Skip to main content
Erschienen in: Herpesviridae 1/2014

Open Access 01.12.2014 | Research

Epstein-Barr virus IL-10 gene expression by a recombinant murine gammaherpesvirus in vivoenhances acute pathogenicity but does not affect latency or reactivation

verfasst von: Gary J Lindquester, Kimberly A Greer, James P Stewart, Jeffery T Sample

Erschienen in: Herpesviridae | Ausgabe 1/2014

Abstract

Background

Many viral genes affect cytokine function within infected hosts, with interleukin 10 (IL-10) as a commonly targeted mediator. Epstein-Barr virus (EBV) encodes an IL-10 homologue (vIL-10) expressed during productive (lytic) infection and induces expression of cellular IL-10 (cIL-10) during latency. This study explored the role of vIL-10 in a murine gammaherpesvirus (MHV) model of viral infection.

Methods

The EBV vIL-10 gene was inserted into MHV-76, a strain which lacks the ability to induce cIL-10, by recombination in transfected mouse cells. Mice were infected intranasally with the recombinant, vIL-10-containing MHV-76 or control virus strains and assayed at various days post infection for lung virus titer, spleen cell number, percentage of latently infected spleen cells and ability to reactivate virus from spleen cells.

Results

Recombinant murine gammaherpesvirus expressing EBV vIL-10 rose to significantly higher titers in lungs and promoted an increase in spleen cell number in infected mice in comparison to MHV strains lacking the vIL-10 gene. However, vIL-10 expression did not alter the quantity of latent virus in the spleen or its ability to reactivate.

Conclusions

In this mouse model of gammaherpesvirus infection, EBV vIL-10 appears to influence acute-phase pathogenicity. Given that EBV and MHV wild-type strains contain other genes that induce cIL-10 expression in latency (e.g. LMP-1 and M2, respectively), vIL-10 may have evolved to serve the specific role in acute infection of enlarging the permissive host cell population, perhaps to facilitate initial survival and dissemination of viral-infected cells.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​2042-4280-5-1) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing of interest.

Authors’ contributions

GL conceived of the study; GL, JPS and JTS designed the study. KG helped generate recombinant herpesviruses and conducted growth curve experiments and animal studies. GL coordinated all and conducted many of the experiments and wrote the manuscript. All authors have approved the final manuscript.

Background

Viruses from a range of virus families exert direct influence on host cytokine responses. Such influence can be mediated through expression of viral homologs of host cytokines or cytokine receptors, or through expression of viral factors that alter expression of host cytokines [13]. Several herpesviruses such as Epstein-Barr virus (EBV) [4], equid herpesvirus 2 [5], ovine herpesvirus 2 [6], and primate cytomegaloviruses [79] encode a homolog to the IL-10 gene. Infection of B cells by EBV results in expression of virus-encoded IL-10 (vIL-10, encoded by the BCRF1 gene) as well as induction of the endogenous cellular IL-10 (cIL-10) gene. vIL10 mRNA is detectable within six hours of EBV infection in vitro[10] and thus is expressed early in infection [11]. In fact, EBV virions carry a number of viral mRNAs including those encoding vIL-10, which may be translated immediately upon infection [12]. Subsequently, expression of the cIL-10 gene is induced twenty to forty hours post-EBV infection [10, 13, 14] and is upregulated by the EBV latency-associated LMP-1 and small non-coding RNAs (EBERs) [15, 16]. The differential timing of expression of these two IL-10 forms may reflect differences in their respective roles in viral infection.
IL-10 is a highly pleotropic, regulatory cytokine with differential effects in T-cell populations that generally reduce inflammation and cytotoxic responses, while favoring a humoral immune response [17]. The EBV vIL-10 [4], like its cellular counterpart, inhibits cytokine synthesis [18]. EBV vIL-10 is 84% homologous to human IL-10, with most divergence occurring at the N terminus [4] resulting in an altered N-terminal structure [19]. cIL-10 and vIL-10 enhance B-cell viability, whereas only cIL-10 upregulates MHC II on B cells [20]. vIL-10 also lacks cIL-10’s ability to stimulate mast cells [21] and to induce proliferation of mature and immature thymocytes [22]. EBV vIL-10 has 1000-fold lower affinity for the IL-10 receptor, perhaps explaining its greatly reduced ability to inhibit IL-2 production by helper T cells [23]. Thus, the viral and cellular homologs share many immunosuppressive activities, while vIL-10 generally lacks cIL-10’s immunostimulatory functions. These differences are attributed primarily to a single amino acid substitution [24].
In earlier studies involving an EBV mutant in which the vIL-10-encoding gene was deleted, vIL-10 was concluded to have no effect on replication, immortalization and establishment of latency within B cells in vitro, and to have no effect on tumorigenicity when the resulting EBV-infected B lymphoblastoid cell lines were injected into SCID mice [11]. More recent in vitro studies with vIL-10-deficient EBV virus have demonstrated that vIL-10’s early expression protects infected B cells by altering the cytokine response, reducing NK cell killing, and inhibiting CD4+ T cell activity [12]. In vivo, expression of the vIL-10 gene of the betaherpesvirus rhesus cytomegalovirus (RhCMV), significantly limits innate immune responses to primary infection, which in turn reduces both T- and B-cell responses [25]. However, the applicability of the latter study to understanding EBV vIL-10 function is questionable given the low (27%) homology of RhCMV vIL-10 with cIL-10 [9] and the high binding affinity of RhCMV vIL-10 relative to EBV vIL-10 for the IL-10 receptor [26]. To date, studies probing the nuances of EBV vIL-10 in gammaherpesvirus infection have not been presented in an in vivo model of viral pathogenicity.
Murine gammaherpesvirus 68 (MHV-68, γHV68, murid herpesvirus 4) infection of laboratory mice serves as a tractable animal model for gammaherpesvirus pathogenesis [27]. Upon intranasal (i.n.) inoculation of mice, MHV-68 rapidly establishes an acute, productive infection of alveolar epithelial cells which is essentially cleared about 10 days post-infection (p.i.) [28]. As the acute phase resolves, a syndrome similar to EBV-induced infectious mononucleosis ensues. This phase is characterized by splenomegaly [29], non-antigen-specific B-cell activation [30], and peripheral blood lymphocytosis primarily reflecting the expansion of CD8+ T cells expressing a Vβ4 T-cell receptor [31]. This syndrome peaks at day 14 p.i. and resolves by about day 21 p.i. Latent virus has been detected in peritoneal macrophages [32], splenic macrophages and dendritic cells [33], and B cells [3336]. B cells are likely to be the means for trafficking MHV-68 from the lung to the spleen [37] and expression of vtRNAs, a marker for latency, has been localized to the germinal centers in the spleen [3840]. CD4+ T cells are required for MHV-68-induced splenomegaly [29, 41], while CD8+ T cells are critical for limiting productive pulmonary infection and for the resolution of splenomegaly [35, 4143].
MHV-76, a variant of MHV-68, contains a deletion of 9538 bp within the left end of the unique-sequence domain of the MHV-68 prototype genome – the region which includes the MHV-68 genes M1-M4 as well as eight vtRNA genes [44, 45]. In comparison to MHV-68, MHV-76 is cleared more rapidly from the lungs and induces less pronounced splenomegaly and fewer numbers of latently infected cells in the spleen, although replication of the viruses in culture does not differ [44, 45]. The M2 gene encodes a latency-associated protein that serves as a target for cell-mediated immunity [46]. The M2 protein binds Vav signaling proteins and promotes cell proliferation and survival [47]. MHV-68 strains lacking only M2 expression show the same reduction in latency and reactivation as MHV-76; however, they do not exhibit MHV-76’s reduction of splenomegaly [4850]. While MHV-68 does not carry a native vIL-10 gene, M2 stimulates cIL-10 expression [51, 52]. It has been proposed that M2’s role in stimulating cIL-10 and its resulting effects may represent a conserved gammaherpesvirus strategy that is also represented by the EBV vIL-10 gene [51], although, as noted above, the timing of vIL-10 expression differs from that of cIL-10 induction. Therefore, we sought to determine the effects of vIL-10 expression on viral pathogenesis in a murine gammaherpesvirus strain lacking M2 (MHV-76). Here we show that vIL-10 expression by MHV-76 enhances spleen cell proliferation and viral titers in the lung during acute infection, but does not affect splenic latency or reactivation of virus replication from latently infected cells.

