
ME,PE
[55, 58]
Polygonum kawagoeanum Makino
1.00
0.02
0.02
0.00003
ME
[58]
Polygonum lapathifolium L.
2.13
0.14
0.30
0.03154
ED,ME,FO,PE,LI,ID,EN,GR
[27, 46, 50, 55, 57, 58, 62, 67]
Polygonum lapathifolium var. salicifolium Sibth.
2.50
0.04
0.09
0.00116
ME,PE,LI,ID
[55, 58]
Polygonum longisetum var. rotundatum A. J. Li
1.25
0.07
0.09
0.00116
ME,ID
[27, 46, 55, 58]
Polygonum macranthum Meisn.
1.00
0.04
0.04
0.00012
ME
[55, 58]
Polygonum nepalense Meisn.
1.00
0.05
0.05
0.00026
ME
[28, 46, 58]
Polygonum orientale L.
2.60
0.18
0.46
0.05276
ED,ME,FO,PE,LI,OR,ID
[2729, 45, 46, 55, 5759, 62]
Polygonum perfoliatum L.
2.50
0.07
0.18
0.00348
ME,PE,ID
[27, 28, 46, 58]
Polygonum persicaria L.
1.33
0.05
0.07
0.00104
ME,FO,PE
[28, 58, 67]
Polygonum posumbu Buch.-Ham. ex D. Don
1.00
0.02
0.02
0.00003
ME
[58]
Polygonum sibiricum Laxm.
2.00
0.02
0.04
0.00012
ME,FO
[28]
Polygonum sieboldii Meisn.
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Polygonum taquetii H. Lév.
1.00
0.02
0.02
0.00003
ME
[58]
Polygonum thunbergii Siebold & Zucc.
2.00
0.05
0.11
0.00209
ED,ME,FO,ID
[28, 46, 58]
Polygonum viscosum Buch.-Ham. ex D. Don
1.67
0.05
0.09
0.00130
ED,ME,ID
[28, 58, 63]
Potamogeton crispus L.
2.00
0.11
0.21
0.00835
ED,ME,FO,GR
[27, 29, 35, 46, 62, 64]
Potamogeton cristatus Regel & Maack
1.00
0.04
0.04
0.00023
ME,FO
[46, 62]
Potamogeton distinctus A. Benn.
1.33
0.05
0.07
0.00070
FO,GR
[27, 28, 62]
Potamogeton lucens L.
1.00
0.04
0.04
0.00012
GR
[27, 62]
Potamogeton maackianus A. Benn.
1.00
0.02
0.02
0.00003
FO
[62]
Potamogeton malaianus Miq.
2.00
0.05
0.11
0.00104
FO,GR
[27, 28, 62]
Potamogeton natans L.
1.00
0.05
0.05
0.00078
ME,FO,GR
[46, 54, 64]
Potamogeton octandrus Poir.
1.00
0.02
0.02
0.00003
FO
[62]
Potamogeton oxyphyllus Miq.
1.00
0.02
0.02
0.00003
FO
[62]
Potamogeton pectinatus L.
1.60
0.09
0.14
0.00348
ME,FO,GR
[2729, 46, 62]
Potamogeton perfoliatus L.
1.00
0.02
0.02
0.00003
ME
[46]
Potamogeton pusillus L.
2.00
0.04
0.07
0.00046
FO,GR
[27, 62]
Potentilla anserina L.
2.17
0.11
0.23
0.01357
ED,ME,FO,ID,OT,LI
[28, 29, 46, 70, 69, 79]
Potentilla discolor Bunge
1.33
0.05
0.07
0.00070
ED,ME
[28, 29, 46]
Potentilla flagellaris D. F. K. Schltdl.
2.00
0.04
0.07
0.00093
ED,ME,FO,GR
[28, 29]
Potentilla kleiniana Wight & Arn.
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Potentilla reptans L.
1.50
0.04
0.05
0.00035
ED,ME
[28, 46]
Prunella vulgaris L.
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Pseudoraphis sordida (Thwaites) S. M. Phillips & S. L. Chen
1.00
0.04
0.04
0.00012
FO
[27, 29]
Ranunculus cantoniensis DC.
1.00
0.07
0.07
0.00046
ME
[28, 29, 46, 58]
Ranunculus chinensis Bunge
1.17
0.11
0.13
0.00244
ME,PE
[2729, 46, 58, 68]
Ranunculus japonicus Thunb.
1.17
0.11
0.13
0.00244
ME,PE
[2729, 46, 58, 74]
Ranunculus sceleratus L.
1.00
0.09
0.09
0.00072
ME
[28, 29, 46, 58, 59]
Ranunculus sieboldii Miq.
1.00
0.07
0.07
0.00046
ME
[2729, 46]
Ranunculus ternatus Thunb.
1.00
0.09
0.09
0.00072
ME
[2729, 46, 58]
Reynoutria japonica Houtt.
2.50
0.04
0.09
0.00116
ED,ME,PE,ID
[28, 46]
Roegneria ciliaris (Trin.) Nevski
1.00
0.05
0.05
0.00026
FO
[28, 29, 57]
Rorippa dubia (Pers.) Hara
2.50
0.04
0.09
0.00116
ED,ME,FO,ID
[28, 29]
Rorippa globosa (Turcz.) Hayek
1.60
0.09
0.14
0.00348
ED,FO,ID
[27, 28, 58, 62, 67]
Rorippa islandica (Oeder) Borbás
3.33
0.05
0.18
0.00348
ED,ME,FO,ID
[27, 28, 45]
Rotala indica Koehne
1.00
0.07
0.07
0.00139
ED,ME,FO
[27, 28, 63, 62]
Rotala rotundifolia (Buch.-Ham. ex Roxb.) Koehne
1.00
0.07
0.07
0.00093
ME,FO
[46, 75, 29, 62]
Rumex acetosa L.
3.17
0.11
0.34
0.01652
ED,ME,FO,PE,ID
[2729, 46, 58, 65]
Rumex crispus L.
1.00
0.09
0.09
0.00145
ED,ME
[28, 30, 46, 67, 79]
Rumex dentatus L.
1.75
0.07
0.13
0.00244
ME,FO,PE
[27, 28, 46, 62]
Rumex japonicus Houtt.
2.60
0.09
0.23
0.00942
ED,ME,FO,ID,LI
[28, 29, 46, 57, 58]
Rumex maritimus L.
1.33
0.05
0.07
0.00070
ME,FO
[28, 29, 63]
Rumex nepalensis Spreng.
1.25
0.07
0.09
0.00116
ME,ID
[28, 29, 46, 68]
Rumex patientia L.
2.50
0.04
0.09
0.00116
ED,ME,ID,LI
[28, 46]
Rungia chinensis Benth.
1.00
0.02
0.02
0.00003
ME
[28]
Saccharum spontaneum L.
3.00
0.05
0.16
0.00313
FI,FO,OT,EN
[2729]
Sacciolepis indica (L.) Chase
1.00
0.04
0.04
0.00012
FO
[27, 28]
Sacciolepis myosuroides (R. Br.) A.Camus
1.00
0.04
0.04
0.00012
FO
[28, 29]
Sagina japonica (Sw. ex Steud.) Ohwi
1.00
0.07
0.07
0.00046
ME
[27, 28, 46, 58]
Sagittaria pygmaea Miq.
1.25
0.07
0.09
0.00174
ME,FO,GR
[2729, 46]
Sagittaria trifolia L.
1.88
0.14
0.27
0.01739
ED,ME,FO,LI,OR
[2729, 45, 46, 63, 65, 64]
Salicornia europaea L.
2.50
0.04
0.09
0.00087
ME,ID,EN
[27, 28]
Salvia plebeia R. Br.
1.00
0.07
0.07
0.00046
ME
[2729, 46]
Salvinia natans (L.) All.
1.89
0.16
0.30
0.01331
ME,FO,GR
[2730, 46, 57, 58, 62, 64]
Saururus chinensis Hort. ex Loudon
1.33
0.05
0.07
0.00070
ME,GR
[28, 29, 46]
Scirpus juncoides Roxb.
1.50
0.04
0.05
0.00035
ME,FI
[28, 46]
Scirpus planiculmis F.Schmidt
2.75
0.07
0.20
0.00765
ED,ME,FI,FO,LI,EN
[28, 57, 62, 67]
Scirpus tabernaemontani Salzm. ex Ball
2.50
0.11
0.27
0.01304
ME,FI,FO,EN,OR
[27, 28, 45, 57, 64, 65]
Scirpus triangulatus Roxb.
1.40
0.09
0.13
0.00304
ME,FO,FI
[28, 29, 45, 46, 67]
Scirpus triqueter L.
1.43
0.13
0.18
0.00406
FI,FO
[2729, 45, 57, 62, 64]
Scirpus wallichii Nees
1.00
0.02
0.02
0.00003
ME
[28]
Scirpus yagara Ohwi
2.57
0.13
0.32
0.01826
ME,FI,FO,ID,LI
[27, 28, 45, 46, 59, 62, 64]
Scrophularia ningpoensis Hemsl.
