Skip to main content
Erschienen in: Orphanet Journal of Rare Diseases 1/2014

Open Access 01.12.2014 | Letter to the Editor

Incontinentia pigmenti: report on data from 2000 to 2013

verfasst von: Francesca Fusco, Mariateresa Paciolla, Matilde Immacolata Conte, Alessandra Pescatore, Elio Esposito, Peppino Mirabelli, Maria Brigida Lioi, Matilde Valeria Ursini

Erschienen in: Orphanet Journal of Rare Diseases | Ausgabe 1/2014

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

We report here on the building-up of a database of information related to 386 cases of Incontinentia Pigmenti collected in a thirteen-year activity (2000–2013) at our centre of expertise. The database has been constructed on the basis of a continuous collection of patients (27.6/year), the majority diagnosed as sporadic cases (75.6%). This activity has generated a rich source of information for future research studies by integrating molecular/clinical data with scientific knowledge. We describe the content, architecture and future utility of this collection of data on IP to offer comprehensive anonymous information to the international scientific community.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1750-1172-9-93) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

FF: drafted the main part and created the final version of the manuscript, and designed the clinical and scientific content of the database, MP: implemented the content of the database, MIC: contributed to the content of the database, AP: contributed to the content of the database, EE: contributed to the content of the database, PM: contributed to the content of the database, MBL: participated in the design of the database- architecture and the data security concept of the registry, MVU: contributed to the content design of the database, and reviewed and revised the manuscript. All authors read and approved the final manuscript.
Abkürzungen
IP
Incontinentia Pigmenti
OMIM
Online Mendelian Inheritance in Man
CNS
Central Nervous System
IKBKG
Inhibitor of Kappa polypeptide gene enhancer in B-cells, Kinase gamma
NEMO
Nuclear factor κB Essential MOdulator
IKKγ
Inhibitor of Kappa Kinase gamma
IκB
Inhibitor of NF-κB
IKK
IκB Kinase
NF-κB
Nuclear Factor-κB
IPIF
Incontinentia Pigmenti International Foundation
FIP
France Incontinentia Pigmenti association
IPASSI
Italian Incontinentia Pigmenti ASSociation.

Introduction

Incontinentia pigmenti (IP; OMIM#308300) is a rare multisystemic genomic disorder with an estimated prevalence at birth of 0.7/100,000 [1]. IP is X-linked and usually lethal in males, and affecting the skin, but also other neuroectodermal tissues, in females. The skin lesions are the first clinical manifestations that appear, starting in the neonatal period with a vesiculobullous eruption (Stage I) and following a three stage evolution varying in duration from months to years, namely a verrucous stage (Stage II), a hyperpigmented stage (Stage III), and finally a hypopigmented stage (Stage IV) usually continuing throughout life [2, 3]. Such skin defects, that follows Blaschko lines, are always present in IP and are therefore considered the main diagnostic criteria for IP according to Landy and Donnai (1993) [2]. The severity of the disease is related to the presence of neurological and/or ocular impairment [4]. Overall, the prevalence of functional Central Nervous System (CNS) manifestations is approximately 30% [5, 6] ranging from a single-seizure episode to severe motor and intellectual disability [7]. Ophthalmologic abnormalities are present in approximately 20%–37% of IP patients [5, 6, 8]. IP is due to a mutation of the X-linked IKBKG/NEMO gene (Inhibitor of Kappa polypeptide gene enhancer in B-cells, Kinase Gamma/Nuclear Factor κB, Essential Modulator, GenBank NM_003639.3, OMIM#300248). Most cases have a recurrent deletion (IKBKGdel or NEMOdel4-10), removing exons 4–10 of the IKBKG/NEMO gene. Non recurrent genomic rearrangements in the IP locus and point mutations in the IKBKG/NEMO coding region have also been reported [911]. IKBKG/NEMO encodes for NEMO/IKKγ a regulatory subunit of the Inhibitor of the kappaB (IκB) Kinase (IKK) complex required for the canonical NF-κB pathway activation involved in many fundamental physiological and pathological functions [12, 13]. Most IP female patients present with a skewed X-inactivation. The X-chromosome linked IKBKG/NEMO mutation causes an unbalanced X-inactivation in female IP patients [14], as in other X-linked diseases [15, 16], because the absence of the NEMO/IKKγ protein makes the IP cells more sensitive to apoptosis [9]. In males, the extensive apoptosis is responsible for their early fetal lethality [17]. Occasionally, male patients with IP have been reported. They have shown the characteristic skin lesions observed in females and presented a postzygotic mosaicism for the IKBKG/NEMO exons4-10 gene deletion [18]. IP has also been diagnosed in males with a 47,XXY karyotype (Klinefelter syndrome) [19]. The large heterogeneity of defects, the severe clinical presentations, and the wide spectrum of IKBKG/NEMO alterations [7, 11, 14, 20] makes the selection of homogeneous groups of patients difficult, precluding any therapeutic approaches. Indeed, despite the considerable progress that has been made in detailing the basic pathology of the IP disorder, the gap between research and clinical care has remained wide. Moreover, the paucity of patients collected at each single diagnostic centre makes an overall epidemiological report difficult. The integration of scattered resources may be crucial for the success of future scientific accomplishments.