Methods

Cell and virus culture

All MHV strains were propagated in NIH-3T3 (ATCC) cells in DMEM (GIBCO) supplemented with 10% fetal bovine serum (HyClone), penicillin (100U/ml) and streptomycin (100 μg/ml) (GIBCO) at 37°C in a humidified 5% CO2 atmosphere essentially as described [28]. Viral titers were determined in a serial dilution plaque assay by fixing [10% formalin (Fisher)] and staining [0.1% toluidine blue (LabChem)] 3–5 days p.i.

Generation of recombinant viruses

Promoter: Pgp150, the MHV-68 late gene promoter for the M7 gene (expressing gp150), was isolated from MHV-68 DNA by PCR amplification of a 660 base pair (bp) fragment that begins 3 bp upstream of the M7 ORF start codon and extends upstream. The Pgp150 primers (5′-GAGTAGATCTTAAGGGAGAGCGATGAGG-3′ and 5′-CAGTAAGCTTGAGGGTTTTATAGCGTCAC-3′) included BglII and HindIII restriction enzyme sites at the upstream and downstream ends, respectively. Promoters were inserted into the BglII and HindIII sites of the pGL3-Basic (sans promoter) luciferase reporter plasmid (Promega). Luciferase expression assayed with the Dual-Luciferase system (Promega) confirmed the activity of the promoters in NIH-3T3 cells transfected (FuGene, Roche) with the resulting plasmids.
vIL-10: The vIL-10 gene (encoded by the EBV BCRF1 ORF) was amplified by PCR from EBV (Akata strain) DNA using primers that generated NcoI and XbaI restriction sites at the upstream and downstream ends, respectively. Primers were 5′-GTGACCATGGAGCGAAGGTTAGTG-3′ and 5′-AGTGTCTAGATGCACCCATCTCCTGCTTC-3′. The amplified product was cloned into the Pgp150-containing plasmid in place of the luciferase gene to create the vIL-10 expression cassette. Positive ELISA (Pierce) confirmed vIL-10 expression from plasmids in transfected NIH-3T3 cells.
Targeting cassette: Plasmid pBS76LHE (courtesy of James Stewart) contains an approximately 3-kbp fragment from the left hand end (LHE) unique sequence of the MHV-76 genome [53] and was modified to generate pBS76LHE-TR as follows. A portion of a terminal repeat fragment and its immediately adjacent unique sequence was amplified from MHV-68 DNA by PCR under conditions favorable for GC rich sequences (Roche). Primers were 5′-AGGCAGGCACCAACAG-3′ and 5′-CAGCATCAGCCCCGGATCTC-3′. This fragment, designated TR, represents terminal repeat sequences immediately to the left (in the prototype orientation) of the LHE fragment in MHV-76. TR was inserted next to the LHE fragment in pBS76LHE to generate pBSLHE-TR; a BamHI site separates TR from LHE. Furthermore, PmeI restriction enzyme sites were inserted on either side of the TR-LHE sequence to be able to liberate the TR-LHE targeting cassette. Next, the vIL10 expression cassette was liberated from its plasmid as a fragment with a BglII restriction site on the upstream end and a BamHI restriction site on the downstream end. This fragment was inserted into the BamHI site of pBS76LHE-TR and restriction enzyme analysis revealed clones containing the expression cassette in either orientation bounded by the TR and LHE components. Figure 1 shows a general schematic of construction of the targeting cassette.
Recombination and purification: NIH-3T3 cells grown in 6-well plates were co-transfected using FuGene (Roche) with MHV-76 DNA (1 μg, isolated essentially as described [54]) and targeting cassette (2–3 μg of PmeI-digested targeting-construct plasmid). Following the development of plaques, cultures were harvested and subjected to three rapid freeze/thaw cycles to release cell-associated virus. Stocks were serially diluted to infect NIH-3 T3 cells in 96-well plates. DNA was isolated from wells developing single plaques by QiaAmp (Qiagen) and screened by PCR for the presence of the vIL-10 gene. This limiting-dilution screening was repeated for five or six rounds until all plaques were PCR positive for vIL-10. Positive ELISA (Pierce) confirmed vIL-10 expression from recombinant viruses in infected NIH-3T3 cells. Revertant control viruses were generated using the preceding procedures by co-transfection of cell cultures with recombinant virus DNA and the TR-LHE fragment lacking an expression cassette insert. All recombinant DNA work was conducted under protocols approved by the Institutional Biosafety Committee following US federal guidelines.

In vitrogrowth curves

NIH-3T3 cell cultures (70-80% confluent) were infected at a multiplicity of infection (MOI) of 5. Virus was allowed to adsorb for one hour at 37°C, and cells were washed three times with fresh medium to remove unbound virus. Samples were taken at time zero and appropriate time points thereafter by scraping the cells and collecting by aspiration. Cells were freeze-thawed three times to release cell-associated virus, and viral titers were determined by plaque assay.

Inoculation and sampling of mice

Four- to six-week-old male BALB/c mice (Jackson Laboratories) under light anesthesia (isoflurane, 1.5-2.5%, by inhalation) were inoculated i.n. with 2 × 105 pfu virus [45]. At various times p.i., mice were euthanized by CO2 asphyxiation followed by cervical dislocation. Lungs were removed and snap frozen. Spleens were removed and held briefly in tissue culture medium. After spleens were weighed, they were homogenized by passage through a mesh screen, and red blood cells were lysed in Red Blood Cell Lysing Buffer (Sigma-Aldrich). Leukocytes were recovered from the pellet following centrifugation by resuspension in tissue culture medium, and aliquots of cells were counted to calculate number of leukocytes per spleen. All animal work was conducted under protocols approved by the Institutional Animal Care and Use Committee following US federal guidelines.

Quantification of lytic virus

Spleens and lungs were harvested from euthanized mice various days p.i. and homogenized (Mini-BeadBeater-8, as described [36]). Supernatants were freeze-thawed and clarified by centrifugation. Virus titers were determined by plaque assay of serial dilutions on NIH-3T3 cells.

Quantification of latent virus

Viral DNA was detected using a limiting-dilution, nested PCR assay for the MHV-68 ORF50 gene with single-copy sensitivity essentially as described [32, 50].

Reactivation assay

The limiting-dilution assay as described by Weck [36] was used to assess reactivation from latently infected spleen cells. Briefly, mouse embryonic fibroblast (MEF) cells (ATCC), were plated in 96-well culture plates and inoculated with limiting-dilutions of splenic leukocytes or splenic-cell lysates, and results were analyzed after 14–21 days with subtraction of any detectable lytic virus present in the lysate. Statistical analysis of all experiments was conducted using GraphPad Prism software.

Results

Construction of recombinant MHV-76 and expression of vIL-10

For expression of the EBV vIL-10 gene in MHV-76, we utilized the MHV-68 M7 late-gene promoter which allows transcription of the gp150 protein. A 660-bp fragment from upstream of the gp150 start codon was amplified by PCR and inserted directly upstream of the luciferase gene in Promega’s pGL3-basic vector. The promoter was successful in driving expression of luciferase when the plasmid was transfected into NIH-3T3 cells with or without MHV-76 viral infection (data not shown). The luciferase coding sequences were then replaced with the coding sequences for EBV vIL-10. The new constructs were successful in expressing vIL-10 in NIH-3T3 cells with similar expression levels in uninfected cells and in cells infected with MHV-76 (Figure 2).
The gp150-promoter/vIL-10 cassette was then inserted between the terminal repeat and the unique sequences of the left hand end of the cloned MHV-76 DNA to create the targeting cassette (Figure 1). The targeting cassette was liberated from its plasmid by restriction enzyme digestion and co-transfected with MHV-76 DNA into NIH-3T3 cells to allow for recombination within the TR and LHE sequences, effectively inserting the vIL-10 gene into the MHV-76 genome. Putative recombinant viruses (designated 76.vIL10) were screened by PCR upon multiple rounds of limiting-dilution infections in vitro until a purified culture of vIL-10 PCR-positive virus was obtained. Expression of vIL-10 by recombinant viruses was confirmed by ELISA, which demonstrated a mean concentration of vIL-10 three days p.i. in cell culture supernatant of 11 ng/ml (standard deviation = 5.5 ng/ml; three trials with duplicate samples per trial). Finally, recombinant virus was co-transfected with a fragment containing the TR-LHE contiguous sequence in order to create a revertant virus strain (designated 76.rev). Insertion and integrity of the promoter and gene sequences were confirmed by DNA sequence analysis and MHV-76, 76.vIL10, 76.rev, and MHV-68 virus strains all were shown to have very similar in vitro growth rates (Figure 3).