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Sesbania cannabina (Retz.) Poir.
2.67
0.05
0.14
0.00417
ME,FI,FO,GR,EN,ID
[28, 29, 46]
Sinosenecio oldhamianus (Maxim.) B. Nord.
2.00
0.04
0.07
0.00046
FO,GR
[28, 57]
Sium suave Walter
1.00
0.07
0.07
0.00093
ME,FO
[28, 29, 46, 64]
Solanum torvum Sw.
1.33
0.05
0.07
0.00070
ED,ME
[28, 29, 46]
Sparganium stoloniferum (Graebn.) Buch.-Ham. ex Juz.
1.78
0.16
0.29
0.02505
ME,OR,FO,FI,GR,OT
[2729, 45, 46, 57, 59, 62, 64]
Spilanthes paniculata Wall.
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Spirodela polyrhiza (L.) Schleid.
1.50
0.18
0.27
0.01304
ME,FO,GR
[2729, 4648, 59, 63, 64, 62]
Stachys adulterina Hemsl.
1.75
0.07
0.13
0.00162
ED,ME
[27, 46, 58, 61]
Stachys chinensis Bunge ex Benth.
1.00
0.04
0.04
0.00012
ME
[46, 64]
Stachys japonica Miq.
1.75
0.07
0.13
0.00325
ED,ME,ID,LI
[2729, 58]
Stachys oblongifolia Wall.
1.33
0.05
0.07
0.00070
ME,FO
[28, 29, 46]
Stellaria uliginosa Murray
1.00
0.04
0.04
0.00023
ME,FO
[28, 46]
Stephania japonica (Thunb.) Miers
1.00
0.09
0.09
0.00072
ME
[2729, 46, 80]
Suaeda glauca Bunge
1.60
0.09
0.14
0.00464
ED,ME,ID,OT
[2729, 46, 70]
Suaeda salsa Pall.
2.00
0.05
0.11
0.00209
ED,FO,GR,ID
[27, 29, 70]
Thalictrum simplex L.
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Trapa bicornis L. f.
1.67
0.16
0.27
0.01957
ED,ME,FO,ID,LI
[27, 29, 45, 46, 57, 58, 62, 65, 73]
Trapa bispinosa Roxb.
2.33
0.05
0.13
0.00244
ED,ME,FO,LI
[28, 29, 46]
Trapa incisa Siebold & Zucc.
1.50
0.07
0.11
0.00278
ED,ME,FO,ID
[27, 29, 46, 65]
Trapa maximowiczii Korsh.
1.50
0.04
0.05
0.00035
ED,LI
[28, 29]
Trifolium pratense L.
2.50
0.04
0.09
0.00116
ME,FO,GR,ID
[28, 46]
Typha angustata Bory & Chaub.
1.50
0.04
0.05
0.00035
ME,FI
[28, 46]
Typha angustifolia L.
1.63
0.14
0.23
0.00904
ED,ME,FI
[2729, 45, 46, 64, 65, 67]
Typha latifolia L.
2.17
0.11
0.23
0.00904
FI,ME,ED,OR
[28, 29, 46, 64, 65, 70]
Typha orientalis C. Presl
2.13
0.14
0.30
0.01577
ME,FI,ED,OR
[2729, 33, 34, 46, 59, 64]
Typhonium giganteum Engl.
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Urtica angustifolia Fisch. ex Hornem.
2.33
0.05
0.13
0.00244
ED,ME,FI,ID
[28, 29, 46]
Utricularia aurea Lour.
1.00
0.04
0.04
0.00023
FO,OR
[58, 60]
Utricularia vulgaris L.
1.00
0.02
0.02
0.00003
FO
[64]
Valeriana flaccidissima Maxim.
1.00
0.02
0.02
0.00003
ME
[28]
Valeriana officinalis L.
1.00
0.05
0.05
0.00026
ME
[28, 29, 46]
Vallisneria natans (Lour.) H. Hara
1.33
0.05
0.07
0.00070
ME,FO
[27, 28, 46]
Verbena officinalis L.
1.00
0.09
0.09
0.00072
ME
[28, 29, 46, 68, 78]
Veronica anagallis-aquatica L.
1.33
0.05
0.07
0.00070
ED,ME
[28, 29, 46]
Veronica undulata Wall.
1.00
0.04
0.04
0.00012
ME
[28, 29]
Vicia bungei Ohwi
2.00
0.04
0.07
0.00046
FO,GR
[28, 57]
Viola grypoceras A.Gray
1.00
0.05
0.05
0.00026
ME
[2729]
Viola inconspicua Blume
1.00
0.09
0.09
0.00072
ME
[2729, 46, 58]
Wolffia arrhiza (L.) Wimm.
1.50
0.07
0.11
0.00209
ED,FO,GR
[2729, 48]
Zantedeschia aethiopica (L.) Spreng.
1.00
0.04
0.04
0.00023
OR,OT
[27, 29]
Zizania latifolia Turcz.
3.33
0.16
0.54
0.06262
ED,ME,FI,FO,OT,ID,GR,OR
[27, 29, 39, 45, 46, 57, 62, 64, 65]
UV: Use value; RFC: Relative Frequency of Citation; CI: Cultural Importance Index; CV: Cultural Value Index.
Relative Frequency of Citation (RFC) varied between 0.02 (55 species, nearly 20% of the total) to 0.3 (Table 4). The top three species based on RFC were Polygonum hydropiper (RFC = 0.3), Oenanthe javanica (RFC = 0.25) and Mentha haplocalyx (RFC = 0.21). The next highest score was for Acorus calamus (RFC = 0.20) (Table 4). Many species with high RFC scores were likely to be used over extensive geographical areas, while many of those scoring just 0.02 were likely to be used only very locally.
Cultural Importance scores (CI) ranged between 0.02 (48 species, including Rungia chinensis and A. gramineum) and 0.54 (E. ferox and Z. latifolia) (Table 4), while those for Cultural Value (CV) ranged from 0.00003 (the same 48 species as for CI) and 0.07096 (Polygonum hydropiper) (Table 4). Species with the lowest CI or CV scores had only one kind of use and were mentioned only in one literature source.
Significant correlations were found between the scores of species for RFC, CI, and CV (Figures 2, 3 and 4), once the data had been normalized appropriately. Five of the top ten species according to RFC also appeared in the top ten lists for CI and CV. These species are Polygonum hydropiper, P. orientale, Euryale ferox, Zizania latifolia, and Coix lacryma-jobi. The 48 species with the lowest CV scores were also lowest according to UV, RFC and CI.

Discussion

Diversity of wetland useful plant species

The 350 wetland species recorded as traditionally used in China according to the literature are distributed unevenly across 66 families. The top families are Poaceae, Cyperaceae, Polygonaceae, Lamiaceae, Asteraceae, Rannunculaceae, Hydrocharitaceae and Potamogetonaceae. An uneven distribution of useful wetland species by plant family has also been found elsewhere in the world [11, 8890], for instance in Manipur (India) where Jain et al. found that Polygonaceae, Araceae, Cyperaceae and Poaceae contributed disproportionately to the list of useful species [11]. Coincidentally, many of the top families found in the Manipur study are also dominant or abundant in wetland plant communities in many parts of China [9196]. Species scoring highly in our study and which also have wide distributions elsewhere in the world, such as Phragmites australis, Polygonum hydropiper and Zizania latifolia, are always mentioned frequently in the literature from other places. All have high UV, CI and CV values according to our study (Table 4). This suggests that families rich in wetland species are more likely to be used than others, the key factor being the local presence of species potentially available for people’s attention and possible use. This result is similar to those reported for other regions [23]. Moerman et al. have argued in the case of medicinal plants that the characteristics of the local flora have a big influence on people’s knowledge [97]. The more often people come into contact with particular elements of the flora, the more likely they are to find uses for them. Knowledge about the usefulness of such plants will tend to grow disproportionately, as experience is accumulated. Traditional knowledge is always related to local people’s contact with the local environment [23].

The characteristics of usage of wetland useful species

Our results show that wetland plants have been used for multiple purposes in most parts of China. The three most important uses are provision of medicine, food and fodder (Table 2), all required regularly by people as they go about their daily lives [11, 13, 98, 99]. Providing people with sources of green manure is a further noteworthy use made of wetland plants, with 53 species being used. Adding fertility to the soil is a basic necessity in China, which remains fundamentally an agricultural country. Providing people with sources of fiber is another regular use made of wetland plants. People in China have had a long history of using plant fiber for making cloth, rope and other articles and a rich store of knowledge about the use of wetland plants for fiber extraction and use has been accumulated by people living in and around wetlands [100].