Methods

Here, we report the setting up of a central data repository relating to a cohort of IP patients, the data having been collected in a 13-year-long experience (2000–2013) at our Italian centre of expertise for the molecular diagnosis of IP [21]. The IP patients included in our study have been selected on the basis of the Landy and Donnai (1993) [2] diagnostic criteria, and they also meet the most recently updated IP criteria [22]. We have constructed the first platform for the integration of molecular and clinical data on IP patients. Our sample comprises 386 patients (261 from Italian, 105 from European and 20 from non-European clinical centers), with an annual average of 27.6 new cases of IP diagnosed per year (Figure 1).
All the clinical information has been obtained for each patient through their completion of a clinical IP questionnaire developed by the Incontinentia Pigmenti International Foundation (IPIF, [http://​www.​ipif.​org/​ip_​consortium.​html], further extended by the France Incontinentia Pigmenti association (FIP, [http://​incontinentia-pigmenti.​fr/​]) and by the Italian ASSociation of Incontinentia Pigmenti (IPASSI, [http://​www.​incontinentiapig​menti.​it/​]). A clinical IP questionnaire is available upon request from these organizations. We have integrated the clinical data with molecular diagnosis results for the IKBKG/NEMO alteration, by way of a well-standardized protocol [10, 14, 23]. The technical development of the register has involved significant preparatory work consisting in the building up of an in-house electronic database which is comprehensive and permissive, and which has a flexible structure able to register in an anonymous form the pool data from the patients. We have assigned one record to each IP sample, registered with a pseudonymous code. Each record has three domains: the pedigree, the clinical and the genetic domain. The Web domain will be available at link [http://​www.​igb.​cnr.​it/​ipgb]. The data are not accessible to everyone but only to authorized users through the use of a protected password. A data-mining interface has been developed to ensure maximum flexibility so that users can perform any search they want using the “search” button placed in the homepage after the “log in”. It is possible to perform multiple searches at once. To make the database permissive and flexible the first page contains only the three domains set.

Results

The pedigree and clinical information are available for 308 IP cases, while the genetic data are available for 193 samples, respectively (Table 1). The pedigree domain contains more detailed entries accommodating the family data, for example the presence of an IP mother, sister, or grandmother, indicating the inheritance of the disease. We have registered 233 sporadic cases (75.6%) and 72 familial cases (23.4%) in our IP cohort.
Table 1
IP data registry
 
Number of cases
Percentage of cases
Database information
386 records
 
IP female samples
349
90.4
IP male samples
37
9.6
Pedigree domain
308 available
 
Sporadic cases
233
75.6
Familial cases
72
23.4
Clinical domain*
308 available
 
Skin defects
308
100
CNS defects
97
31.5
Ophthalmologic defects
94
30.5
Teeth defects
134
43.5
Hair defects
82
26.6
Fingernail defects
45
14.6
Developmental evolution
30
9.7
Genetic domain
193 available
 