vIL-10 enhances acute viral titers in lungs

Previous studies have shown that MHV-76 titer in infected-mouse lungs peaks at day 4 p.i., while MHV-68 titer peaks significantly higher and at day 6 p.i. [45]. In these experiments (Figure 4), viral titers in lungs at day 5 p.i. were significantly higher for the recombinant 76.vIL10 than either MHV-76 (P = 0.0025) or the revertant control strain, 76.rev (P < 0.0001). These results demonstrate that vIL-10 allows enhanced acute viral titers in lungs. Furthermore, no significant difference was seen in titers at this time point for MHV-68 versus 76.vIL10. While MHV-68 titers were significantly higher than those of 76.rev (P = 0.0076), the marginally higher mean titer of MHV-68 versus MHV-76 was not significant.

vIL-10 promotes an increase in spleen cell number

The development of splenomegaly, a characteristic of MHV acute phase infection that normally peaks from day 10–14 p.i., was assessed by determining the total number of leucocytes in infected-mouse spleens. Splenocyte counts were determined at days 10, 14, and 21 p.i. (Figure 5). As expected [45], MHV-68 compared to MHV-76 resulted in a significant increase in number of splenocytes throughout the measured course of infection, with peak expansion of the population at day 14 (day 10, P = 0.0106; day 14, P < 0.0001; day 21, P = 0.0005). Splenocyte counts peaked at day 10 p.i. in mice infected with either the vIL-10-containing strain 76.vIL10, or its parent strain, MHV-76. However, at day 14 p.i., 76.IL10-infected mice had a significantly greater number of splenocytes than MHV-76-infected mice (P < 0.0001). Thus, while expression of vIL-10 did not appear to affect the timing of the splenocyte expansion, it did increase its magnitude.

vIL-10 does not alter the quantity of latent virus in spleen cells or its ability to reactivate

The presence of viral genomes in splenocytes early in latency was assayed by limiting-dilution PCR. Previous studies have shown a defect in latency for MHV-76 as compared to MHV-68 following i.n. inoculation [44, 45]. While Figure 6 does not exhibit a significant difference in PCR-positive cells for the sample size and dilutions tested, MHV-68 trends toward a higher number of positive cells, and MHV-76 and 76.vIL10 track together. Importantly, the expected differences in reactivation between MHV-68 and MHV-76 [44, 45] are observed in Figure 7. Data indicate no significant difference in reactivation of MHV-76 with or without vIL-10.

Discussion

These results provide the first evidence of vIL-10’s role in gammaherpesvirus infection in an in vivo model of viral pathogenicity. vIL-10 expression in MHV-76-infected mice increases acute-phase pathogenicity, but does not increase the percentage of latently infected splenocytes or the level of reactivation of latent virus. In accordance with these findings, in EBV, in which vIL-10 is expressed in its native environment, several studies have associated the gene’s expression with the acute phase of infection [13, 21, 55].
Nevertheless, IL-10 and its ability to drive B cell proliferation and differentiation into plasma cells are considered significant factors in the process of gammaherpesvirus reactivation from latency. The MHV-68 M2 gene product stimulates cIL-10 expression and subsequent B cell proliferation and differentiation [51]. The M2 protein exerts this effect by activating the NFAT signal transduction pathway which induces expression of interferon regulatory factor-4 (IRF-4), in turn inducing cIL-10 expression [52]. cIL-10 expression is also induced in EBV-infected cells by latency-associated LMP-1 and small non-coding RNAs (EBERs) [15, 16], and in Kaposi’s sarcoma-associated herpesvirus (KSHV) by viral-encoded miRNA [56]. Whether vIL-10 plays a role in EBV infection in the human similar to that of cIL-10 induction by MHV-68’s M2 protein in the mouse remains to be shown. However, with EBV’s other means of inducing cIL-10 during latency, it is possible that EBV expression of vIL-10 serves a different function. Results presented in this paper suggest that vIL-10’s role may be in enhancing infection during the acute (lytic) phase.
Early expression of vIL-10 homologues by herpesviruses appears to increase the local pool of host cells permissive for infection, thus increasing the chance for trafficking of infected cells to other sites. For example, human cytomegalovirus (HCMV) and RhCMV encode IL-10 homologs that induce the differentiation of macrophages [25], a cell type shown to be permissive for CMV infection [57, 58]. Our results have shown that EBV vIL-10 expression by MHV-76 increases splenomegaly, where MHV-induced splenomegaly results, in part, from an increase in B cells [29], and infected B cells are likely vehicles for trafficking MHV-68 from the lung epithelium to the spleen [37].
In addition to increasing the pool of host cells to expand and disseminate primary infection, early expression of viral IL-10 homologues reduces virus-specific effector responses, helping to ensure the survival of infected cells into the latent phase. Such inhibition can occur upstream of effector cell activation by inhibiting innate responses critical to the transition to adaptive immunity. RhCMV IL-10 reduces dendritic cell populations in draining lymph nodes, resulting in a lower frequency of virus-specific T cells [25]. EBV vIL-10 modulates cytokine responses [12], reduces MHC I expression [59], avoids increasing MHC II expression [20], and inhibits monocytes [60]. vIL-10 can also inhibit effector cell responses directly. For example, vIL-10 limits NK cell killing of infected B cells and inhibits CD4+ T cell activity [12]. Studies are planned that will assess effector responses in mice infected with 76.vIL-10.
The timing and level of expression of vIL-10 are likely to relate significantly to vIL-10’s influence on pathogenicity. Expression of vIL-10 by the recombinant virus used in this study was quantified by an ELISA that distinguished vIL-10 from any cIL-10 that might have been produced by host cells. However, it is difficult to know how this level of expression compares to expression of vIL-10 in EBV-infected cells. Published studies have reported vIL-10 concentrations in functional units [14] or fluorescence units [61] rather than in units of mass. Furthermore, the difference in culture conditions for recombinant MHV and EBV would make such comparisons difficult to interpret. Finally, it would be of interest to determine if recombinant viruses package vIL-10 mRNA in the virion and express the product immediately upon infection as has been shown for EBV [12] as well as to ascertain the kinetics of expression of vIL-10 by recombinant MHV in the host animal.
Details are emerging to clarify our understanding of viral modulation of immune responses via cIL-10 and vIL-10. Such understanding may expand our ability to intervene in diseases such as EBV-associated lymphoproliferative disease [62]. Several studies have exploited the immunomodulatory properties of EBV vIL-10 for increasing the survival of allografts [6370]. The establishment of this model murine gammaherpesvirus expressing vIL-10 may contribute further to such work.

Conclusions

In this mouse model of gammaherpesvirus infection, EBV vIL-10 appears to influence the acute-phase pathogenicity by increasing the viral titers in lungs and increasing the number of spleen cells, resulting in enhanced splenomegaly. However, following the establishment of latency, vIL-10 expressing strains showed no difference in the percentage of latently infected spleen cells or in the ability of virus to reactivate. Given that EBV and MHV contain other genes that induce cIL-10 expression in latency (e.g. LMP-1 and M2, respectively), vIL-10 may have evolved to serve the specific role in acute infection of enlarging the permissive host cell population, perhaps to facilitate dissemination and initial survival of viral-infected cells.

Acknowledgments

For technical assistance, we thank Drew Burk, Kristen Campbell, Joiceann Compton, Chris Davis, Meghan Davis, Carol Dickerson, Jeff Freyder, Lauren Jackson, Kristina Lynch, Audrey Marsidi, Megan McKenna, Sandra Obreza, and Desiree Steimer. For advice, reagents and/or sponsorship, we thank Laurie Krug and Peter Doherty. This work was funded by the National Institutes of Health [5 R01 CA90208 (JTS); 1 R15 AI068680 (GJL)] and Rhodes College Faculty Development Endowment.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing of interest.