Besides providing local people with material necessities for their everyday lives, wetland plants also provide other products used less frequently, as well as a range of services. Some plants are used as ornamentals, such as Polygonum orientale. Phragmites australis, Miscanthus sinensis, Miscanthus sacchariflorus, while others are important for the strengthening of embankments and protecting soil erosion. Twenty-two species provide raw materials for making wine. China has a cornucopia of traditional knowledge relating to liquor-making; our results confirm that a substantial part of this knowledge relates to wetland species, even though much of this knowledge is historical and not known by current generations. Wetlands can be breeding grounds for mosquitoes and other nuisance insects, reducing agricultural production or transmitting disease, so considerable traditional knowledge of wetland plants relating to pesticides may yet prove to be useful in the modern world. There are also some species having important cultural values, for example the flowers of Zantedeschia aethiopica used commonly in sacrificial rites.
Compared with the uses mentioned above, the use of wetland plants for industrial purpose is comparatively recent. Industrially, wetland plants are mostly used as sources of industrial raw materials. For instance, Scirpus yagara is used as a raw material in the production of ethyl alcohol and glycerol, while Mentha haplocalyx can be a source of volatile oils. These plants can be important source of cash for local people.
Wetland plants provide people with many types of products valuable for subsistence living. The wealth of traditional knowledge that has accumulated about the uses of wetland plants is a reflection of the close relationships traditionally existing between people and their local environments, in this case specifically relating to wetlands. Much of this knowledge is disappearing today along with the loss of traditional lifestyles and retreat of wetlands. Systematic ethnobotanical surveys of traditional knowledge relating to wetlands are therefore needed, while such knowledge still exists.

Comparison of some quantitative indexes

An increasing number of papers have appeared over recent years discussing the use of quantitative methods in ethnobotanical research [101, 102]. In particular, many new parameters have been suggested for evaluating the cultural importance or significance of plants and determine information consensus between informants [2426, 103]. The use of such indexes can not only advance the development of ethnobotany, but can also make it possible to compare results between different regions or cultural groups, as well as undertaking meta-analyses.
Use Value (UV) is one of the most frequently used indexes for evaluating ‘the relative usefulness of plants to people’ [23, 24, 83, 84]. It has been successfully applied in many contexts [104108]. With respect to an analysis of the literature, such as that here, UV reflects not only the number of uses made of a plant as well as the number of literature sources mentioning it. So a plant with high UV value does not necessarily mean that it has multiple uses nor that it is necessarily mentioned in many publications, as we have discussed in an earlier paper [109]. To illustrate this point, three species (Najas graminea, Potamogeton pusillus and Monochoria korsakowii) were all found to have UV = 2 in the present study, but actually the first two of these are only mentioned in two literature sources with two uses in each case, while the third is mentioned in 8 sources but only for one type of use. Among those plants with UV = 1, they have the same total numbers of different uses recorded in the literature and the numbers of literature recording these uses. Although their UV values are the lowest, it does not mean that they have few uses. However, some plants with higher UV values are indeed versatile, such as P. australis, Z. latifolia, and N. tetragona. These plants have a common feature: mentioned by a higher number of literature. So the UV value in a literature study may give us a bias. When using UV index to evaluate a plant, we should use the number of the literature recorded it for reference.
According the formula used for calculating FUV, we can find that FUV depends on the UV of species in a family. So FUV has a similar shortcoming to UV.
Compared with UV, RFC, CI and CV have considered more factors that may lead to a bias. RFC is as same as %P designed in one of our previous papers [109]. Although it has considered the number of the literature which mentions a given species and the total number of literature concerned in the study, it does not take into account the number of uses mentioned in the literature. It just reflects the frequency of a species mentioned by the literature. There are significantly positive correlations between RFC and CI (R2 = 0.767, p < 0.001) and CV (R2 = 0.841, p < 0.001), respectively (Figure 2 and 3). Because RFC does not consider the number of uses, it will not show the difference of the importance and use values between species. Compared with RFC, CI and CV are two more comprehensive indexes. They consider not only the frequency cited by the literature, but also the number of uses recorded in the literature. There is a significant correlation between CI and CV (R2 = 0.980, p < 0.001). The species with higher CI values often have higher CV, such as P. hydropiper and Z. latifolia. Compared with CI, CV is more sensitive to the information recorded in the literature and is more effective to show the differences of use value and frequency being cited in the literature between species.
In fact, many indexes used in quantitative ethnobotany are related to the use categories. The method of use type classification will affect greatly the calculation results. However, it is often very difficult to produce a perfect scheme of use categories which could be closer to the truth. What can we do is to try our best to make the use categories more reasonable.

Conclusion

The wide distribution of many species of wetland plants [110, 111] makes it possible to gain a general picture of the uses made of such plants on a macro-scale. A principal conclusion from the present study is that the biggest uses of wetland species, in terms of the number of citations in the literature, are for medicine, food and fodder. We conclude that it is whether or not particular species are growing locally that is a major determinant over whether people actually use them. Cultural Value (CV) and Cultural Importance (CI) are judged to be the most useful quantitative indices for providing measures of the relative importance and usefulness of wetland species, based on analyses of citations in literature that is not specifically ethnobotanical. However, such publications cannot provide detailed information about relationships between wetland plants and people, such as details of the ways in which people use and manage them. China is rich in both wetlands and traditional knowledge of wetland plants, but both wetlands and traditional knowledge are rapidly being lost. Traditional knowledge about wetland plants has much to offer for modern needs, such as the sustainable use of wetland plants, conservation and industrial development. We therefore conclude that there is a great need for detailed systematic ethnobotanical studies on wetland plants to be undertaken as a matter of urgency.

Acknowledgements

Many thanks to Dr. Alan Hamilton for assisting with the English. The authors also thank two anonymous reviewers for their valuable comments for the paper. This study was financially supported by grants from the National Natural Science Foundation of China (31170299 and 31370355).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

YZ and HH conceived of the study, participated in its design, data collection and analysis, and helped to draft the manuscript. HLX participated in data analysis and enrichment of manuscript. HC and FW participated in data collection, analysis and revision of the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Bekalo TH, Woodmatas SD, Woldemariam ZA: An ethnobotanical study of medicinal plants used by local people in the lowlands of Konta Special Woreda, southern nations, nationalities and peoples regional state, Ethiopia. J Ethnobiol Ethnomed. 2009, 5: 26-PubMedCentralPubMed Bekalo TH, Woodmatas SD, Woldemariam ZA: An ethnobotanical study of medicinal plants used by local people in the lowlands of Konta Special Woreda, southern nations, nationalities and peoples regional state, Ethiopia. J Ethnobiol Ethnomed. 2009, 5: 26-PubMedCentralPubMed
2.
Zurück zum Zitat Patra R: Vaastu Shastra: towards sustainable development. Sust Dev. 2009, 17 (4): 244-256. Patra R: Vaastu Shastra: towards sustainable development. Sust Dev. 2009, 17 (4): 244-256.
3.
Zurück zum Zitat Rana MMP: Urbanization and sustainability: challenges and strategies for sustainable urban development in Bangladesh. Environ Dev Sustain. 2011, 13 (1): 237-256. Rana MMP: Urbanization and sustainability: challenges and strategies for sustainable urban development in Bangladesh. Environ Dev Sustain. 2011, 13 (1): 237-256.
4.
Zurück zum Zitat Huai H, Xu J: Indigenous knowledge: an inexhaustible “information bank” for toxin research. Toxicon. 2000, 38 (6): 745-746.PubMed Huai H, Xu J: Indigenous knowledge: an inexhaustible “information bank” for toxin research. Toxicon. 2000, 38 (6): 745-746.PubMed
5.
Zurück zum Zitat Ramirez CR: Ethnobotany and the loss of traditional knowledge in the 21st Century. Ethnobot Res Appl. 2007, 5: 245-247. Ramirez CR: Ethnobotany and the loss of traditional knowledge in the 21st Century. Ethnobot Res Appl. 2007, 5: 245-247.
6.
Zurück zum Zitat Volpato G, Godínez D, Beyra A: Migration and ethnobotanical practices: The case of tifey among Haitian immigrants in Cuba. Hum Ecol. 2009, 37 (1): 43-53. Volpato G, Godínez D, Beyra A: Migration and ethnobotanical practices: The case of tifey among Haitian immigrants in Cuba. Hum Ecol. 2009, 37 (1): 43-53.
7.
Zurück zum Zitat Cetinkale SG, Acıksöz S: Sustainability of traditional pattern in urban landscape: The case of Bartin. J Agric Sci. 2007, 13 (2): 81-88. Cetinkale SG, Acıksöz S: Sustainability of traditional pattern in urban landscape: The case of Bartin. J Agric Sci. 2007, 13 (2): 81-88.
8.
Zurück zum Zitat Wu T, Petriello MA: Culture and biodiversity losses linked. Science. 2011, 331 (6013): 30-31.PubMed Wu T, Petriello MA: Culture and biodiversity losses linked. Science. 2011, 331 (6013): 30-31.PubMed
9.