NEMOdel4-10
145
75.1
IKBKG/NEMO point mutation
32
22.1
IP locus rearrangement
7
3.6
No known alteration found
9
4.7
*IP patients can have more than one defect affecting different organ systems.
The clinical domain consists of seven clinical items, one for each aspect of the phenotype presentation: “Skin defects”, “CNS defects”, “Ophthalmologic defects”, “Teeth defects”, “Hair defects”, “Fingernail defects” and “Developmental evolution”. A drop-down menu has been assigned to each item that, in most cases, contains details about all the specific alterations affecting the tissue, and, in addition, an open space for the annotation of novel clinical features. For example, the item “Skin defects contains a drop-down menu indicating the stage of the IP skin abnormality, the age of onset, the type of alteration, and the region of the body in which the alteration is present. We report that the most frequent first symptoms leading to diagnosis, typically skin alterations (Stage I), appear before the first year in 99% of cases. The second stage and the third stage are reported within the first year in 96.6% and in 82.8% of cases, respectively. After this date the fourth stage is generally present (Table 2). The specific frequency of each IP specific neuroectodermal defect observed in our cohort is shown in Table 1. CNS abnormalities were present in 31.5% (Table 1). In 17 cases, these were diagnosed by magnetic resonance imaging (Table 3).
Table 2
IP skin clinical data
 
Skin alteration age of onset
Skin defects
IP cases
<1° month
1° month-1° year
>1° year
Stage I
183
160(87.4%)
21(11.5%)
2(1.1%)
Stage II
90
38(42.2%)
49(54.4%)
3(3.3%)
Stage III
87
18(27.6%)
58(55.2%)
11(17.1%)
Stage IV
81
0
0
81(100%)
Table 3
IP clinical data
Type of defect
Number of cases**
Percentage of cases
CNS defects
97
 
Seizures
39
40.2
Mental retardation
29
29.9
Spastic paresis
16
16.5
Cerebral atrophy
13
13.4
Microcephaly
11
11.3
Hydrocephaly
5
5.1
Ischemic strokes*
5
5.1
White matter alterations*
4
4.1
Arachnoid cysts*
3
3.1
Cortico-subcortical atrophy*
3
3.1
Brain morphological alterations*
2
2.1
Teeth defects
134
 
Delayed primary dentition
46
34.3
Cone/peg shaped teeth
30
22.3
Delayed permanent dentition
30
22.3
Teeth dystrophy
23
17.2
Impactions
23
17.2
Ophthalmologic defects
94
 
Vision defects
16
17
Retinopathy
15
15.9
Retinal detachment
8
8.5
Microphthalmia
6
6.4
Retinal neuropathy
6
6.4
Retinal vascular visorders
5
5.3
Hair defects
82
 
Alopecia
8
9.7
Hypertrichosis
3
3.6
Fingernail defects
45
 
Nail dystrophy
29
64
Developmental evolution
30
 
Recurrent infections
36
11.7
Syndactyly of fingers or toes
4
1.3
*Data obtained by Magnetic Resonance Imaging analysis in 17 IP cases.
**IP patients can have more than one defect affecting different organ systems.
The genetic domain of the database contains four items: “NEMOdel4-10”, “IKBKG/NEMO point mutation”, “IP locus rearrangement”, and “No known alteration found” (Table 1). The mutation names comply with the accepted guidelines proposed by the Human Genome Variation Society [http://​www.​hgvs.​org/​mutnomen] [24]. The genetic domain reveals that 75.1% of patients have the NEMOdel4-10 deletion, 22.1% have an IKBKG/NEMO point mutation, 3.6% have an extended deletion in the IKBKG/NEMO locus, and 4.7% have no known alteration in the IP locus (Table 1).
Finally, in each domain (pedigree, clinical, and genetic) an additional item, named “Supplementary Information”, records in the database any supplementary data from the patient and his/her family when these are available (examples: presence of miscarriages; presence of nonpathogenic alterations in IP locus[25] such as deletions or point mutations in the NEMO pseudogene).

Discussion

The building up of this database represents the first detailed integrated clinical/molecular diagnostic platform on IP patients, the largest collection of an IP cohort in Italy and to the best of our knowledge the first presented to the scientific community worldwide. Thus, this phenotype and genotype database related to IP acts as a unique attempt to improve patient care and healthcare planning since it collects together information that would otherwise be scattered. Finally, we strongly believe that the use of the database is a powerful tool to facilitate the selection of biological samples and/or the enrolment of patients for the organization of appropriate clinical trials. Physicians wishing to include patients in the IP database may contact the Authors: Francesca Fusco and/or Matilde Valeria Ursini by email (incontinentia.pigmenti@igb.cnr.it).