Authors’ contributions

GL conceived of the study; GL, JPS and JTS designed the study. KG helped generate recombinant herpesviruses and conducted growth curve experiments and animal studies. GL coordinated all and conducted many of the experiments and wrote the manuscript. All authors have approved the final manuscript.
Literatur
1.
Zurück zum Zitat Alcami A, Koszinowski UH: Viral mechanisms of immune evasion. Trends Microbiol. 2000, 8: 410-418. 10.1016/S0966-842X(00)01830-8.CrossRefPubMed Alcami A, Koszinowski UH: Viral mechanisms of immune evasion. Trends Microbiol. 2000, 8: 410-418. 10.1016/S0966-842X(00)01830-8.CrossRefPubMed
2.
Zurück zum Zitat Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL: Viral subversion of the immune system. Annu Rev Immunol. 2000, 18: 861-926. 10.1146/annurev.immunol.18.1.861.CrossRefPubMed Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL: Viral subversion of the immune system. Annu Rev Immunol. 2000, 18: 861-926. 10.1146/annurev.immunol.18.1.861.CrossRefPubMed
3.
Zurück zum Zitat Alcami A: Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol. 2003, 3: 36-50. 10.1038/nri980.CrossRefPubMed Alcami A: Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol. 2003, 3: 36-50. 10.1038/nri980.CrossRefPubMed
4.
Zurück zum Zitat Moore KW, Vieira P, Fiorentino DF, Trounstine ML, Khan TA, Mosmann TR: Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI. Science. 1990, 248: 1230-1234. 10.1126/science.2161559.CrossRefPubMed Moore KW, Vieira P, Fiorentino DF, Trounstine ML, Khan TA, Mosmann TR: Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI. Science. 1990, 248: 1230-1234. 10.1126/science.2161559.CrossRefPubMed
5.
Zurück zum Zitat Telford EA, Watson MS, Aird HC, Perry J, Davison AJ: The DNA sequence of equine herpesvirus 2. J Mol Biol. 1995, 249: 520-528. 10.1006/jmbi.1995.0314.CrossRefPubMed Telford EA, Watson MS, Aird HC, Perry J, Davison AJ: The DNA sequence of equine herpesvirus 2. J Mol Biol. 1995, 249: 520-528. 10.1006/jmbi.1995.0314.CrossRefPubMed
6.
Zurück zum Zitat Jayawardane G, Russell GC, Thomson J, Deane D, Cox H, Gatherer D, Ackermann M, Haig DM, Stewart JP: A captured viral interleukin 10 gene with cellular exon structure. J Gen Virol. 2008, 89: 2447-2455. 10.1099/vir.0.2008/001743-0.CrossRefPubMed Jayawardane G, Russell GC, Thomson J, Deane D, Cox H, Gatherer D, Ackermann M, Haig DM, Stewart JP: A captured viral interleukin 10 gene with cellular exon structure. J Gen Virol. 2008, 89: 2447-2455. 10.1099/vir.0.2008/001743-0.CrossRefPubMed
7.
Zurück zum Zitat Raftery MJ, Wieland D, Gronewald S, Kraus AA, Giese T, Schonrich G: Shaping phenotype, function, and survival of dendritic cells by cytomegalovirus-encoded IL-10. J Immunol. 2004, 173: 3383-3391. 10.4049/jimmunol.173.5.3383.CrossRefPubMed Raftery MJ, Wieland D, Gronewald S, Kraus AA, Giese T, Schonrich G: Shaping phenotype, function, and survival of dendritic cells by cytomegalovirus-encoded IL-10. J Immunol. 2004, 173: 3383-3391. 10.4049/jimmunol.173.5.3383.CrossRefPubMed
8.
Zurück zum Zitat Lockridge KM, Zhou SS, Kravitz RH, Johnson JL, Sawai ET, Blewett EL, Barry PA: Primate cytomegaloviruses encode and express an IL-10-like protein. Virology. 2000, 268: 272-280. 10.1006/viro.2000.0195.CrossRefPubMed Lockridge KM, Zhou SS, Kravitz RH, Johnson JL, Sawai ET, Blewett EL, Barry PA: Primate cytomegaloviruses encode and express an IL-10-like protein. Virology. 2000, 268: 272-280. 10.1006/viro.2000.0195.CrossRefPubMed
9.
Zurück zum Zitat Kotenko SV, Saccani S, Izotova LS, Mirochnitchenko OV, Pestka S: Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc Natl Acad Sci U S A. 2000, 97: 1695-1700. 10.1073/pnas.97.4.1695.PubMedCentralCrossRefPubMed Kotenko SV, Saccani S, Izotova LS, Mirochnitchenko OV, Pestka S: Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc Natl Acad Sci U S A. 2000, 97: 1695-1700. 10.1073/pnas.97.4.1695.PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Miyazaki I, Cheung RK, Dosch HM: Viral interleukin 10 is critical for the induction of B cell growth transformation by Epstein-Barr virus. J Exp Med. 1993, 178: 439-447. 10.1084/jem.178.2.439.CrossRefPubMed Miyazaki I, Cheung RK, Dosch HM: Viral interleukin 10 is critical for the induction of B cell growth transformation by Epstein-Barr virus. J Exp Med. 1993, 178: 439-447. 10.1084/jem.178.2.439.CrossRefPubMed
11.
Zurück zum Zitat Swaminathan S, Hesselton R, Sullivan J, Kieff E: Epstein-Barr virus recombinants with specifically mutated BCRF1 genes. J Virol. 1993, 67: 7406-7413.PubMedCentralPubMed Swaminathan S, Hesselton R, Sullivan J, Kieff E: Epstein-Barr virus recombinants with specifically mutated BCRF1 genes. J Virol. 1993, 67: 7406-7413.PubMedCentralPubMed
12.
Zurück zum Zitat Jochum S, Ruiss R, Moosmann A, Hammerschmidt W, Zeidler R: RNAs in Epstein-Barr virions control early steps of infection. Proc Natl Acad Sci U S A. 2012, 109: E1396-1404. 10.1073/pnas.1115906109.PubMedCentralCrossRefPubMed Jochum S, Ruiss R, Moosmann A, Hammerschmidt W, Zeidler R: RNAs in Epstein-Barr virions control early steps of infection. Proc Natl Acad Sci U S A. 2012, 109: E1396-1404. 10.1073/pnas.1115906109.PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Burdin N, Peronne C, Banchereau J, Rousset F: Epstein-Barr virus transformation induces B lymphocytes to produce human interleukin 10. J Exp Med. 1993, 177: 295-304. 10.1084/jem.177.2.295.CrossRefPubMed Burdin N, Peronne C, Banchereau J, Rousset F: Epstein-Barr virus transformation induces B lymphocytes to produce human interleukin 10. J Exp Med. 1993, 177: 295-304. 10.1084/jem.177.2.295.CrossRefPubMed
14.
Zurück zum Zitat Taga H, Taga K, Wang F, Chretien J, Tosato G: Human and viral interleukin-10 in acute Epstein-Barr virus-induced infectious mononucleosis. J Infect Dis. 1995, 171: 1347-1350. 10.1093/infdis/171.5.1347.CrossRefPubMed Taga H, Taga K, Wang F, Chretien J, Tosato G: Human and viral interleukin-10 in acute Epstein-Barr virus-induced infectious mononucleosis. J Infect Dis. 1995, 171: 1347-1350. 10.1093/infdis/171.5.1347.CrossRefPubMed
15.
Zurück zum Zitat Nakagomi H, Dolcetti R, Bejarano MT, Pisa P, Kiessling R, Masucci MG: The Epstein-Barr virus latent membrane protein-1 (LMP1) induces interleukin-10 production in Burkitt lymphoma lines. Int J Cancer. 1994, 57: 240-244. 10.1002/ijc.2910570218.CrossRefPubMed Nakagomi H, Dolcetti R, Bejarano MT, Pisa P, Kiessling R, Masucci MG: The Epstein-Barr virus latent membrane protein-1 (LMP1) induces interleukin-10 production in Burkitt lymphoma lines. Int J Cancer. 1994, 57: 240-244. 10.1002/ijc.2910570218.CrossRefPubMed
16.
