Skip to main content
Erschienen in: BMC Anesthesiology 1/2019

Open Access 01.12.2019 | Review

Perioperative anaesthetic management of patients with or at risk of acute distress respiratory syndrome undergoing emergency surgery

verfasst von: Denise Battaglini, Chiara Robba, Patricia Rieken Macêdo Rocco, Marcelo Gama De Abreu, Paolo Pelosi, Lorenzo Ball

Erschienen in: BMC Anesthesiology | Ausgabe 1/2019

Abstract

Patients undergoing emergency surgery may present with the acute respiratory distress syndrome (ARDS) or develop this syndrome postoperatively. The incidence of ARDS in the postoperative period is relatively low, but the impact of ARDS on patient outcomes and healthcare costs is relevant Aakre et.al (Mayo Clin Proc 89:181-9, 2014).
The development of ARDS as a postoperative pulmonary complication (PPC) is associated with prolonged hospitalisation, longer duration of mechanical ventilation, increased intensive care unit length of stay and high morbidity and mortality Ball et.al (Curr Opin Crit Care 22:379-85, 2016). In order to mitigate the risk of ARDS after surgery, the anaesthetic management and protective mechanical ventilation strategies play an important role. In particular, a careful integration of general anaesthesia with neuraxial or locoregional techniques might promote faster recovery and reduce opioid consumption. In addition, the use of low tidal volume, minimising plateau pressure and titrating a low-moderate PEEP level based on the patient’s need can improve outcome and reduce intraoperative adverse events. Moreover, perioperative management of ARDS patients includes specific anaesthesia and ventilator settings, hemodynamic monitoring, moderately restrictive fluid administration and pain control.
The aim of this review is to provide an overview and evidence- and opinion-based recommendations concerning the management of patients at risk of and with ARDS who undergo emergency surgical procedures.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ARDS
Acute respiratory distress syndrome
DP
Driving pressure
ICU
Intensive care unit
LIP
Lung injury prediction score
PBW
Predicted body weight
PCV
Pressure-controlled ventilation
PEEP
Positive end-expiratory pressure
PPC
Postoperative pulmonary complication
Pplat
Plateau pressure
RM
Recruitment manoeuvre
SLIP-2
Surgical lung injury prediction 2 model
VCV
Volume-controlled ventilation
VILI
Ventilator-induced lung injury
VT
Tidal volume

Background

Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterized by hypoxemic respiratory failure and reduced lung compliance [13], with parenchymal heterogenicity as demonstrated by CT scan images [4]. ARDS can result from several causes associated with a direct damage to the lung, such as pneumonia, chest trauma with pulmonary contusions, fat embolism, aspiration, and indirect causes, such as: sepsis, pancreatitis, blood transfusions and extra-thoracic trauma [5]. ARDS represents the most severe pulmonary complication after surgery, and is associated mortality rates in the range of 40 to 50% at 30 days from hospitalisation [6]. The incidence of new onset-ARDS in the postoperative period is relatively low, but its impact on patient outcomes is extremely relevant.

Perioperative management of patients undergoing emergency surgery

Patients at risk of and with ARDS must to be promptly identified and managed with specific intraoperative strategies including protective ventilator settings, together with haemodynamic monitorization, the use of specific type of fluids, as well as pain management. Figure 1 summarises an overview of recommendations concerning the perioperative management of these patients.