Zurück zum Zitat Denny P: Biodiversity and wetlands. Wetl Ecol Manag. 1994, 3 (1): 55-61. Denny P: Biodiversity and wetlands. Wetl Ecol Manag. 1994, 3 (1): 55-61.
10.
Zurück zum Zitat Schuyt KD: Economic consequences of wetland degradation for local populations in Africa. Ecol Econ. 2005, 53: 177-190. Schuyt KD: Economic consequences of wetland degradation for local populations in Africa. Ecol Econ. 2005, 53: 177-190.
11.
Zurück zum Zitat Jain A, Sundriyal M, Roshnibala S, Kotoky R, Kanjilal PB, Singh HB, Sundriyal RC: Dietary use and conservation concern of edible wetland plants at Indo-Burma hotspot: a case study from Northeast India. J Ethnobiol Ethnomed. 2011, 7: 29-PubMedCentralPubMed Jain A, Sundriyal M, Roshnibala S, Kotoky R, Kanjilal PB, Singh HB, Sundriyal RC: Dietary use and conservation concern of edible wetland plants at Indo-Burma hotspot: a case study from Northeast India. J Ethnobiol Ethnomed. 2011, 7: 29-PubMedCentralPubMed
12.
Zurück zum Zitat Panda A, Misra MK: Ethnomedicinal survey of some wetland plants of South Orissa and their conservation. Indian J Tradit Know. 2011, 10 (2): 296-303. Panda A, Misra MK: Ethnomedicinal survey of some wetland plants of South Orissa and their conservation. Indian J Tradit Know. 2011, 10 (2): 296-303.
13.
Zurück zum Zitat Gichuki J, Guebas FD, Mugo J, Rabuor CO, Triest L, Dehairs F: Species inventory and the local uses of the plants and fishes of the Lower Sondu Miriu wetland of Lake Victoria, Kenya. Hydrobiologia. 2001, 458: 99-106. Gichuki J, Guebas FD, Mugo J, Rabuor CO, Triest L, Dehairs F: Species inventory and the local uses of the plants and fishes of the Lower Sondu Miriu wetland of Lake Victoria, Kenya. Hydrobiologia. 2001, 458: 99-106.
14.
Zurück zum Zitat Ambastha K, Hussain SA, Badola R: Resource dependence and attitudes of local people toward conservation of Kabartal wetland: a case study from the Indo-Gangetic plains. Wetl Ecol Manag. 2007, 15 (4): 287-302. Ambastha K, Hussain SA, Badola R: Resource dependence and attitudes of local people toward conservation of Kabartal wetland: a case study from the Indo-Gangetic plains. Wetl Ecol Manag. 2007, 15 (4): 287-302.
15.
Zurück zum Zitat Ehrenfeld JG: Exotic invasive species in urban wetlands: environmental correlates and implications for wetland management. J Appl Ecol. 2008, 45 (4): 1160-1169. Ehrenfeld JG: Exotic invasive species in urban wetlands: environmental correlates and implications for wetland management. J Appl Ecol. 2008, 45 (4): 1160-1169.
16.
Zurück zum Zitat Zheng X, Li C, Huang G, Yang Z: Research progress in effects of urbanization on wetland ecosystem in watershed. Wetl Sci. 2008, 6 (1): 87-96. Zheng X, Li C, Huang G, Yang Z: Research progress in effects of urbanization on wetland ecosystem in watershed. Wetl Sci. 2008, 6 (1): 87-96.
17.
Zurück zum Zitat Vallet J, Daniel H, Beaujouan V, Rozé F: Plant species response to urbanization: comparison of isolated woodland patches in two cities of North-Western France. Landscape Ecol. 2008, 23 (10): 1205-1217. Vallet J, Daniel H, Beaujouan V, Rozé F: Plant species response to urbanization: comparison of isolated woodland patches in two cities of North-Western France. Landscape Ecol. 2008, 23 (10): 1205-1217.
18.
Zurück zum Zitat Vermonden K, Leuven RSEW, van der Velde G, Hendriks AJ, van Katwijk MM, Roelofs JGM, Lucassen ECHET, Pedersen O, Sand-Jensen K: Species pool versus site limitations of macrophytes in urban waters. Aquat Sci. 2010, 72 (3): 379-389. Vermonden K, Leuven RSEW, van der Velde G, Hendriks AJ, van Katwijk MM, Roelofs JGM, Lucassen ECHET, Pedersen O, Sand-Jensen K: Species pool versus site limitations of macrophytes in urban waters. Aquat Sci. 2010, 72 (3): 379-389.
19.
Zurück zum Zitat McKinney ML: Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst. 2008, 11: 161-176. McKinney ML: Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst. 2008, 11: 161-176.
20.
Zurück zum Zitat Lei K, Zhang M: The wetland resources in China and the conservation advices. Wetl Sci. 2005, 3 (2): 81-86. Lei K, Zhang M: The wetland resources in China and the conservation advices. Wetl Sci. 2005, 3 (2): 81-86.
21.
Zurück zum Zitat Albuquerque UP, Medeiros PM: Systematic reviews and meta-analysis applied to ethnobiological research. Ethnobiol Conserv. 2012, 1: 6- Albuquerque UP, Medeiros PM: Systematic reviews and meta-analysis applied to ethnobiological research. Ethnobiol Conserv. 2012, 1: 6-
22.
Zurück zum Zitat Bletter N: A quantitative synthesis of the medicinal ethnobotany of the Malinké of Mali and the Asháninka of Peru, with a new theoretical framework. J Ethnobiol Ethnomed. 2007, 3: 36-PubMedCentralPubMed Bletter N: A quantitative synthesis of the medicinal ethnobotany of the Malinké of Mali and the Asháninka of Peru, with a new theoretical framework. J Ethnobiol Ethnomed. 2007, 3: 36-PubMedCentralPubMed
23.
Zurück zum Zitat Molares S, Ladio A: Ethnobotanical review of the Mapuche medicinal flora: use patterns on a regional scale. J Ethnopharmacol. 2009, 122 (2): 251-260.PubMed Molares S, Ladio A: Ethnobotanical review of the Mapuche medicinal flora: use patterns on a regional scale. J Ethnopharmacol. 2009, 122 (2): 251-260.PubMed
24.
Zurück zum Zitat Tardío J, Pardo-de-Santayana M: Cultural importance indices: a comparative analysis based on the useful wild plants of Southern Cantabria (Northern Spain). Econ Bot. 2008, 62 (1): 24-39. Tardío J, Pardo-de-Santayana M: Cultural importance indices: a comparative analysis based on the useful wild plants of Southern Cantabria (Northern Spain). Econ Bot. 2008, 62 (1): 24-39.
25.
Zurück zum Zitat de Medeiros PM, Ladio AH, Albuquerque UP: Patterns of medicinal plant use by inhabitants of Brazilian urban and rural areas: A macroscale investigation based on available literature. J Ethnopharmacol. 2013, 150 (2): 729-746.PubMed de Medeiros PM, Ladio AH, Albuquerque UP: Patterns of medicinal plant use by inhabitants of Brazilian urban and rural areas: A macroscale investigation based on available literature. J Ethnopharmacol. 2013, 150 (2): 729-746.PubMed
26.
Zurück zum Zitat Reyes-García V, Huanca T, Vadez V, Leonard W, Wilkie D: Cultural, practical, and economic value of wild plants: a quantitative study in the Bolivian Amazon. Econ Bot. 2006, 60 (1): 62-74. Reyes-García V, Huanca T, Vadez V, Leonard W, Wilkie D: Cultural, practical, and economic value of wild plants: a quantitative study in the Bolivian Amazon. Econ Bot. 2006, 60 (1): 62-74.
27.
Zurück zum Zitat Jiangsu Institute of Botany: Flora of Jiangsu. 1977, Nanjing: Jiangsu People’s Publishing Ltd, [江苏植物研究所编, 江苏植物志, 江苏人民出版社: 南京, 1977] Jiangsu Institute of Botany: Flora of Jiangsu. 1977, Nanjing: Jiangsu People’s Publishing Ltd, [江苏植物研究所编, 江苏植物志, 江苏人民出版社: 南京, 1977]
28.
Zurück zum Zitat Li Y: Weed Flora of China. 1998, Beijing: China Agriculture Press, [李扬汉,中国杂草志, 中国农业出版社: 北京, 1998] Li Y: Weed Flora of China. 1998, Beijing: China Agriculture Press, [李扬汉,中国杂草志, 中国农业出版社: 北京, 1998]
29.
Zurück zum Zitat Editorial Committee of Flora of China: Flora of China. 1959–2004, Beijing: Science Press, [中国植物志编委会, 中国植物志, 科学出版社: 北京, 1959–2004] Editorial Committee of Flora of China: Flora of China. 1959–2004, Beijing: Science Press, [中国植物志编委会, 中国植物志, 科学出版社: 北京, 1959–2004]
30.