Zurück zum Zitat Kitagawa N, Goto M, Kurozumi K, Maruo S, Fukayama M, Naoe T, Yasukawa M, Hino K, Suzuki T, Todo S, Takada K: Epstein-Barr virus-encoded poly(A)(-) RNA supports Burkitt’s lymphoma growth through interleukin-10 induction. Embo J. 2000, 19: 6742-6750. 10.1093/emboj/19.24.6742.PubMedCentralCrossRefPubMed Kitagawa N, Goto M, Kurozumi K, Maruo S, Fukayama M, Naoe T, Yasukawa M, Hino K, Suzuki T, Todo S, Takada K: Epstein-Barr virus-encoded poly(A)(-) RNA supports Burkitt’s lymphoma growth through interleukin-10 induction. Embo J. 2000, 19: 6742-6750. 10.1093/emboj/19.24.6742.PubMedCentralCrossRefPubMed
17.
Zurück zum Zitat Moore KW, de Waal MR, Coffman RL, O’Garra A: Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001, 19: 683-765. 10.1146/annurev.immunol.19.1.683.CrossRefPubMed Moore KW, de Waal MR, Coffman RL, O’Garra A: Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001, 19: 683-765. 10.1146/annurev.immunol.19.1.683.CrossRefPubMed
18.
Zurück zum Zitat Hsu DH, de Waal MR, Fiorentino DF, Dang MN, Vieira P, de Vries J, Spits H, Mosmann TR, Moore KW: Expression of interleukin-10 activity by Epstein-Barr virus protein BCRF1. Science. 1990, 250: 830-832. 10.1126/science.2173142.CrossRefPubMed Hsu DH, de Waal MR, Fiorentino DF, Dang MN, Vieira P, de Vries J, Spits H, Mosmann TR, Moore KW: Expression of interleukin-10 activity by Epstein-Barr virus protein BCRF1. Science. 1990, 250: 830-832. 10.1126/science.2173142.CrossRefPubMed
19.
Zurück zum Zitat Zdanov A, Schalk-Hihi C, Wlodawer A: Crystal structure of human interleukin-10 at 1.6 A resolution and a model of a complex with its soluble receptor. Protein Sci. 1996, 5: 1955-1962. 10.1002/pro.5560051001.PubMedCentralCrossRefPubMed Zdanov A, Schalk-Hihi C, Wlodawer A: Crystal structure of human interleukin-10 at 1.6 A resolution and a model of a complex with its soluble receptor. Protein Sci. 1996, 5: 1955-1962. 10.1002/pro.5560051001.PubMedCentralCrossRefPubMed
20.
Zurück zum Zitat Go NF, Castle BE, Barrett R, Kastelein R, Dang W, Mosmann TR, Moore KW, Howard M: Interleukin 10, a novel B cell stimulatory factor: unresponsiveness of X chromosome-linked immunodeficiency B cells. J Exp Med. 1990, 172: 1625-1631. 10.1084/jem.172.6.1625.CrossRefPubMed Go NF, Castle BE, Barrett R, Kastelein R, Dang W, Mosmann TR, Moore KW, Howard M: Interleukin 10, a novel B cell stimulatory factor: unresponsiveness of X chromosome-linked immunodeficiency B cells. J Exp Med. 1990, 172: 1625-1631. 10.1084/jem.172.6.1625.CrossRefPubMed
21.
Zurück zum Zitat Vieira P, de Waal-Malefyt R, Dang MN, Johnson KE, Kastelein R, Fiorentino DF, de Vries JE, Roncarolo MG, Mosmann TR, Moore KW: Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI. Proc Natl Acad Sci U S A. 1991, 88: 1172-1176. 10.1073/pnas.88.4.1172.PubMedCentralCrossRefPubMed Vieira P, de Waal-Malefyt R, Dang MN, Johnson KE, Kastelein R, Fiorentino DF, de Vries JE, Roncarolo MG, Mosmann TR, Moore KW: Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI. Proc Natl Acad Sci U S A. 1991, 88: 1172-1176. 10.1073/pnas.88.4.1172.PubMedCentralCrossRefPubMed
22.
Zurück zum Zitat MacNeil IA, Suda T, Moore KW, Mosmann TR, Zlotnik A: IL-10, a novel growth cofactor for mature and immature T cells. J Immunol. 1990, 145: 4167-4173.PubMed MacNeil IA, Suda T, Moore KW, Mosmann TR, Zlotnik A: IL-10, a novel growth cofactor for mature and immature T cells. J Immunol. 1990, 145: 4167-4173.PubMed
23.
Zurück zum Zitat Liu Y, de Waal MR, Briere F, Parham C, Bridon JM, Banchereau J, Moore KW, Xu J: The EBV IL-10 homologue is a selective agonist with impaired binding to the IL-10 receptor. J Immunol. 1997, 158: 604-613.PubMed Liu Y, de Waal MR, Briere F, Parham C, Bridon JM, Banchereau J, Moore KW, Xu J: The EBV IL-10 homologue is a selective agonist with impaired binding to the IL-10 receptor. J Immunol. 1997, 158: 604-613.PubMed
24.
Zurück zum Zitat Ding Y, Qin L, Kotenko SV, Pestka S, Bromberg JS: A single amino acid determines the immunostimulatory activity of interleukin 10. J Exp Med. 2000, 191: 213-224. 10.1084/jem.191.2.213.PubMedCentralCrossRefPubMed Ding Y, Qin L, Kotenko SV, Pestka S, Bromberg JS: A single amino acid determines the immunostimulatory activity of interleukin 10. J Exp Med. 2000, 191: 213-224. 10.1084/jem.191.2.213.PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Chang WL, Barry PA: Attenuation of innate immunity by cytomegalovirus IL-10 establishes a long-term deficit of adaptive antiviral immunity. Proc Natl Acad Sci U S A. 2010, 107: 22647-22652. 10.1073/pnas.1013794108.PubMedCentralCrossRefPubMed Chang WL, Barry PA: Attenuation of innate immunity by cytomegalovirus IL-10 establishes a long-term deficit of adaptive antiviral immunity. Proc Natl Acad Sci U S A. 2010, 107: 22647-22652. 10.1073/pnas.1013794108.PubMedCentralCrossRefPubMed
26.
Zurück zum Zitat Jones BC, Logsdon NJ, Josephson K, Cook J, Barry PA, Walter MR: Crystal structure of human cytomegalovirus IL-10 bound to soluble human IL-10R1. Proc Natl Acad Sci U S A. 2002, 99: 9404-9409. 10.1073/pnas.152147499.PubMedCentralCrossRefPubMed Jones BC, Logsdon NJ, Josephson K, Cook J, Barry PA, Walter MR: Crystal structure of human cytomegalovirus IL-10 bound to soluble human IL-10R1. Proc Natl Acad Sci U S A. 2002, 99: 9404-9409. 10.1073/pnas.152147499.PubMedCentralCrossRefPubMed
27.
Zurück zum Zitat Olivadoti M, Toth LA, Weinberg J, Opp MR: Murine gammaherpesvirus 68: a model for the study of Epstein-Barr virus infections and related diseases. Comp Med. 2007, 57: 44-50.PubMed Olivadoti M, Toth LA, Weinberg J, Opp MR: Murine gammaherpesvirus 68: a model for the study of Epstein-Barr virus infections and related diseases. Comp Med. 2007, 57: 44-50.PubMed
28.
Zurück zum Zitat Sunil-Chandra NP, Efstathiou S, Arno J, Nash AA: Virological and pathological features of mice infected with murine gamma-herpesvirus 68. J Gen Virol. 1992, 73 (Pt 9): 2347-2356.CrossRefPubMed Sunil-Chandra NP, Efstathiou S, Arno J, Nash AA: Virological and pathological features of mice infected with murine gamma-herpesvirus 68. J Gen Virol. 1992, 73 (Pt 9): 2347-2356.CrossRefPubMed
29.
Zurück zum Zitat Usherwood EJ, Ross AJ, Allen DJ, Nash AA: Murine gammaherpesvirus-induced splenomegaly: a critical role for CD4 T cells. J Gen Virol. 1996, 77 (Pt 4): 627-630.CrossRefPubMed Usherwood EJ, Ross AJ, Allen DJ, Nash AA: Murine gammaherpesvirus-induced splenomegaly: a critical role for CD4 T cells. J Gen Virol. 1996, 77 (Pt 4): 627-630.CrossRefPubMed
30.
Zurück zum Zitat Stevenson PG, Doherty PC: Non-antigen-specific B-cell activation following murine gammaherpesvirus infection is CD4 independent in vitro but CD4 dependent in vivo. J Virol. 1999, 73: 1075-1079.PubMedCentralPubMed Stevenson PG, Doherty PC: Non-antigen-specific B-cell activation following murine gammaherpesvirus infection is CD4 independent in vitro but CD4 dependent in vivo. J Virol. 1999, 73: 1075-1079.PubMedCentralPubMed
31.