Preoperative management

Over the last decade, several scores predicting PPCs and ARDS after surgery have been developed [47], but still poorly implemented in the clinical practice [8]. To prevent postoperative ARDS, our ability to identify the surgical population that is at high risk of ARDS is an essential first step. Moreover, delayed recognition of predictive factors for the development of postoperative pulmonary complications is associated with worse outcome [9]. High-risk patients, when correctly identified, require additional monitoring, less invasive surgical procedures, lower risk anaesthesia techniques such as regional anaesthesia when feasible and early planning of intensive care unit (ICU) admission. Preoperative assessment should take into account patient’s basal functional state, comorbidities and the complexity of surgery to minimise the risk of postoperative complications [10, 11]. Centre-specific treatment guidelines may reduce risks and should be discussed with a multidisciplinary team.
The occurrence of PPCs is related to different causes and insults occurring throughout the perioperative period, comprising preoperative patients’ conditions and intraoperative complications [12]. The interaction between predisposing risk factors and surgical and anaesthesiologic management can lead to organ damage translating into postoperative complications. Moreover, during the perioperative period respiratory complications can be further exacerbated by the administration of sedatives, opioids and prolonged supine position. Among others, mechanical ventilation settings and perioperative ventilator management are important parameters linked to the development of PPCs [1214]. Postoperative respiratory complications increase healthcare costs, because of longer hospital length of stay, unplanned admission to intensive care, hospital readmission and adverse discharge to a nursing home [11].
Scores have been specifically developed to identify patients at risk of ARDS or severe PPCs [83], including the surgical lung injury prediction 2 model (SLIP-2) [15] and the lung injury prediction score (LIPS) [16]. Other scores were generically developed for predicting all-types PPCs [7, 1719, 83, 84]. It must be underlined that, in the emergency setting, patients who do not have increased risk of PPC when evaluated preoperatively may develop ARDS if desaturation or hemodynamic problems occur during the intraoperative period. Therefore, scores which include intraoperative factors could be more adequate, such as the LAS VEGAS score (Table 1) [18]. The most common complication during surgery is related to the need of hemodynamic support, by the use of vasoactive drugs or increased fluid administration (almost in 30% of patients and more frequently in high risk surgery), followed by respiratory problems, and desaturation [10].
Table 1
resumes the principal scores used to predict postoperative respiratory complications
Clinical Variable
Canet J et al. 2010
Gupta H et al. 2011
Arozullah AM et al. 2000
LAS VEGAS investig. 2017
Bauman ZM et al. 2015 [16]
Kor DJ et al. 2011 [15]
Patient dependent
 Age
Yes
Yes
Yes
Yes
No
Yes
 Dependent functional status
No
Yes
Yes
No
No
No
 ASA score
No
Yes
No
Yes
No
No
 Chronic obstructive pulmonary disease
No
Yes
Yes
No
No
Yes
 Impaired sensorium
No
No
Yes
No
No
No
 Cerebrovascular accident
No
No
Yes
No
No
No
 Preoperative SpO2
Yes
No
No
Yes
No
No
 Transfusion > 4 units prior surgery
No
No
Yes
No
Yes
No
 Significant weight loss
No
No
Yes
No
No
No
 Preoperative sepsis
No
Yes
No
No
No
No
 Preoperative anaemia
Yes
No
No
Yes
Yes
No
 Blood urea nitrogen level
No
No
Yes
No
No
No
 Recent respiratory infection
Yes
No
No
No
No
No
 Relevant alcohol intake
No
No
Yes
No
Yes
Yes
 Smoking before operation
No
Yes
Yes
No
Yes
Yes
 Chronic steroid use
No
No
Yes
No
No
No
 Cancer
No
No
No
Yes
No
No
 Obstructive sleep apnoea
No
No
No
Yes
No
No
 Hypoalbuminemia
No
No
No
No
No
No
 Chemotherapy
No
No
No
No
Yes
Yes
 Diabetes mellitus
No
No
No
No
Yes
Yes
 Acidosis
No
No
No
No
Yes
No
 Obesity
No
No
No
No
Yes
Yes
 FiO2 > 0.35 (or > 4 L/min)
No
No
No
No
Yes
No
 Tachypnoea
No
No
No
No
Yes
No
 Sepsis
No
No
No
No
Yes
No
 Aspiration
No
No
No
No
Yes
No
 Shock
No
No
No
No
Yes
No
 High risk trauma
No
No
No
No
Yes
No
 BMI
No
No
No
No
Yes
No
 Amiodarone
No
No
No
No
Yes
Yes
 Statins
No
No
No
No
No
Yes
 ACE-I/ARB
No
No
No
No
No
Yes
 Sex
No
No
No
No
No
Yes
 Restrictive lung disease
No
No
No
No
No
Yes
 GERD
No
No
No
No
No
Yes
 Cirrhosis
No
No
No
No
No
Yes
Procedure dependent
 Elective or emergency procedure
Yes
Yes
Yes
Yes
No
No
 Duration of surgery
Yes
Yes
Yes
Yes
No
No
 Type of surgical procedure
Yes
Yes
Yes
No
Yes
Yes
 Type of anaesthesia
No
No
No
Yes
No
No
 Use of supraglottic device
No
No
No
Yes
No
No
 Desaturation
No
No
No
Yes
No
No
 Need of vasoactive drugs
No
No
No
Yes
No
No
 Mechanical ventilation characteristics
No
No
No
Yes
No
No
Validation
 Prospective external validation
Yes
No
No
Yes
No
Yes
ASA American Society of Anesthesiologists, BMI Body mass index, ACE-I Angiotensin converting enzyme inhibitors, ARB Angiotensin receptor blockers, GERD Gastro-esophageal reflux disease
A simpler stratification tool feasible at the bedside before emergency surgery is the early calculation of the SpO2/ FiO2 ratio within 6 h from hospital admission, which has shown to be independently correlated with ARDS development in patients at risk [20]. Several preventive strategies have been proposed to reduce the perioperative risk in patients undergoing non-urgent surgical procedures, such as smoking cessation and physical therapy [21]. However, these strategies cannot be applied to patients that require emergency procedures; therefore, risk stratification is essential in these patients. We believe and suggest that scores should be adopted and included in local hospital guidelines in the evaluation of the patient before surgical intervention to optimize the clinical and organizational pathways in the postoperative period.