Zurück zum Zitat Liu G, Li J, Shan L, Wang Q: Salvinia natans----Green foods for poultry (家禽的绿色食粮-槐叶萍). Heilongjiang Anim Sci Vet Med. 1999, 2: 14-15. Liu G, Li J, Shan L, Wang Q: Salvinia natans----Green foods for poultry (家禽的绿色食粮-槐叶萍). Heilongjiang Anim Sci Vet Med. 1999, 2: 14-15.
31.
Zurück zum Zitat Jiao B, Gu R, Zhang X: Green manure. 1986, Beijing: China Agriculture Press, [中国绿肥, 农业出版社: 北京, 1986] Jiao B, Gu R, Zhang X: Green manure. 1986, Beijing: China Agriculture Press, [中国绿肥, 农业出版社: 北京, 1986]
32.
Zurück zum Zitat Wang S: Use of Azolla imbricata in agriculture, China(满江红在我国农业上的利用). Chin J Soil Sci. 1980, 6: 14- Wang S: Use of Azolla imbricata in agriculture, China(满江红在我国农业上的利用). Chin J Soil Sci. 1980, 6: 14-
33.
Zurück zum Zitat Chinese Pharmacopoeia Commission: Pharmacopoeia of The People’s Republic of China. 2010, Beijing: China Medical Science Press, [国家药典委员会, 中华人民共和国药典, 中国医药科技出版社: 北京, 2010] Chinese Pharmacopoeia Commission: Pharmacopoeia of The People’s Republic of China. 2010, Beijing: China Medical Science Press, [国家药典委员会, 中华人民共和国药典, 中国医药科技出版社: 北京, 2010]
34.
Zurück zum Zitat Yu H, Du L, Liu X: Integrated utilization of Typha orientalis (香蒲的综合利用). Mod Chin Med. 2007, 9 (9): 31-34. Yu H, Du L, Liu X: Integrated utilization of Typha orientalis (香蒲的综合利用). Mod Chin Med. 2007, 9 (9): 31-34.
35.
Zurück zum Zitat Hou C, Guo G, Sun X: Value, harm and control measures of Potamogeton crispus (菹草的作用, 危害及预防措施). JiLin Agric. 2011, 7: 229- Hou C, Guo G, Sun X: Value, harm and control measures of Potamogeton crispus (菹草的作用, 危害及预防措施). JiLin Agric. 2011, 7: 229-
36.
Zurück zum Zitat Wu W: Arundo donax—a high quality raw material for paper-making (芦竹—一种高产优质的造纸原料). Tianjin Paper Making. 1993, 4: 28-29. Wu W: Arundo donax—a high quality raw material for paper-making (芦竹—一种高产优质的造纸原料). Tianjin Paper Making. 1993, 4: 28-29.
37.
Zurück zum Zitat Hu X: Arundo donax is a good species of greening in waterbody rich areas (水网地区绿化好品种-芦竹). Jiangsu Greening. 1996, 1: 31- Hu X: Arundo donax is a good species of greening in waterbody rich areas (水网地区绿化好品种-芦竹). Jiangsu Greening. 1996, 1: 31-
38.
Zurück zum Zitat Zhang J: Arundo donax var. versicolor, a new resource of aquatic species for greening (水生绿化植物新品种—花叶芦竹). New Rural Technol. 2008, 9: 33- Zhang J: Arundo donax var. versicolor, a new resource of aquatic species for greening (水生绿化植物新品种—花叶芦竹). New Rural Technol. 2008, 9: 33-
39.
Zurück zum Zitat Zhai C, Sun G, Lu Z, Jiang Z, Zhang X: On Chinese Zizania L. resources and their utilization value (中国菰资源及其应用价值的研究). Resour Sci. 2000, 22 (6): 22-26. Zhai C, Sun G, Lu Z, Jiang Z, Zhang X: On Chinese Zizania L. resources and their utilization value (中国菰资源及其应用价值的研究). Resour Sci. 2000, 22 (6): 22-26.
40.
Zurück zum Zitat He J, Shang Y: A high quality forage grass, Puspalum dilatatum (优质牧草-毛花雀稗). Agric Tech Serv. 2003, 10: 18- He J, Shang Y: A high quality forage grass, Puspalum dilatatum (优质牧草-毛花雀稗). Agric Tech Serv. 2003, 10: 18-
41.
Zurück zum Zitat Li Z, Hao Y: Nutrition constituents of Coix lacryma-jobi and its comprehensive utilization (薏苡营养成分及综合利用). Agric Sci Technol Equip. 2012, 5: 75-76. Li Z, Hao Y: Nutrition constituents of Coix lacryma-jobi and its comprehensive utilization (薏苡营养成分及综合利用). Agric Sci Technol Equip. 2012, 5: 75-76.
42.
Zurück zum Zitat Wang Z: Medical value of Coix lacryma-jobi (薏苡的药用价值). Applicable Technol Rural Areas. 2004, 12: 56-57. Wang Z: Medical value of Coix lacryma-jobi (薏苡的药用价值). Applicable Technol Rural Areas. 2004, 12: 56-57.
43.
Zurück zum Zitat Cai J: Nutrition and processing of Eleocharis dulcis (荸荠的营养保健和加工利用). Food and Nutr China. 2005, 2: 40-42. Cai J: Nutrition and processing of Eleocharis dulcis (荸荠的营养保健和加工利用). Food and Nutr China. 2005, 2: 40-42.
44.
Zurück zum Zitat Liu B, Gao Y, Wu H: Identification and application of three species from Acorus (三种菖蒲的鉴别和应用). Lishizhen Med Materia Medica Res. 2004, 15 (8): 496- Liu B, Gao Y, Wu H: Identification and application of three species from Acorus (三种菖蒲的鉴别和应用). Lishizhen Med Materia Medica Res. 2004, 15 (8): 496-
45.
Zurück zum Zitat Commerce Ministry of the People’s Republic of China, Institute of Botany of CAS: Flora of China Economic Plants. 1961, Beijing: Science Press, [中华人民共和国商业部土产废品局,中国科学院植研所,中国经济植物志,科学出版社:北京,1961] Commerce Ministry of the People’s Republic of China, Institute of Botany of CAS: Flora of China Economic Plants. 1961, Beijing: Science Press, [中华人民共和国商业部土产废品局,中国科学院植研所,中国经济植物志,科学出版社:北京,1961]
46.
Zurück zum Zitat Jiangsu New Medicine College (Ed.): A Grand Dictionary of Chinese Medicinal Herbs. 1995, Shanghai: Science Technology Publishing Co, [江苏新医学院,中药大辞典,上海科学技术出版社:上海,1995] Jiangsu New Medicine College (Ed.): A Grand Dictionary of Chinese Medicinal Herbs. 1995, Shanghai: Science Technology Publishing Co, [江苏新医学院,中药大辞典,上海科学技术出版社:上海,1995]
47.
Zurück zum Zitat Wang J, Zhan Z: Use of Spirodela polyrrhiza in different history phases (浮萍历代应用探源). Pharm Clin Chin Materia Med. 2011, 2 (4): 39-40. Wang J, Zhan Z: Use of Spirodela polyrrhiza in different history phases (浮萍历代应用探源). Pharm Clin Chin Materia Med. 2011, 2 (4): 39-40.
48.
Zurück zum Zitat Zhang Z: Spirodela polyrrhiza, a high quality natural bait for grass carp (草鱼种的优质天然饵料——浮萍). Fishery Guide to be Rich. 2000, 12: 24- Zhang Z: Spirodela polyrrhiza, a high quality natural bait for grass carp (草鱼种的优质天然饵料——浮萍). Fishery Guide to be Rich. 2000, 12: 24-
49.
Zurück zum Zitat Guo F: Murdannia triquetra, a high production and quality feed (高产优质青饲料—水竹叶). Feed Res. 1985, 2: 31- Guo F: Murdannia triquetra, a high production and quality feed (高产优质青饲料—水竹叶). Feed Res. 1985, 2: 31-
50.
Zurück zum Zitat Zhao N, Xia G, Xu H, Du J, Pan L: Ethno-medicinal plants from Polygonum in Guizhou (贵州少数民族常用的蓼属植物药). J Med Pharm Chin Minorities. 2012, 18 (7): 31-33. Zhao N, Xia G, Xu H, Du J, Pan L: Ethno-medicinal plants from Polygonum in Guizhou (贵州少数民族常用的蓼属植物药). J Med Pharm Chin Minorities. 2012, 18 (7): 31-33.
51.
Zurück zum Zitat Zhai S, Fu W, Xue M: Application of Polygonum hydropiper in study of pesticide and veterinary (水蓼在农药和兽药研究中的应用). J Tradit Chin Vet Med. 2008, 27 (4): 72-73. Zhai S, Fu W, Xue M: Application of Polygonum hydropiper in study of pesticide and veterinary (水蓼在农药和兽药研究中的应用). J Tradit Chin Vet Med. 2008, 27 (4): 72-73.
52.