Zurück zum Zitat Tripp RA, Hamilton-Easton AM, Cardin RD, Nguyen P, Behm FG, Woodland DL, Doherty PC, Blackman MA: Pathogenesis of an infectious mononucleosis-like disease induced by a murine gamma-herpesvirus: role for a viral superantigen?. J Exp Med. 1997, 185: 1641-1650. 10.1084/jem.185.9.1641.PubMedCentralCrossRefPubMed Tripp RA, Hamilton-Easton AM, Cardin RD, Nguyen P, Behm FG, Woodland DL, Doherty PC, Blackman MA: Pathogenesis of an infectious mononucleosis-like disease induced by a murine gamma-herpesvirus: role for a viral superantigen?. J Exp Med. 1997, 185: 1641-1650. 10.1084/jem.185.9.1641.PubMedCentralCrossRefPubMed
32.
Zurück zum Zitat Weck KE, Kim SS, Virgin HI, Speck SH: Macrophages are the major reservoir of latent murine gammaherpesvirus 68 in peritoneal cells. J Virol. 1999, 73: 3273-3283.PubMedCentralPubMed Weck KE, Kim SS, Virgin HI, Speck SH: Macrophages are the major reservoir of latent murine gammaherpesvirus 68 in peritoneal cells. J Virol. 1999, 73: 3273-3283.PubMedCentralPubMed
33.
Zurück zum Zitat Flano E, Husain SM, Sample JT, Woodland DL, Blackman MA: Latent murine gamma-herpesvirus infection is established in activated B cells, dendritic cells, and macrophages. J Immunol. 2000, 165: 1074-1081. 10.4049/jimmunol.165.2.1074.CrossRefPubMed Flano E, Husain SM, Sample JT, Woodland DL, Blackman MA: Latent murine gamma-herpesvirus infection is established in activated B cells, dendritic cells, and macrophages. J Immunol. 2000, 165: 1074-1081. 10.4049/jimmunol.165.2.1074.CrossRefPubMed
34.
Zurück zum Zitat Sunil-Chandra NP, Efstathiou S, Nash AA: Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo. J Gen Virol. 1992, 73 (Pt 12): 3275-3279.CrossRefPubMed Sunil-Chandra NP, Efstathiou S, Nash AA: Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo. J Gen Virol. 1992, 73 (Pt 12): 3275-3279.CrossRefPubMed
35.
Zurück zum Zitat Sunil-Chandra NP, Efstathiou S, Nash AA: Interactions of murine gammaherpesvirus 68 with B and T cell lines. Virology. 1993, 193: 825-833. 10.1006/viro.1993.1191.CrossRefPubMed Sunil-Chandra NP, Efstathiou S, Nash AA: Interactions of murine gammaherpesvirus 68 with B and T cell lines. Virology. 1993, 193: 825-833. 10.1006/viro.1993.1191.CrossRefPubMed
36.
Zurück zum Zitat Weck KE, Barkon ML, Yoo LI, Speck SH, Virgin HI: Mature B cells are required for acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68. J Virol. 1996, 70: 6775-6780.PubMedCentralPubMed Weck KE, Barkon ML, Yoo LI, Speck SH, Virgin HI: Mature B cells are required for acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68. J Virol. 1996, 70: 6775-6780.PubMedCentralPubMed
37.
Zurück zum Zitat Stewart JP, Usherwood EJ, Ross A, Dyson H, Nash T: Lung epithelial cells are a major site of murine gammaherpesvirus persistence. J Exp Med. 1998, 187: 1941-1951. 10.1084/jem.187.12.1941.PubMedCentralCrossRefPubMed Stewart JP, Usherwood EJ, Ross A, Dyson H, Nash T: Lung epithelial cells are a major site of murine gammaherpesvirus persistence. J Exp Med. 1998, 187: 1941-1951. 10.1084/jem.187.12.1941.PubMedCentralCrossRefPubMed
38.
Zurück zum Zitat Bowden RJ, Simas JP, Davis AJ, Efstathiou S: Murine gammaherpesvirus 68 encodes tRNA-like sequences which are expressed during latency. J Gen Virol. 1997, 78 (Pt 7): 1675-1687.CrossRefPubMed Bowden RJ, Simas JP, Davis AJ, Efstathiou S: Murine gammaherpesvirus 68 encodes tRNA-like sequences which are expressed during latency. J Gen Virol. 1997, 78 (Pt 7): 1675-1687.CrossRefPubMed
39.
Zurück zum Zitat Simas JP, Bowden RJ, Paige V, Efstathiou S: Four tRNA-like sequences and a serpin homologue encoded by murine gammaherpesvirus 68 are dispensable for lytic replication in vitro and latency in vivo. J Gen Virol. 1998, 79 (Pt 1): 149-153.CrossRefPubMed Simas JP, Bowden RJ, Paige V, Efstathiou S: Four tRNA-like sequences and a serpin homologue encoded by murine gammaherpesvirus 68 are dispensable for lytic replication in vitro and latency in vivo. J Gen Virol. 1998, 79 (Pt 1): 149-153.CrossRefPubMed
40.
Zurück zum Zitat Simas JP, Efstathiou S: Murine gammaherpesvirus 68: a model for the study of gammaherpesvirus pathogenesis. Trends Microbiol. 1998, 6: 276-282. 10.1016/S0966-842X(98)01306-7.CrossRefPubMed Simas JP, Efstathiou S: Murine gammaherpesvirus 68: a model for the study of gammaherpesvirus pathogenesis. Trends Microbiol. 1998, 6: 276-282. 10.1016/S0966-842X(98)01306-7.CrossRefPubMed
41.
Zurück zum Zitat Ehtisham S, Sunil-Chandra NP, Nash AA: Pathogenesis of murine gammaherpesvirus infection in mice deficient in CD4 and CD8 T cells. J Virol. 1993, 67: 5247-5252.PubMedCentralPubMed Ehtisham S, Sunil-Chandra NP, Nash AA: Pathogenesis of murine gammaherpesvirus infection in mice deficient in CD4 and CD8 T cells. J Virol. 1993, 67: 5247-5252.PubMedCentralPubMed
42.
Zurück zum Zitat Doherty PC, Topham DJ, Tripp RA, Cardin RD, Brooks JW, Stevenson PG: Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections. Immunol Rev. 1997, 159: 105-117. 10.1111/j.1600-065X.1997.tb01010.x.CrossRefPubMed Doherty PC, Topham DJ, Tripp RA, Cardin RD, Brooks JW, Stevenson PG: Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections. Immunol Rev. 1997, 159: 105-117. 10.1111/j.1600-065X.1997.tb01010.x.CrossRefPubMed
43.
Zurück zum Zitat Stevenson PG, Belz GT, Castrucci MR, Altman JD, Doherty PC: A gamma-herpesvirus sneaks through a CD8(+) T cell response primed to a lytic-phase epitope. Proc Natl Acad Sci U S A. 1999, 96: 9281-9286. 10.1073/pnas.96.16.9281.PubMedCentralCrossRefPubMed Stevenson PG, Belz GT, Castrucci MR, Altman JD, Doherty PC: A gamma-herpesvirus sneaks through a CD8(+) T cell response primed to a lytic-phase epitope. Proc Natl Acad Sci U S A. 1999, 96: 9281-9286. 10.1073/pnas.96.16.9281.PubMedCentralCrossRefPubMed
44.
Zurück zum Zitat Clambey ET, Virgin HW, Speck SH: Characterization of a spontaneous 9.5-kilobase-deletion mutant of murine gammaherpesvirus 68 reveals tissue-specific genetic requirements for latency. J Virol. 2002, 76: 6532-6544. 10.1128/JVI.76.13.6532-6544.2002.PubMedCentralCrossRefPubMed Clambey ET, Virgin HW, Speck SH: Characterization of a spontaneous 9.5-kilobase-deletion mutant of murine gammaherpesvirus 68 reveals tissue-specific genetic requirements for latency. J Virol. 2002, 76: 6532-6544. 10.1128/JVI.76.13.6532-6544.2002.PubMedCentralCrossRefPubMed
45.
Zurück zum Zitat Macrae AI, Dutia BM, Milligan S, Brownstein DG, Allen DJ, Mistrikova J, Davison AJ, Nash AA, Stewart JP: Analysis of a novel strain of murine gammaherpesvirus reveals a genomic locus important for acute pathogenesis. J Virol. 2001, 75: 5315-5327. 10.1128/JVI.75.11.5315-5327.2001.PubMedCentralCrossRefPubMed Macrae AI, Dutia BM, Milligan S, Brownstein DG, Allen DJ, Mistrikova J, Davison AJ, Nash AA, Stewart JP: Analysis of a novel strain of murine gammaherpesvirus reveals a genomic locus important for acute pathogenesis. J Virol. 2001, 75: 5315-5327. 10.1128/JVI.75.11.5315-5327.2001.PubMedCentralCrossRefPubMed