Surgical procedure and timing

Emergency surgical procedures are by definition characterized by an elevated number of unpredictable factors that might precipitate patient’s conditions. Therefore, modifiable risk factors should be identified and managed appropriately, including timing and choice of interventions [22].
Several surgical procedures and techniques are at higher risk, such as open versus laparoscopic, upper abdominal incision, longer procedures and those requiring general anaesthesia and neuromuscular blockade [7, 17, 23]. In a large cohort of surgical patients, emergency procedures performed during night-time were independently associated with higher incidence of intraoperative adverse events and PPCs [24]: this might suggest that delaying interventions when feasible might improve surgical outcomes.
While the choice of surgical procedure and timing is typically perceived as an exclusive prerogative of the surgeon, we recommend that these factors should be discussed in team, possibly opting for less invasive and shorter duration procedures and procrastinating non-emergency procedures [25].

Intraoperative management

Anaesthesia strategies in patients at risk of developing ARDS

No clear evidence is available concerning the ability of specific anaesthesia techniques to prevent the development of postoperative ARDS.
In 2016, a meta-analysis reported a non-significant trend towards less PPCs and complications in patients undergoing volatile general anaesthesia for non-cardiac surgery, as compared with intravenous anaesthesia [26]. From a theoretical point of view, volatile agents can reduce pulmonary vasoconstriction, and carry a protective effect on ischaemia-reperfusion injury [27]. On the other hand, they can potentially reduce arterial oxygenation by causing myocardial depression and low cardiac output [28]. Therefore, we cannot conclude that volatile anaesthesia is associated with less PPC than intravenous anaesthesia.
The use of locoregional anaesthesia techniques is often advocated, based on the rationale that sparing sedative drugs avoids impairment of the respiratory function; however, this concept has been challenged in specific surgical populations [29]. Moreover, these techniques can rarely be used in emergency setting. Nonetheless, a potential beneficial effect on the incidence of postoperative pneumonia and respiratory failure has been shown when general anaesthesia plus neuraxial blockade techniques are used in conjunction, especially in thoracic, abdominal and lower-limb procedures and in patients with pre-existing pulmonary disease [30]. There is a rationale suggesting the use of a peripheral nerve block when possible, thus avoiding the use of general anaesthesia and opioid consumption. Therefore, PPC may reduce, however further studies are required to corroborate these data [31]. Phrenic nerve palsy and pneumothorax are a rare but important side effects of upper-limb locoregional approaches, thus limiting their use in in frail patients [32]. In short, we cannot conclude that regional anaesthesia may result in less complications than general anaesthesia [29]. In patients with established ARDS admitted to the ICU who require emergency surgery, the same sedative drugs used for sedation in the ICU can be maintained as well as mechanical ventilation strategies, increasing the dose of narcotics and analgesics during the surgical procedure [33].
We recommend careful choice of anaesthesia technique in all patients undergoing emergency surgery, avoiding general anaesthesia if possible.

Intubation for general anaesthesia

Patients with established ARDS often come to the operating room already intubated and mechanically ventilated. However, the anaesthesiologist might face the challenge of managing the airway of critically ill patients also in the operating room. The team must be prepared for gas exchange impairment during induction: the intubation procedure must be performed swiftly, with readily available second choice and emergency devices. Video-laryngoscope might offer some advantage as first-choice device, but requires specific training [34]. Haemodynamic impairment should also be expected in critically ill patients, therefore, invasive monitoring, fluids and vasoactive drugs should be readily available [35].
Preoxygenation with non-invasive positive pressure improves end-expiratory lung volume and gas-exchange, allowing more time for a safe airway management procedure [36]. Before intubation, a brief period of pre-oxygenation, using pressure support of 10 cmH2O and PEEP of 5 cmH2O, as initial parameters, have been suggested. Moreover, in the emergency setting, FiO2 levels dispensed to the patients during pre-oxygenation should be up to 100%, especially in those with impaired respiratory function [37]: in this setting, the potential harms of hyperoxia are largely overwhelmed by the advantages of increasing the time-to-desaturation [38]. In all patients, orotracheal intubation should be performed using an endotracheal tube of the largest possible diameter according to the gender and size of the patient, to decrease the resistance of the airway and favour secretions management [39]. Respiratory outcome may also be negatively influenced by inadequate airway secretion clearance and aspiration of pharyngeal or gastric secretions, especially in the emergency setting [40].