Zurück zum Zitat Lu X: Using Polygonum hydropiper to cure diseases of livestock and poultry (用水蓼治疗畜禽疾病). Yunnan J Anim Sci Vet Med. 2002, 1: 46- Lu X: Using Polygonum hydropiper to cure diseases of livestock and poultry (用水蓼治疗畜禽疾病). Yunnan J Anim Sci Vet Med. 2002, 1: 46-
53.
Zurück zum Zitat Li S: Leaves of Polygonum hydropiper can be used to treat metrorrhagia (水蓼叶治子宫出血). Chin J Ethnomed Ethnopharmacy. 2001, 3: 157- Li S: Leaves of Polygonum hydropiper can be used to treat metrorrhagia (水蓼叶治子宫出血). Chin J Ethnomed Ethnopharmacy. 2001, 3: 157-
54.
Zurück zum Zitat Wang B: Introduction to an aquatic plant, Nuphar pumila (水生植物萍蓬草). Garden. 2012, 4: 70-71. Wang B: Introduction to an aquatic plant, Nuphar pumila (水生植物萍蓬草). Garden. 2012, 4: 70-71.
55.
Zurück zum Zitat Wang Y, Wang Q, Wang Y: Summery of medicinal plants from Polygonum in China (中国蓼属药用植物综述). ShiZhen J Tradit Chin Med Res. 1996, 7 (3): 172-173. Wang Y, Wang Q, Wang Y: Summery of medicinal plants from Polygonum in China (中国蓼属药用植物综述). ShiZhen J Tradit Chin Med Res. 1996, 7 (3): 172-173.
56.
Zurück zum Zitat Fang L, Liu H, Cui J, Xu Z: Traditional use of wetland plants in Dai villages in Xishuangbanna, Yunnan (西双版纳傣族村寨对湿地植物的传统利用). Biodivers Sci. 2006, 14 (4): 300-308. Fang L, Liu H, Cui J, Xu Z: Traditional use of wetland plants in Dai villages in Xishuangbanna, Yunnan (西双版纳傣族村寨对湿地植物的传统利用). Biodivers Sci. 2006, 14 (4): 300-308.
57.
Zurück zum Zitat Chen M, Jia S: Flora of China Forage Plants. 1987, Beijing: China Agriculture Press, [陈默君, 贾慎修, 中国饲用植物志, 中国农业出版社: 北京,1987] Chen M, Jia S: Flora of China Forage Plants. 1987, Beijing: China Agriculture Press, [陈默君, 贾慎修, 中国饲用植物志, 中国农业出版社: 北京,1987]
58.
Zurück zum Zitat Editing Group of Flora of Fujian: Flora of Fujian. 1982, Fuzhou: Fujian Science & Technology Publishing House, [福建植物志编写组, 福建植物志, 福建科学技术出版社; 福州, 1982] Editing Group of Flora of Fujian: Flora of Fujian. 1982, Fuzhou: Fujian Science & Technology Publishing House, [福建植物志编写组, 福建植物志, 福建科学技术出版社; 福州, 1982]
59.
Zurück zum Zitat Teaching and Research Group of Pharmacognosy, Second Military Medical University: An Illustrated Handbook of Medicinal Plants in China. 1960, Shanghai: Shanghai Education Press, [第二军医大学药学系生药学教研组, 中国药用植物图鉴,上海教育出版社; 上海, 1960] Teaching and Research Group of Pharmacognosy, Second Military Medical University: An Illustrated Handbook of Medicinal Plants in China. 1960, Shanghai: Shanghai Education Press, [第二军医大学药学系生药学教研组, 中国药用植物图鉴,上海教育出版社; 上海, 1960]
60.
Zurück zum Zitat Li B: New resources from Utricularia aurea for Aquariums (鱼缸水草新秀—狸藻). Fisheries Sci Technol Inf. 2001, 28 (2): 87-88. Li B: New resources from Utricularia aurea for Aquariums (鱼缸水草新秀—狸藻). Fisheries Sci Technol Inf. 2001, 28 (2): 87-88.
61.
Zurück zum Zitat Jing X: Stachys adulterina, a medicinal vegetable (药用蔬菜—草石蚕). Shanghai Vegetables. 2004, 5: 75- Jing X: Stachys adulterina, a medicinal vegetable (药用蔬菜—草石蚕). Shanghai Vegetables. 2004, 5: 75-
62.
Zurück zum Zitat Chen M, Jia S: Forage Plants in China. 2002, Beijing: China Agriculture Press, [陈默君, 贾慎修, 中国饲用植物, 中国农业出版社: 北京,2002] Chen M, Jia S: Forage Plants in China. 2002, Beijing: China Agriculture Press, [陈默君, 贾慎修, 中国饲用植物, 中国农业出版社: 北京,2002]
63.
Zurück zum Zitat Gui L, Li J, Tian F, Yang C, Liang S, Tian H: Protection and utilization of Guangxi wetland medicinal plant resources (广西湿地药用植物资源的保护与利用). Contemp Med Forum. 2014, 12 (1): 24-25. Gui L, Li J, Tian F, Yang C, Liang S, Tian H: Protection and utilization of Guangxi wetland medicinal plant resources (广西湿地药用植物资源的保护与利用). Contemp Med Forum. 2014, 12 (1): 24-25.
64.
Zurück zum Zitat Chu J: The investigation on the resources of aquatic plants in the west of Jilin province (吉林西部水生植物资源的调查). J Baicheng Normal Coll. 2006, 20 (4): 1-4. Chu J: The investigation on the resources of aquatic plants in the west of Jilin province (吉林西部水生植物资源的调查). J Baicheng Normal Coll. 2006, 20 (4): 1-4.
65.
Zurück zum Zitat Deng F, Sun P, Li Q, Wu G, Deng F: Study on application and wastewater purification values of wetland aquatic plants (湿地水生植物的利用途径与争化污水作用研究). Ecol Economy. 2005, 4: 66-69. Deng F, Sun P, Li Q, Wu G, Deng F: Study on application and wastewater purification values of wetland aquatic plants (湿地水生植物的利用途径与争化污水作用研究). Ecol Economy. 2005, 4: 66-69.
66.
Zurück zum Zitat Yang Y, Zhang F, Zhang E, Dong C, A X, Tang C, Xu F, Dai L: The traditional use of agricultural plant resources by the Bulang people in Xishuangbanna, Yunnan province (云南西双版纳布朗族对农业植物的传统利用研究). Chin Agric Sci Bull. 2012, 28 (33): 177-186. Yang Y, Zhang F, Zhang E, Dong C, A X, Tang C, Xu F, Dai L: The traditional use of agricultural plant resources by the Bulang people in Xishuangbanna, Yunnan province (云南西双版纳布朗族对农业植物的传统利用研究). Chin Agric Sci Bull. 2012, 28 (33): 177-186.
67.
Zurück zum Zitat Zhang L, Song B, Wang R, Zhang F, Shangguang T: A study on the wild plant resources of wetlands in Shanxi (山西湿地野生植物资源研究). J Shanxi Univ (Nat Sci Ed ). 1998, 21 (3): 281-285. Zhang L, Song B, Wang R, Zhang F, Shangguang T: A study on the wild plant resources of wetlands in Shanxi (山西湿地野生植物资源研究). J Shanxi Univ (Nat Sci Ed ). 1998, 21 (3): 281-285.
68.
Zurück zum Zitat Shen S, Qian J, Ren J: Ethnoveterinary plant remedies used by Nu people in NW Yunnan of China. J Ethnobiol Ethnomed. 2010, 6 (1): 24-PubMedCentralPubMed Shen S, Qian J, Ren J: Ethnoveterinary plant remedies used by Nu people in NW Yunnan of China. J Ethnobiol Ethnomed. 2010, 6 (1): 24-PubMedCentralPubMed
69.
Zurück zum Zitat Ju Y, Zhuo J, Liu B, Long C: Eating from the wild: diversity of wild edible plants used by Tibetans in Shangri-la region, Yunnan, China. J Ethnobiol Ethnomed. 2013, 9 (1): 28-PubMedCentralPubMed Ju Y, Zhuo J, Liu B, Long C: Eating from the wild: diversity of wild edible plants used by Tibetans in Shangri-la region, Yunnan, China. J Ethnobiol Ethnomed. 2013, 9 (1): 28-PubMedCentralPubMed
70.
Zurück zum Zitat Wujisguleng W, Khasbagen K: An integrated assessment of wild vegetable resources in Inner Mongolian Autonomous Region, China. J Ethnobiol Ethnomed. 2010, 6 (1): 34-PubMedCentralPubMed Wujisguleng W, Khasbagen K: An integrated assessment of wild vegetable resources in Inner Mongolian Autonomous Region, China. J Ethnobiol Ethnomed. 2010, 6 (1): 34-PubMedCentralPubMed
71.
72.