Acknowledgments

We are grateful to the patients, their families and physicians, the association France Incontinentia Pigmenti (FIP, [http://​incontinentia-pigmenti.​fr/​]) the Italian Incontinentia Pigmenti ASSociation (IPASSI, [http://​www.​incontinentiapig​menti.​it/​]), DHITECH, Progetto Formazione PON n°01-02342 for the fellowship to M.I.C and the Basilicata Innovazione [http://​www.​basilicatainnova​zione.​it] for supporting M.P.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

FF: drafted the main part and created the final version of the manuscript, and designed the clinical and scientific content of the database, MP: implemented the content of the database, MIC: contributed to the content of the database, AP: contributed to the content of the database, EE: contributed to the content of the database, PM: contributed to the content of the database, MBL: participated in the design of the database- architecture and the data security concept of the registry, MVU: contributed to the content design of the database, and reviewed and revised the manuscript. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
4.
Zurück zum Zitat Goldberg MF: The skin is not the predominant problem in incontinentia pigmenti. Arch Dermatol. 2004, 140: 748-750.PubMed Goldberg MF: The skin is not the predominant problem in incontinentia pigmenti. Arch Dermatol. 2004, 140: 748-750.PubMed
5.
Zurück zum Zitat Meuwissen MEC, Mancini GMS: Neurological findings in incontinentia pigmenti: a review. Eur J Med Genet. 2012, 55: 323-331. 10.1016/j.ejmg.2012.04.007.CrossRefPubMed Meuwissen MEC, Mancini GMS: Neurological findings in incontinentia pigmenti: a review. Eur J Med Genet. 2012, 55: 323-331. 10.1016/j.ejmg.2012.04.007.CrossRefPubMed
6.
Zurück zum Zitat Minić S, Trpinac D, Obradović M: Systematic review of central nervous system anomalies in incontinentia pigmenti. Orphanet J Rare Dis. 2013, 8: 25-35. 10.1186/1750-1172-8-25. doi:doi:10.1186/1750-1172-8-25CrossRefPubMedPubMedCentral Minić S, Trpinac D, Obradović M: Systematic review of central nervous system anomalies in incontinentia pigmenti. Orphanet J Rare Dis. 2013, 8: 25-35. 10.1186/1750-1172-8-25. doi:doi:10.1186/1750-1172-8-25CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Pizzamiglio MR, Piccardi L, Bianchini F, Canzano L, Palermo L, Fusco F, D'Antuono G, Gelmini C, Garavelli L, Ursini MV: Incontinentia pigmenti: learning disabilities are a fundamental hallmark of the disease. PLoS One. 2014, 9: e87771. doi:10.1371/journal.pone.0087771. eCollection 2014. 10.1371/journal.pone.0087771.CrossRefPubMedPubMedCentral Pizzamiglio MR, Piccardi L, Bianchini F, Canzano L, Palermo L, Fusco F, D'Antuono G, Gelmini C, Garavelli L, Ursini MV: Incontinentia pigmenti: learning disabilities are a fundamental hallmark of the disease. PLoS One. 2014, 9: e87771. doi:10.1371/journal.pone.0087771. eCollection 2014. 10.1371/journal.pone.0087771.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Hadj-Rabia S, Froidevaux D, Bodak N, Hamel-Teillac D, Smahi A, Touil Y, Fraitag S, de Prost Y, Bodemer C: Clinical study of 40 cases of incontinentia pigmenti. Arch Dermatol. 2003, 139: 1163-1170.CrossRefPubMed Hadj-Rabia S, Froidevaux D, Bodak N, Hamel-Teillac D, Smahi A, Touil Y, Fraitag S, de Prost Y, Bodemer C: Clinical study of 40 cases of incontinentia pigmenti. Arch Dermatol. 2003, 139: 1163-1170.CrossRefPubMed