Intraoperative mechanical ventilation in patients with or at risk of ARDS

There is lack of evidence regarding the best ventilator settings in patients with or at risk of ARDS in the specific setting of emergency surgery. However, optimization of mechanical ventilation with the use of protective ventilation is important to minimize VILI and improve outcome in patients with ARDS [41] and those at risk of ARDS undergoing surgical procedures [42].
While tidal volume (VT) size reduction is a widely accepted strategy to reduce VILI in ARDS [43] and surgical [44] patients, other ventilation parameters are under debate. There are controversies concerning the use of high PEEP levels [45] to open the lungs based on findings of physiological [46] and clinical studies [47]. In fact, authors question the beneficial effects of lung recruitment in both ARDS patients [48] and those at risk of ARDS [49]. They suggested keeping lung resting if atelectasis is tolerated and oxygenation is kept under acceptable values.

Ventilation modes and spontaneous breathing

Volume- (VCV) or pressure-controlled (PCV) mode can be applied unrestrictedly in ARDS patients with no influence on outcome [50], and no clear advantage in surgical patients [42]. However, observational data concerning patients at risk of developing PPCs showed that, during surgery, VCV might offer more benefits than PCV [51]. Alternative modes of mechanical ventilation include airway pressure release ventilation and high frequency ventilation, but the lack of outcome data preclude a recommendation on their routine use [35]. While spontaneous breathing activity should be suppressed in severe ARDS, it might have a protective role in mild ARDS [52] and high risk of ARDS surgical patients.

Tidal volume and plateau pressure during surgery

Over the last years, the concept of protective mechanical ventilation-including the use of low VT to minimize barotrauma and lung injury and maintain low plateau pressure (Pplat), lower driving pressure (ΔP) with moderate levels of PEEP and the use of recruitment manoeuvres (RM) has gained particular attention, showing a positive effect on the reduction of PPCs as well as improvement outcome in ARDS patients [53] and those at risk of ARDS undergoing surgical procedures [44].
In patients with ARDS, it is recommended to maintain VT of 6 ml/kg predicted body weight (PBW) [53]. However, VT as low as 4–5 ml/kg, could be preferable if an adequate gas exchange is ensured, and does not increase the risk of atelectasis [54]. In fact, a small RCT showed that atelectasis do not increase with low tidal volumes and without PEEP during surgery [55]. On the other hand, a recent clinical trial comparing 4–6 ml/kg to 8–10 ml/kg PBW, and keeping a plateau pressure below 21 cmH2O found no benefit from lower VT, in terms of ventilator-free days, hospital stay and mortality in critically ill patients without ARDS [56]. Nonetheless, tidal volume is considered the main determinant of ventilator-induced lung injury and should be targeted to maintain plateau pressure < 30 cmH2O and low ΔP < 15 cmH2O. In patients with increased intra-abdominal pressure, higher values might be tolerated, correcting the upper thresholds as Pplat target, corrected = Pplattarget + (IAP – 13)/2 [57].
A recent experimental study in rats, investigating the impact of different VT levels and respiratory rates on lung function, found that VT was able to predict important increase in the alveolar inflammatory markers, and even maintaining low mechanical power, high VT resulted in VILI [58].
In surgical patients at risk of ARDS, higher thresholds of VT and lower ΔP are often considered acceptable compared to ARDS patients [42], but we recommend using the lowest pressures and volumes able to keep gas-exchange in a safe range.

Inspired fraction of oxygen

Inspired fraction of oxygen should aim to maintain SpO2 between 88 and 95% in ARDS [59] and above 92% in at risk of ARDS surgical patients [42]: higher thresholds might result in hyperoxia especially in at risk of ARDS patients, with potential detrimental effects on alveolar damage, endothelial inflammation and mitochondrial dysfunction through increasing oxidative stress and direct lung injury [60, 61]. If during surgery hypoxemia develops, FiO2 should be increased, followed by increase of PEEP and then stepwise recruitment manoeuvres. However, high oxygen levels during surgery can cause high risk of major respiratory complications.
Although further research on the effects of hyperoxia is needed, we suggest to target FiO2 levels to normoxaemia in all surgical patients undergoing emergency procedures [60].