Zurück zum Zitat Ghorbani A, Langenberger G, Sauerborn J: A comparison of the wild food plant use knowledge of ethnic minorities in Naban River Watershed National Nature Reserve, Yunnan, SW China. J Ethnobiol Ethnomed. 2012, 8 (1): 17-PubMedCentralPubMed Ghorbani A, Langenberger G, Sauerborn J: A comparison of the wild food plant use knowledge of ethnic minorities in Naban River Watershed National Nature Reserve, Yunnan, SW China. J Ethnobiol Ethnomed. 2012, 8 (1): 17-PubMedCentralPubMed
73.
Zurück zum Zitat Hodge WH: Chinese water chestnut or matai—a paddy crop of China. Econ Bot. 1956, 10 (1): 49-65. Hodge WH: Chinese water chestnut or matai—a paddy crop of China. Econ Bot. 1956, 10 (1): 49-65.
74.
Zurück zum Zitat Huang J, Pei S, Long C: An ethnobotanical study of medicinal plants used by the Lisu people in Nujiang, northwest Yunnan, China. Econ Bot. 2004, 58 (1): S253-S264. Huang J, Pei S, Long C: An ethnobotanical study of medicinal plants used by the Lisu people in Nujiang, northwest Yunnan, China. Econ Bot. 2004, 58 (1): S253-S264.
75.
Zurück zum Zitat Huai HY, Pei SJ: Plants used medicinally by folk healers of the Lahu people from the autonomous county of Jinping Miao, Yao, and Dai in southwest China. Econ Bot. 2004, 58 (1): S265-S273. Huai HY, Pei SJ: Plants used medicinally by folk healers of the Lahu people from the autonomous county of Jinping Miao, Yao, and Dai in southwest China. Econ Bot. 2004, 58 (1): S265-S273.
76.
Zurück zum Zitat Keng H: Economic plants of ancient north China as mentioned in Shih Ching (Book of Poetry). Econ Bot. 1973, 28 (4): 391-410. Keng H: Economic plants of ancient north China as mentioned in Shih Ching (Book of Poetry). Econ Bot. 1973, 28 (4): 391-410.
77.
Zurück zum Zitat Fu Y, Guo H, Chen A, Cui J, Padoch C: Relocating plants from swidden fallows to gardens in southwestern China. Econ Bot. 2003, 57 (3): 389-402. Fu Y, Guo H, Chen A, Cui J, Padoch C: Relocating plants from swidden fallows to gardens in southwestern China. Econ Bot. 2003, 57 (3): 389-402.
78.
Zurück zum Zitat Au DT, Wu J, Jiang Z, Chen H, Lu G, Zhao Z: Ethnobotanical study of medicinal plants used by Hakka in Guangdong, China. J Ethnopharmacol. 2008, 117 (1): 41-50.PubMed Au DT, Wu J, Jiang Z, Chen H, Lu G, Zhao Z: Ethnobotanical study of medicinal plants used by Hakka in Guangdong, China. J Ethnopharmacol. 2008, 117 (1): 41-50.PubMed
79.
Zurück zum Zitat Shang X, Tao C, Miao X, Wang D, Tangmuke D, Wang Y, Yang Y, Pan H: Ethno-veterinary survey of medicinal plants in Ruoergai region, Sichuan province, China. J Ethnopharmacol. 2012, 142 (2): 390-400.PubMed Shang X, Tao C, Miao X, Wang D, Tangmuke D, Wang Y, Yang Y, Pan H: Ethno-veterinary survey of medicinal plants in Ruoergai region, Sichuan province, China. J Ethnopharmacol. 2012, 142 (2): 390-400.PubMed
80.
Zurück zum Zitat Khuankaew S, Srithi K, Tiansawat P, Jampeetong A, Inta A, Wangpakapattanawong P: Ethnobotanical study of medicinal plants used by Tai Yai in Northern Thailand. J Ethnopharmacol. 2014, 151 (2): 829-838.PubMed Khuankaew S, Srithi K, Tiansawat P, Jampeetong A, Inta A, Wangpakapattanawong P: Ethnobotanical study of medicinal plants used by Tai Yai in Northern Thailand. J Ethnopharmacol. 2014, 151 (2): 829-838.PubMed
81.
Zurück zum Zitat Kang Y, Łuczaj Ł, Kang J, Zhang S: Wild food plants and wild edible fungi in two valleys of the Qinling Mountains (Shaanxi, central China). J Ethnobiol Ethnomed. 2013, 9 (1): 26-PubMedCentralPubMed Kang Y, Łuczaj Ł, Kang J, Zhang S: Wild food plants and wild edible fungi in two valleys of the Qinling Mountains (Shaanxi, central China). J Ethnobiol Ethnomed. 2013, 9 (1): 26-PubMedCentralPubMed
82.
Zurück zum Zitat Kang Y, Łuczaj Ł, Kang J, Wang F, Hou J, Guo Q: Wild food plants used by the Tibetans of Gongba Valley (Zhouqu county, Gansu, China). J Ethnobiol Ethnomed. 2014, 10 (1): 20-PubMedCentralPubMed Kang Y, Łuczaj Ł, Kang J, Wang F, Hou J, Guo Q: Wild food plants used by the Tibetans of Gongba Valley (Zhouqu county, Gansu, China). J Ethnobiol Ethnomed. 2014, 10 (1): 20-PubMedCentralPubMed
83.
Zurück zum Zitat Phillips O, Gentry AH: The useful plants of Tambopata, Peru: I. Statistical hypotheses tests with a new quantitative technique. Econ Bot. 1993, 47 (1): 15-32. Phillips O, Gentry AH: The useful plants of Tambopata, Peru: I. Statistical hypotheses tests with a new quantitative technique. Econ Bot. 1993, 47 (1): 15-32.
84.
Zurück zum Zitat Rossato SC, Leitão-Filho HDF, Begossi A: Ethnobotany of caiçaras of the Atlantic Forest coast (Brazil). Econ Bot. 1999, 53 (4): 387-395. Rossato SC, Leitão-Filho HDF, Begossi A: Ethnobotany of caiçaras of the Atlantic Forest coast (Brazil). Econ Bot. 1999, 53 (4): 387-395.
85.
Zurück zum Zitat Ladio AH, Lozada M: Nontimber forest product use in two human populations from northwest Patagonia: a quantitative approach. Hum Ecol. 2001, 29 (4): 367-380. Ladio AH, Lozada M: Nontimber forest product use in two human populations from northwest Patagonia: a quantitative approach. Hum Ecol. 2001, 29 (4): 367-380.
86.
Zurück zum Zitat Heinrich M, Ankli A, Frei B, Weimann C, Sticher O: Medicinal plants in Mexico: Healers’ consensus and cultural importance. Soc Sci Med. 1998, 47 (11): 1859-1871.PubMed Heinrich M, Ankli A, Frei B, Weimann C, Sticher O: Medicinal plants in Mexico: Healers’ consensus and cultural importance. Soc Sci Med. 1998, 47 (11): 1859-1871.PubMed
87.
Zurück zum Zitat Hoffman B, Gallaher T: Importance Indices in Ethnobotany. Ethnobot Res Appl. 2007, 5: 201-218. Hoffman B, Gallaher T: Importance Indices in Ethnobotany. Ethnobot Res Appl. 2007, 5: 201-218.
88.
Zurück zum Zitat Naqinezhad A, Jalili A, Attar F, Ghahreman A, Wheeler BD, Hodgson JG, Shaw SC, Maassoumi A: Floristic characteristics of the wetland sites on dry southern slopes of the Alborz Mts., N. Iran: The role of altitude in floristic composition. Flora-Morphol Distrib Funct Ecol Plants. 2009, 204 (4): 254-269. Naqinezhad A, Jalili A, Attar F, Ghahreman A, Wheeler BD, Hodgson JG, Shaw SC, Maassoumi A: Floristic characteristics of the wetland sites on dry southern slopes of the Alborz Mts., N. Iran: The role of altitude in floristic composition. Flora-Morphol Distrib Funct Ecol Plants. 2009, 204 (4): 254-269.
89.
Zurück zum Zitat Rasingam L: Aquatic and wetland plants of little andaman island, India. J Basic Appl Biol. 2010, 4 (3): 52-59. Rasingam L: Aquatic and wetland plants of little andaman island, India. J Basic Appl Biol. 2010, 4 (3): 52-59.
90.
Zurück zum Zitat Saharia S, Sarma CM: Ethno-medicinal studies on indigenous wetland plants in the tea garden tribes of Darrang and Udalguri district, Assam, India. NeBIO. 2011, 2: 27-33. Saharia S, Sarma CM: Ethno-medicinal studies on indigenous wetland plants in the tea garden tribes of Darrang and Udalguri district, Assam, India. NeBIO. 2011, 2: 27-33.
91.
Zurück zum Zitat Fu W, Li P, Bian X, Wu Y: Dynamics in the succession of vegetation communities in Inner-river wetland in Zhenjiang. Res Environ Yangtze Basin. 2007, 16 (2): 163-168. Fu W, Li P, Bian X, Wu Y: Dynamics in the succession of vegetation communities in Inner-river wetland in Zhenjiang. Res Environ Yangtze Basin. 2007, 16 (2): 163-168.