9.
Zurück zum Zitat Smahi A, Courtois G, Vabres P, Yamaoka S, Heuertz S, Munnich A, Israël A, Heiss NS, Klauck SM, Kioschis P, Wiemann S, Poustka A, Esposito T, Bardaro T, Gianfrancesco F, Ciccodicola A, D'Urso M, Woffendin H, Jakins T, Donnai D, Stewart H, Kenwrick SJ, Aradhya S, Yamagata T, Levy M, Lewis RA, Nelson DL, International Incontinentia Pigmenti (IP) Consortium: Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti. Nature. 2000, 405: 466-472. 10.1038/35013114.CrossRefPubMed Smahi A, Courtois G, Vabres P, Yamaoka S, Heuertz S, Munnich A, Israël A, Heiss NS, Klauck SM, Kioschis P, Wiemann S, Poustka A, Esposito T, Bardaro T, Gianfrancesco F, Ciccodicola A, D'Urso M, Woffendin H, Jakins T, Donnai D, Stewart H, Kenwrick SJ, Aradhya S, Yamagata T, Levy M, Lewis RA, Nelson DL, International Incontinentia Pigmenti (IP) Consortium: Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti. Nature. 2000, 405: 466-472. 10.1038/35013114.CrossRefPubMed
10.
Zurück zum Zitat Fusco F, Paciolla M, Napolitano F, Pescatore A, D'Addario I, Bal E, Lioi MB, Smahi A, Miano MG, Ursini MV: Genomic architecture at the Incontinentia Pigmenti locus favours de novo pathological alleles through different mechanisms. Hum Mol Genet. 2012, 21: 1260-1271. 10.1093/hmg/ddr556.CrossRefPubMed Fusco F, Paciolla M, Napolitano F, Pescatore A, D'Addario I, Bal E, Lioi MB, Smahi A, Miano MG, Ursini MV: Genomic architecture at the Incontinentia Pigmenti locus favours de novo pathological alleles through different mechanisms. Hum Mol Genet. 2012, 21: 1260-1271. 10.1093/hmg/ddr556.CrossRefPubMed
11.
Zurück zum Zitat Conte MI, Pescatore A, Paciolla M, Esposito E, Miano MG, Lioi MB, McAleer MA, Giardino G, Pignata C, Irvine AD, Scheuerle AE, Royer G, Hadj-Rabia S, Bodemer C, Bonnefont JP, Munnich A, Smahi A, Steffann J, Fusco F, Ursini MV: Insight into IKBKG/NEMO locus: report of new mutations and complex genomic rearrangements leading to incontinentia pigmenti disease. Hum Mutat. 2014, 35: 165-177. 10.1002/humu.22483.CrossRefPubMed Conte MI, Pescatore A, Paciolla M, Esposito E, Miano MG, Lioi MB, McAleer MA, Giardino G, Pignata C, Irvine AD, Scheuerle AE, Royer G, Hadj-Rabia S, Bodemer C, Bonnefont JP, Munnich A, Smahi A, Steffann J, Fusco F, Ursini MV: Insight into IKBKG/NEMO locus: report of new mutations and complex genomic rearrangements leading to incontinentia pigmenti disease. Hum Mutat. 2014, 35: 165-177. 10.1002/humu.22483.CrossRefPubMed
12.
Zurück zum Zitat Hayden MS, Ghosh S: Signaling to NF-κB. Genes Dev. 2004, 18: 2195-2224. 10.1101/gad.1228704.CrossRefPubMed Hayden MS, Ghosh S: Signaling to NF-κB. Genes Dev. 2004, 18: 2195-2224. 10.1101/gad.1228704.CrossRefPubMed
13.
Zurück zum Zitat Nelson DL: NEMO, NFκB signaling and incontinentia pigmenti. Curr Opin Genet Dev. 2006, 16: 282-288. 10.1016/j.gde.2006.04.013.CrossRefPubMed Nelson DL: NEMO, NFκB signaling and incontinentia pigmenti. Curr Opin Genet Dev. 2006, 16: 282-288. 10.1016/j.gde.2006.04.013.CrossRefPubMed
14.