46.
Zurück zum Zitat Husain SM, Usherwood EJ, Dyson H, Coleclough C, Coppola MA, Woodland DL, Blackman MA, Stewart JP, Sample JT: Murine gammaherpesvirus M2 gene is latency-associated and its protein a target for CD8(+) T lymphocytes. Proc Natl Acad Sci U S A. 1999, 96: 7508-7513. 10.1073/pnas.96.13.7508.PubMedCentralCrossRefPubMed Husain SM, Usherwood EJ, Dyson H, Coleclough C, Coppola MA, Woodland DL, Blackman MA, Stewart JP, Sample JT: Murine gammaherpesvirus M2 gene is latency-associated and its protein a target for CD8(+) T lymphocytes. Proc Natl Acad Sci U S A. 1999, 96: 7508-7513. 10.1073/pnas.96.13.7508.PubMedCentralCrossRefPubMed
47.
Zurück zum Zitat Madureira PA, Matos P, Soeiro I, Dixon LK, Simas JP, Lam EW: Murine gamma-herpesvirus 68 latency protein M2 binds to Vav signaling proteins and inhibits B-cell receptor-induced cell cycle arrest and apoptosis in WEHI-231 B cells. J Biol Chem. 2005, 280: 37310-37318. 10.1074/jbc.M507478200.CrossRefPubMed Madureira PA, Matos P, Soeiro I, Dixon LK, Simas JP, Lam EW: Murine gamma-herpesvirus 68 latency protein M2 binds to Vav signaling proteins and inhibits B-cell receptor-induced cell cycle arrest and apoptosis in WEHI-231 B cells. J Biol Chem. 2005, 280: 37310-37318. 10.1074/jbc.M507478200.CrossRefPubMed
48.
Zurück zum Zitat Jacoby MA, Virgin HW, Speck SH: Disruption of the M2 gene of murine gammaherpesvirus 68 alters splenic latency following intranasal, but not intraperitoneal, inoculation. J Virol. 2002, 76: 1790-1801. 10.1128/JVI.76.4.1790-1801.2002.PubMedCentralCrossRefPubMed Jacoby MA, Virgin HW, Speck SH: Disruption of the M2 gene of murine gammaherpesvirus 68 alters splenic latency following intranasal, but not intraperitoneal, inoculation. J Virol. 2002, 76: 1790-1801. 10.1128/JVI.76.4.1790-1801.2002.PubMedCentralCrossRefPubMed
49.
Zurück zum Zitat Macrae AI, Usherwood EJ, Husain SM, Flano E, Kim IJ, Woodland DL, Nash AA, Blackman MA, Sample JT, Stewart JP: Murid herpesvirus 4 strain 68 M2 protein is a B-cell-associated antigen important for latency but not lymphocytosis. J Virol. 2003, 77: 9700-9709. 10.1128/JVI.77.17.9700-9709.2003.PubMedCentralCrossRefPubMed Macrae AI, Usherwood EJ, Husain SM, Flano E, Kim IJ, Woodland DL, Nash AA, Blackman MA, Sample JT, Stewart JP: Murid herpesvirus 4 strain 68 M2 protein is a B-cell-associated antigen important for latency but not lymphocytosis. J Virol. 2003, 77: 9700-9709. 10.1128/JVI.77.17.9700-9709.2003.PubMedCentralCrossRefPubMed
50.
Zurück zum Zitat Herskowitz J, Jacoby MA, Speck SH: The murine gammaherpesvirus 68 M2 gene is required for efficient reactivation from latently infected B cells. J Virol. 2005, 79: 2261-2273. 10.1128/JVI.79.4.2261-2273.2005.PubMedCentralCrossRefPubMed Herskowitz J, Jacoby MA, Speck SH: The murine gammaherpesvirus 68 M2 gene is required for efficient reactivation from latently infected B cells. J Virol. 2005, 79: 2261-2273. 10.1128/JVI.79.4.2261-2273.2005.PubMedCentralCrossRefPubMed
51.
Zurück zum Zitat Siegel AM, Herskowitz JH, Speck SH: The MHV68 M2 protein drives IL-10 dependent B cell proliferation and differentiation. PLoS Pathog. 2008, 4: e1000039-10.1371/journal.ppat.1000039.PubMedCentralCrossRefPubMed Siegel AM, Herskowitz JH, Speck SH: The MHV68 M2 protein drives IL-10 dependent B cell proliferation and differentiation. PLoS Pathog. 2008, 4: e1000039-10.1371/journal.ppat.1000039.PubMedCentralCrossRefPubMed
52.
Zurück zum Zitat Rangaswamy US, Speck SH: Murine gammaherpesvirus M2 protein induction of IRF4 via the NFAT pathway leads to IL-10 expression in B cells. PLoS Pathog. 2014, 10: e1003858-10.1371/journal.ppat.1003858.PubMedCentralCrossRefPubMed Rangaswamy US, Speck SH: Murine gammaherpesvirus M2 protein induction of IRF4 via the NFAT pathway leads to IL-10 expression in B cells. PLoS Pathog. 2014, 10: e1003858-10.1371/journal.ppat.1003858.PubMedCentralCrossRefPubMed
53.
Zurück zum Zitat Douglas J, Dutia B, Rhind S, Stewart JP, Talbot SJ: Expression in a recombinant murid herpesvirus 4 reveals the in vivo transforming potential of the K1 open reading frame of Kaposi’s sarcoma-associated herpesvirus. J Virol. 2004, 78: 8878-8884. 10.1128/JVI.78.16.8878-8884.2004.PubMedCentralCrossRefPubMed Douglas J, Dutia B, Rhind S, Stewart JP, Talbot SJ: Expression in a recombinant murid herpesvirus 4 reveals the in vivo transforming potential of the K1 open reading frame of Kaposi’s sarcoma-associated herpesvirus. J Virol. 2004, 78: 8878-8884. 10.1128/JVI.78.16.8878-8884.2004.PubMedCentralCrossRefPubMed
54.
Zurück zum Zitat Efstathiou S, Ho YM, Minson AC: Cloning and molecular characterization of the murine herpesvirus 68 genome. J Gen Virol. 1990, 71 (Pt 6): 1355-1364.CrossRefPubMed Efstathiou S, Ho YM, Minson AC: Cloning and molecular characterization of the murine herpesvirus 68 genome. J Gen Virol. 1990, 71 (Pt 6): 1355-1364.CrossRefPubMed
55.
Zurück zum Zitat Stewart JP, Rooney CM: The interleukin-10 homolog encoded by Epstein-Barr virus enhances the reactivation of virus-specific cytotoxic T cell and HLA-unrestricted killer cell responses. Virology. 1992, 191: 773-782. 10.1016/0042-6822(92)90253-L.CrossRefPubMed Stewart JP, Rooney CM: The interleukin-10 homolog encoded by Epstein-Barr virus enhances the reactivation of virus-specific cytotoxic T cell and HLA-unrestricted killer cell responses. Virology. 1992, 191: 773-782. 10.1016/0042-6822(92)90253-L.CrossRefPubMed
56.
Zurück zum Zitat Qin Z, Kearney P, Plaisance K, Parsons CH: Pivotal advance: Kaposi’s sarcoma-associated herpesvirus (KSHV)-encoded microRNA specifically induce IL-6 and IL-10 secretion by macrophages and monocytes. J Leukoc Biol. 2010, 87: 25-34. 10.1189/jlb.0409251.PubMedCentralCrossRefPubMed Qin Z, Kearney P, Plaisance K, Parsons CH: Pivotal advance: Kaposi’s sarcoma-associated herpesvirus (KSHV)-encoded microRNA specifically induce IL-6 and IL-10 secretion by macrophages and monocytes. J Leukoc Biol. 2010, 87: 25-34. 10.1189/jlb.0409251.PubMedCentralCrossRefPubMed
57.
Zurück zum Zitat Sinzger C, Plachter B, Grefte A, The TH, Jahn G: Tissue macrophages are infected by human cytomegalovirus in vivo. J Infect Dis. 1996, 173: 240-245. 10.1093/infdis/173.1.240.CrossRefPubMed Sinzger C, Plachter B, Grefte A, The TH, Jahn G: Tissue macrophages are infected by human cytomegalovirus in vivo. J Infect Dis. 1996, 173: 240-245. 10.1093/infdis/173.1.240.CrossRefPubMed
58.
Zurück zum Zitat Ibanez CE, Schrier R, Ghazal P, Wiley C, Nelson JA: Human cytomegalovirus productively infects primary differentiated macrophages. J Virol. 1991, 65: 6581-6588.PubMedCentralPubMed Ibanez CE, Schrier R, Ghazal P, Wiley C, Nelson JA: Human cytomegalovirus productively infects primary differentiated macrophages. J Virol. 1991, 65: 6581-6588.PubMedCentralPubMed