92.
Zurück zum Zitat Lou Y, Zhao K, Ma K: Change in floristic composition and species diversity of plant community along environment gradient in Honghe National Nature Reserve, China. Acta Ecol Sin. 2007, 27 (9): 3843-3891. Lou Y, Zhao K, Ma K: Change in floristic composition and species diversity of plant community along environment gradient in Honghe National Nature Reserve, China. Acta Ecol Sin. 2007, 27 (9): 3843-3891.
93.
Zurück zum Zitat Wu Q, Xia X, Ye J, Jiang L, Miu K, Ding B: Plant diversity and ecosystem health assessment of Sanyang wetland in Wenzhou, Zhejiang. J Zhejiang Univ (Agric Life Sci). 2012, 38 (4): 421-428. Wu Q, Xia X, Ye J, Jiang L, Miu K, Ding B: Plant diversity and ecosystem health assessment of Sanyang wetland in Wenzhou, Zhejiang. J Zhejiang Univ (Agric Life Sci). 2012, 38 (4): 421-428.
94.
Zurück zum Zitat Sun R, Zhang L, Wang T, Chen F, Deng Q: Research on characteristics and species diversity of plant community of different kinds of wetlands in Hefei. Chin Wild Plant Resour. 2013, 32 (4): 34-40. Sun R, Zhang L, Wang T, Chen F, Deng Q: Research on characteristics and species diversity of plant community of different kinds of wetlands in Hefei. Chin Wild Plant Resour. 2013, 32 (4): 34-40.
95.
Zurück zum Zitat Cheng L, Chen K, Wang S, Yang S, Su X, Wang J: Plant Diversity of Xiaopohu Wetlands in Qinghai Lake Basin. Wetl Sci. 2013, 11 (4): 460-465. Cheng L, Chen K, Wang S, Yang S, Su X, Wang J: Plant Diversity of Xiaopohu Wetlands in Qinghai Lake Basin. Wetl Sci. 2013, 11 (4): 460-465.
96.
Zurück zum Zitat Jain A, Roshnibala S, Kanjilal PB, Singh RS, Singh HB: Aquatic/semi-aquatic plants used in herbal remedies in the wetlands of Manipur, Northeastern India. Indian J Tradit Know. 2007, 6 (2): 346-351. Jain A, Roshnibala S, Kanjilal PB, Singh RS, Singh HB: Aquatic/semi-aquatic plants used in herbal remedies in the wetlands of Manipur, Northeastern India. Indian J Tradit Know. 2007, 6 (2): 346-351.
97.
Zurück zum Zitat Moerman DE, Pemberton RW, Kiefer D, Berlin B: A comparative analysis of five medicinal floras. J Ethnobio. 1999, 19 (1): 49-67. Moerman DE, Pemberton RW, Kiefer D, Berlin B: A comparative analysis of five medicinal floras. J Ethnobio. 1999, 19 (1): 49-67.
98.
Zurück zum Zitat Siwakoti M: An overview of floral diversity in wetlands of Terai region of Nepal. Our Nature. 2006, 4 (1): 83-90. Siwakoti M: An overview of floral diversity in wetlands of Terai region of Nepal. Our Nature. 2006, 4 (1): 83-90.
99.
Zurück zum Zitat Boro A, Sarma GC: Ethnic uses of some wetland plants by the Bodo community in Udalgiri district of Assam, India. Pleione. 2013, 7 (1): 155-159. Boro A, Sarma GC: Ethnic uses of some wetland plants by the Bodo community in Udalgiri district of Assam, India. Pleione. 2013, 7 (1): 155-159.
100.
Zurück zum Zitat Levetin E, McMahon K: Plant & Society. 2008, New York: Mcgraw-Hill, 5 Levetin E, McMahon K: Plant & Society. 2008, New York: Mcgraw-Hill, 5
101.
Zurück zum Zitat Hoft M, Barik SK, Lykke AM: Quantitative ethnobotany: Applications of multivariate and statistical analyses in ethnobotany. 1999, UNESCO, People and Plants working, paper Paris Hoft M, Barik SK, Lykke AM: Quantitative ethnobotany: Applications of multivariate and statistical analyses in ethnobotany. 1999, UNESCO, People and Plants working, paper Paris
102.
Zurück zum Zitat Hasbagan HH: Quantitative methods in Ethnobotany (II). J Inner Mongolia Normal Univ (Nat Sci Ed). 2010, 39 (4): 417-419. Hasbagan HH: Quantitative methods in Ethnobotany (II). J Inner Mongolia Normal Univ (Nat Sci Ed). 2010, 39 (4): 417-419.
103.
Zurück zum Zitat Heinrich M: Ethnobotany and its role in drug development. Phytother Res. 2000, 14 (7): 479-488.PubMed Heinrich M: Ethnobotany and its role in drug development. Phytother Res. 2000, 14 (7): 479-488.PubMed
104.
Zurück zum Zitat Rokaya MB, Münzbergová Z, Timsina B: Ethnobotanical study of medicinal plants from the Humla district of western Nepal. J Ethnopharmacol. 2010, 130 (3): 485-504.PubMed Rokaya MB, Münzbergová Z, Timsina B: Ethnobotanical study of medicinal plants from the Humla district of western Nepal. J Ethnopharmacol. 2010, 130 (3): 485-504.PubMed
105.
Zurück zum Zitat Ayyanar M, Ignacimuthu S: Ethnobotanical survey of medicinal plants commonly used by Kani tribals in Tirunelveli hills of Western Ghats, India. J Ethnopharmacol. 2011, 134 (3): 851-864.PubMed Ayyanar M, Ignacimuthu S: Ethnobotanical survey of medicinal plants commonly used by Kani tribals in Tirunelveli hills of Western Ghats, India. J Ethnopharmacol. 2011, 134 (3): 851-864.PubMed
106.
Zurück zum Zitat Cadena-González AL, Sørensen M, Theilade I: Use and valuation of native and introduced medicinal plant species in Campo Hermoso and Zetaquira, Boyacá, Colombia. J Ethnobiol Ethnomed. 2013, 9 (1): 23-PubMedCentralPubMed Cadena-González AL, Sørensen M, Theilade I: Use and valuation of native and introduced medicinal plant species in Campo Hermoso and Zetaquira, Boyacá, Colombia. J Ethnobiol Ethnomed. 2013, 9 (1): 23-PubMedCentralPubMed
107.
Zurück zum Zitat Vitalini S, Iriti M, Puricelli C, Ciuchi D, Segale A, Fico G: Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy)—An alpine ethnobotanical study. J Ethnopharmacol. 2013, 145 (2): 517-529.PubMed Vitalini S, Iriti M, Puricelli C, Ciuchi D, Segale A, Fico G: Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy)—An alpine ethnobotanical study. J Ethnopharmacol. 2013, 145 (2): 517-529.PubMed
108.
Zurück zum Zitat Beltran L, Ortiz A, Mariano N, Maldonado B, Reyes V: Factors affecting ethnobotanical knowledge in a mestizo community of the Sierra de Huautla Biosphere Reserve, Mexico. J Ethnobiol Ethnomed. 2014, 10 (1): 14- Beltran L, Ortiz A, Mariano N, Maldonado B, Reyes V: Factors affecting ethnobotanical knowledge in a mestizo community of the Sierra de Huautla Biosphere Reserve, Mexico. J Ethnobiol Ethnomed. 2014, 10 (1): 14-
109.
Zurück zum Zitat Huai H, Dong Q, Liu A: Ethnomedicinal analysis of toxic plants from five ethnic groups in China. Ethnobot Res Appl. 2010, 8: 169-179. Huai H, Dong Q, Liu A: Ethnomedicinal analysis of toxic plants from five ethnic groups in China. Ethnobot Res Appl. 2010, 8: 169-179.
110.
Zurück zum Zitat Clevering OA, Lissner J: Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquat Bot. 1999, 64 (3): 185-208. Clevering OA, Lissner J: Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquat Bot. 1999, 64 (3): 185-208.
111.
Zurück zum Zitat Saltonstall K: Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci U S A. 2002, 99 (4): 2445-2449.PubMedCentralPubMed Saltonstall K: Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci U S A. 2002, 99 (4): 2445-2449.PubMedCentralPubMed
Metadaten
Titel
Diversity of wetland plants used traditionally in China: a literature review
verfasst von
Yin Zhang
Hualin Xu
Hui Chen
Fei Wang
Huyin Huai
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Journal of Ethnobiology and Ethnomedicine / Ausgabe 1/2014
Elektronische ISSN: 1746-4269
DOI
https://doi.org/10.1186/1746-4269-10-72

Weitere Artikel der Ausgabe 1/2014

Journal of Ethnobiology and Ethnomedicine 1/2014 Zur Ausgabe