Zurück zum Zitat Fusco F, Bardaro T, Fimiani G, Mercadante V, Miano MG, Falco G, Israël A, Courtois G, D'Urso M, Ursini MV: Molecular analysis of the genetic defect in a large cohort of IP patients and identification of novel NEMO mutations interfering with NF-κB activation. Hum Mol Genet. 2004, 13: 1763-1773. 10.1093/hmg/ddh192.CrossRefPubMed Fusco F, Bardaro T, Fimiani G, Mercadante V, Miano MG, Falco G, Israël A, Courtois G, D'Urso M, Ursini MV: Molecular analysis of the genetic defect in a large cohort of IP patients and identification of novel NEMO mutations interfering with NF-κB activation. Hum Mol Genet. 2004, 13: 1763-1773. 10.1093/hmg/ddh192.CrossRefPubMed
15.
Zurück zum Zitat Migeon BR: Non-random X chromosome inactivation in mammalian cells. Cytogenet Cell Genet. 1998, 80: 142-148. 10.1159/000014971.CrossRefPubMed Migeon BR: Non-random X chromosome inactivation in mammalian cells. Cytogenet Cell Genet. 1998, 80: 142-148. 10.1159/000014971.CrossRefPubMed
16.
Zurück zum Zitat Desai V, Donsante A, Swoboda KJ, Martensen M, Thompson J, Kaler SG: Favorably skewed X-inactivation accounts for neurological sparing in female carriers of Menkes disease. Clin Genet. 2011, 79: 176-182. 10.1111/j.1399-0004.2010.01451.x.CrossRefPubMedPubMedCentral Desai V, Donsante A, Swoboda KJ, Martensen M, Thompson J, Kaler SG: Favorably skewed X-inactivation accounts for neurological sparing in female carriers of Menkes disease. Clin Genet. 2011, 79: 176-182. 10.1111/j.1399-0004.2010.01451.x.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Courtois G, Smahi A, Israël A: NEMO/IKKγ: linking NF-κB to human disease. Trends Mol Med. 2001, 7: 427-430. 10.1016/S1471-4914(01)02154-2.CrossRefPubMed Courtois G, Smahi A, Israël A: NEMO/IKKγ: linking NF-κB to human disease. Trends Mol Med. 2001, 7: 427-430. 10.1016/S1471-4914(01)02154-2.CrossRefPubMed
18.
Zurück zum Zitat Fusco F, Fimiani G, Tadini G, Michele D, Ursini MV: Clinical diagnosis of incontinentia pigmenti in a cohort of male patients. J Am Acad Dermatol. 2007, 56: 264-267. 10.1016/j.jaad.2006.09.019.CrossRefPubMed Fusco F, Fimiani G, Tadini G, Michele D, Ursini MV: Clinical diagnosis of incontinentia pigmenti in a cohort of male patients. J Am Acad Dermatol. 2007, 56: 264-267. 10.1016/j.jaad.2006.09.019.CrossRefPubMed
19.
Zurück zum Zitat Kenwrick S, Woffendin H, Jakins T, Shuttleworth SG, Mayer E, Greenhalgh L, Whittaker J, Rugolotto S, Bardaro T, Esposito T, D'Urso M, Soli F, Turco A, Smahi A, Hamel-Teillac D, Lyonnet S, Bonnefont JP, Munnich A, Aradhya S, Kashork CD, Shaffer LG, Nelson DL, Levy M, Lewis RA, International IP Consortium: Survival of male patients with incontinentia pigmenti carrying a lethal mutation can be explained by somatic mosaicism or Klinefelter syndrome. Am J Hum Genet. 2001, 69: 1210-1217.CrossRefPubMed Kenwrick S, Woffendin H, Jakins T, Shuttleworth SG, Mayer E, Greenhalgh L, Whittaker J, Rugolotto S, Bardaro T, Esposito T, D'Urso M, Soli F, Turco A, Smahi A, Hamel-Teillac D, Lyonnet S, Bonnefont JP, Munnich A, Aradhya S, Kashork CD, Shaffer LG, Nelson DL, Levy M, Lewis RA, International IP Consortium: Survival of male patients with incontinentia pigmenti carrying a lethal mutation can be explained by somatic mosaicism or Klinefelter syndrome. Am J Hum Genet. 2001, 69: 1210-1217.CrossRefPubMed
20.