59.
Zurück zum Zitat Zeidler R, Eissner G, Meissner P, Uebel S, Tampe R, Lazis S, Hammerschmidt W: Downregulation of TAP1 in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10. Blood. 1997, 90: 2390-2397.PubMed Zeidler R, Eissner G, Meissner P, Uebel S, Tampe R, Lazis S, Hammerschmidt W: Downregulation of TAP1 in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10. Blood. 1997, 90: 2390-2397.PubMed
60.
Zurück zum Zitat Salek-Ardakani S, Arrand JR, Mackett M: Epstein-Barr virus encoded interleukin-10 inhibits HLA-class I, ICAM-1, and B7 expression on human monocytes: implications for immune evasion by EBV. Virology. 2002, 304: 342-351. 10.1006/viro.2002.1716.CrossRefPubMed Salek-Ardakani S, Arrand JR, Mackett M: Epstein-Barr virus encoded interleukin-10 inhibits HLA-class I, ICAM-1, and B7 expression on human monocytes: implications for immune evasion by EBV. Virology. 2002, 304: 342-351. 10.1006/viro.2002.1716.CrossRefPubMed
61.
Zurück zum Zitat Sairenji T, Ohnishi E, Inouye S, Kurata T: Induction of interleukin-10 on activation of Epstein-Barr virus in EBV-infected B-cell lines. Viral Immunol. 1998, 11: 221-231. 10.1089/vim.1998.11.221.CrossRefPubMed Sairenji T, Ohnishi E, Inouye S, Kurata T: Induction of interleukin-10 on activation of Epstein-Barr virus in EBV-infected B-cell lines. Viral Immunol. 1998, 11: 221-231. 10.1089/vim.1998.11.221.CrossRefPubMed
62.
Zurück zum Zitat Suzuki T, Tahara H, Narula S, Moore KW, Robbins PD, Lotze MT: Viral interleukin 10 (IL-10), the human herpes virus 4 cellular IL-10 homologue, induces local anergy to allogeneic and syngeneic tumors. J Exp Med. 1995, 182: 477-486. 10.1084/jem.182.2.477.CrossRefPubMed Suzuki T, Tahara H, Narula S, Moore KW, Robbins PD, Lotze MT: Viral interleukin 10 (IL-10), the human herpes virus 4 cellular IL-10 homologue, induces local anergy to allogeneic and syngeneic tumors. J Exp Med. 1995, 182: 477-486. 10.1084/jem.182.2.477.CrossRefPubMed
63.
Zurück zum Zitat Salgar SK, Yang D, Ruiz P, Miller J, Tzakis AG: Viral interleukin-10 gene therapy to induce tolerance to solid organ transplants in mice. Transplant Proc. 2004, 36: 397-398. 10.1016/j.transproceed.2003.12.009.CrossRefPubMed Salgar SK, Yang D, Ruiz P, Miller J, Tzakis AG: Viral interleukin-10 gene therapy to induce tolerance to solid organ transplants in mice. Transplant Proc. 2004, 36: 397-398. 10.1016/j.transproceed.2003.12.009.CrossRefPubMed
64.
Zurück zum Zitat Salgar SK, Yang D, Ruiz P, Miller J, Tzakis AG: Viral interleukin-10-engineered autologous hematopoietic stem cell therapy: a novel gene therapy approach to prevent graft rejection. Hum Gene Ther. 2004, 15: 131-144. 10.1089/104303404772679940.CrossRefPubMed Salgar SK, Yang D, Ruiz P, Miller J, Tzakis AG: Viral interleukin-10-engineered autologous hematopoietic stem cell therapy: a novel gene therapy approach to prevent graft rejection. Hum Gene Ther. 2004, 15: 131-144. 10.1089/104303404772679940.CrossRefPubMed
65.
Zurück zum Zitat Benhamou PY, Mullen Y, Shaked A, Bahmiller D, Csete ME: Decreased alloreactivity to human islets secreting recombinant viral interleukin 10. Transplantation. 1996, 62: 1306-1312. 10.1097/00007890-199611150-00023.CrossRefPubMed Benhamou PY, Mullen Y, Shaked A, Bahmiller D, Csete ME: Decreased alloreactivity to human islets secreting recombinant viral interleukin 10. Transplantation. 1996, 62: 1306-1312. 10.1097/00007890-199611150-00023.CrossRefPubMed
66.
Zurück zum Zitat Wang CK, Zuo XJ, Carpenter D, Jordan S, Nicolaidou E, Toyoda M, Czer LS, Wang H, Trento A: Prolongation of cardiac allograft survival with intracoronary viral interleukin-10 gene transfer. Transplant Proc. 1999, 31: 951-952. 10.1016/S0041-1345(98)01851-X.CrossRefPubMed Wang CK, Zuo XJ, Carpenter D, Jordan S, Nicolaidou E, Toyoda M, Czer LS, Wang H, Trento A: Prolongation of cardiac allograft survival with intracoronary viral interleukin-10 gene transfer. Transplant Proc. 1999, 31: 951-952. 10.1016/S0041-1345(98)01851-X.CrossRefPubMed
67.
Zurück zum Zitat Brauner R, Wu L, Laks H, Nonoyama M, Scholl F, Shvarts O, Berk A, Drinkwater DC, Wang JL: Intracoronary gene transfer of immunosuppressive cytokines to cardiac allografts: method and efficacy of adenovirus-mediated transduction. J Thorac Cardiovasc Surg. 1997, 113: 1059-1066. 10.1016/S0022-5223(97)70293-9. discussion 1066–1057CrossRefPubMed Brauner R, Wu L, Laks H, Nonoyama M, Scholl F, Shvarts O, Berk A, Drinkwater DC, Wang JL: Intracoronary gene transfer of immunosuppressive cytokines to cardiac allografts: method and efficacy of adenovirus-mediated transduction. J Thorac Cardiovasc Surg. 1997, 113: 1059-1066. 10.1016/S0022-5223(97)70293-9. discussion 1066–1057CrossRefPubMed
68.
Zurück zum Zitat DeBruyne LA, Li K, Chan SY, Qin L, Bishop DK, Bromberg JS: Lipid-mediated gene transfer of viral IL-10 prolongs vascularized cardiac allograft survival by inhibiting donor-specific cellular and humoral immune responses. Gene Ther. 1998, 5: 1079-1087. 10.1038/sj.gt.3300694.CrossRefPubMed DeBruyne LA, Li K, Chan SY, Qin L, Bishop DK, Bromberg JS: Lipid-mediated gene transfer of viral IL-10 prolongs vascularized cardiac allograft survival by inhibiting donor-specific cellular and humoral immune responses. Gene Ther. 1998, 5: 1079-1087. 10.1038/sj.gt.3300694.CrossRefPubMed
69.
Zurück zum Zitat Qin L, Chavin KD, Ding Y, Tahara H, Favaro JP, Woodward JE, Suzuki T, Robbins PD, Lotze MT, Bromberg JS: Retrovirus-mediated transfer of viral IL-10 gene prolongs murine cardiac allograft survival. J Immunol. 1996, 156: 2316-2323.PubMed Qin L, Chavin KD, Ding Y, Tahara H, Favaro JP, Woodward JE, Suzuki T, Robbins PD, Lotze MT, Bromberg JS: Retrovirus-mediated transfer of viral IL-10 gene prolongs murine cardiac allograft survival. J Immunol. 1996, 156: 2316-2323.PubMed
70.
Zurück zum Zitat Qin L, Ding Y, Pahud DR, Robson ND, Shaked A, Bromberg JS: Adenovirus-mediated gene transfer of viral interleukin-10 inhibits the immune response to both alloantigen and adenoviral antigen. Hum Gene Ther. 1997, 8: 1365-1374. 10.1089/hum.1997.8.11-1365.CrossRefPubMed Qin L, Ding Y, Pahud DR, Robson ND, Shaked A, Bromberg JS: Adenovirus-mediated gene transfer of viral interleukin-10 inhibits the immune response to both alloantigen and adenoviral antigen. Hum Gene Ther. 1997, 8: 1365-1374. 10.1089/hum.1997.8.11-1365.CrossRefPubMed
Metadaten
Titel
Epstein-Barr virus IL-10 gene expression by a recombinant murine gammaherpesvirus in vivoenhances acute pathogenicity but does not affect latency or reactivation
verfasst von
Gary J Lindquester
Kimberly A Greer
James P Stewart
Jeffery T Sample
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Herpesviridae / Ausgabe 1/2014
Elektronische ISSN: 2042-4280
DOI
https://doi.org/10.1186/2042-4280-5-1

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.