Zurück zum Zitat Fusco F, Pescatore A, Bal E, Ghoul A, Paciolla M, Lioi MB, D'Urso M, Rabia SH, Bodemer C, Bonnefont JP, Munnich A, Miano MG, Smahi A, Ursini MV: Alterations of the IKBKG locus and diseases: an update and a report of 13 novel mutations. Hum Mutat. 2008, 29: 595-604. 10.1002/humu.20739.CrossRefPubMed Fusco F, Pescatore A, Bal E, Ghoul A, Paciolla M, Lioi MB, D'Urso M, Rabia SH, Bodemer C, Bonnefont JP, Munnich A, Miano MG, Smahi A, Ursini MV: Alterations of the IKBKG locus and diseases: an update and a report of 13 novel mutations. Hum Mutat. 2008, 29: 595-604. 10.1002/humu.20739.CrossRefPubMed
21.
Zurück zum Zitat Fusco F, Pescatore A, Steffann J, Royer G, Bonnefont JP, Ursini MV: Clinical utility gene card for: Incontinentia Pigmenti. Eur J Hum Genet. 2013, 21. doi:10.1038/ejhg.2012.227 Fusco F, Pescatore A, Steffann J, Royer G, Bonnefont JP, Ursini MV: Clinical utility gene card for: Incontinentia Pigmenti. Eur J Hum Genet. 2013, 21. doi:10.1038/ejhg.2012.227
22.
Zurück zum Zitat Minić S, Trpinac D, Obradović M: Incontinentia pigmenti diagnostic criteria update. Clin Genet. 2014, 85: 536-542. 10.1111/cge.12223.CrossRefPubMed Minić S, Trpinac D, Obradović M: Incontinentia pigmenti diagnostic criteria update. Clin Genet. 2014, 85: 536-542. 10.1111/cge.12223.CrossRefPubMed
23.
Zurück zum Zitat Bardaro T, Falco G, Sparago A, Mercadante V, Gean Molins E, Tarantino E, Ursini MV, D'Urso M: Two cases of misinterpretation of molecular results in incontinentia pigmenti, and a PCR-based method to discriminate NEMO/IKKγ gene deletion. Hum Mutat. 2003, 21: 8-11. 10.1002/humu.10150.CrossRefPubMed Bardaro T, Falco G, Sparago A, Mercadante V, Gean Molins E, Tarantino E, Ursini MV, D'Urso M: Two cases of misinterpretation of molecular results in incontinentia pigmenti, and a PCR-based method to discriminate NEMO/IKKγ gene deletion. Hum Mutat. 2003, 21: 8-11. 10.1002/humu.10150.CrossRefPubMed
24.
Zurück zum Zitat den Dunnen JT, Antonarakis SE: Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat. 2000, 15: 7-15. 10.1002/(SICI)1098-1004(200001)15:1<7::AID-HUMU4>3.0.CO;2-N. Erratum in: Hum Mutat 2002, 20:403CrossRefPubMed den Dunnen JT, Antonarakis SE: Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat. 2000, 15: 7-15. 10.1002/(SICI)1098-1004(200001)15:1<7::AID-HUMU4>3.0.CO;2-N. Erratum in: Hum Mutat 2002, 20:403CrossRefPubMed
25.
Zurück zum Zitat Ursini MV, Conte MI, Pescatore A, Miano MG, Fusco F: Molecular Genetics of Incontinentia Pigmenti. Chichester: eLS. John Wiley & Sons, Ltd; 2012. doi:10.1002/9780470015902.a0024332CrossRef Ursini MV, Conte MI, Pescatore A, Miano MG, Fusco F: Molecular Genetics of Incontinentia Pigmenti. Chichester: eLS. John Wiley & Sons, Ltd; 2012. doi:10.1002/9780470015902.a0024332CrossRef
Metadaten
Titel
Incontinentia pigmenti: report on data from 2000 to 2013
verfasst von
Francesca Fusco
Mariateresa Paciolla
Matilde Immacolata Conte
Alessandra Pescatore
Elio Esposito
Peppino Mirabelli
Maria Brigida Lioi
Matilde Valeria Ursini
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Orphanet Journal of Rare Diseases / Ausgabe 1/2014
Elektronische ISSN: 1750-1172
DOI
https://doi.org/10.1186/1750-1172-9-93

Weitere Artikel der Ausgabe 1/2014

Orphanet Journal of Rare Diseases 1/2014 Zur Ausgabe