PEEP titration in patients with or at risk of ARDS undergoing emergency surgery

Level of PEEP is another relevant component of lung protective ventilation. In patients with ARDS undergoing surgery, PEEP choice should be guided by the ARDS network low PEEP table [43], while latest clinical trials performed in at risk of ARDS surgical patients demonstrated that the application of low tidal volume (6–8 ml/kg) and low PEEP (< 2 cmH2O) reduce the risk of developing PPCs and of haemodynamic impairment [62]. No strategy for PEEP titration was demonstrated to be superior to the low PEEP ARDS network table, and experts recently made a recommendation for high PEEP (≥15 cmH2O) only in patients with moderate to severe ARDS, as rescue strategy [48, 53]. In this context, recruiting the alveoli de-recruits the capillaries. Thus, at higher PEEP hemodynamic is impaired and vasoactive drugs and/or more fluids are needed, which can promote further lung injury in patients at risk and worsen lung function in ARDS patients.
Patients with established ARDS previously admitted to the ICU should continue the protective ventilation received in the intensive care setting, a strategy now made feasible by modern anaesthesia machines [63]. Therefore, we suggest that PEEP should be considered as a tool to maintain oxygenation between 88 and 95%. We recommend using the minimal PEEP level ensuring adequate gas-exchange in all patients undergoing emergency surgery, considering higher PEEP levels only as rescue therapy in severe ARDS.

Recruitment manoeuvres

The effects of recruitment manoeuvres on clinical outcomes in patients with ARDS remain uncertain. Recruitment manoeuvres have received a conditional recommendation in patients with ARDS [53]; among them, stepwise manoeuvres are recommended [64]. However, the Alveolar Recruitment for ARDS trial (ART) comparing lung recruitment and titrated positive end-expiratory pressure compared with low PEEP in patients with ARDS showed an increased 28-day all-cause mortality in the maximal recruitment strategy [47]. In surgical patients without ARDS, recruitment manoeuvres reduced the incidence of PPCs only when combined with VT reduction [62, 65], and in a recent report in obese patients [66] their use performed by squeezing the anaesthesia bag was associated with an increased incidence of PPCs. However, during laparoscopic surgery alveolar recruitment manoeuvres followed by positive end-expiratory pressure improved lung function and reduced postoperative pain [67].
We do not recommend a routine use of recruitment manoeuvres in patients with and without ARDS undergoing emergency surgical procedures, considering them only as a rescue strategy in the presence of refractory gas-exchange impairment.

Haemodynamic and fluid management

In patients at risk of developing ARDS, maintenance of an adequate tissue perfusion often requires a huge amount of fluids. However, fluid overload and positive balance in patients with ARDS increase extravascular lung water level and mortality [68]. Moreover, blood products transfusions can further increase the risk of ARDS and worsen endothelial lung damage. A restrictive fluid strategy should be therefore applied with haemoglobin trigger for transfusion of > 7 g/dl [69]. Albumin can be used to reduce fluid leakage from the capillary into the alveolus mediated by increased intravascular oncotic pressure. Moreover, in a state of shock, vasopressor could be considered to optimize mean arterial pressure avoiding fluid overload [70], in order to maintain a mean arterial pressure value greater than 65–70 mmHg, that is essential in patients with shock to provide organ perfusion. However, in ARDS patients this might be challenging because of the haemodynamic instability which often occurs during anaesthesia in this subgroup of patients. In addition, haemodynamic instability can be related to increased hypoxic pulmonary vascular resistance or due to the pathology itself. Systemic inflammation can have a direct negative effect on cardiac contractility and function, thus resulting in left ventricle impairment. Right heart failure is common, and its function could be further impaired by the application of mechanical ventilation with high PEEP and intrathoracic pressure with reduced preload. Moreover, right heart dilation could impair left ventricular filling and preload. Left ventricular dysfunction further increase pulmonary capillary hydrostatic pressure and subsequent extravascular lung water extravasation [68].
We recommend using a conservative fluid strategy and conservative transfusion threshold in both ARDS patients and those at risk of ARDS during emergency surgery. Patients with ARDS frequently have hemodynamic impairment requiring specific monitoring to target fluid, vasoconstrictors and inotropes administration. While pulmonary artery catheter (PAC) is the gold standard, its use in the ICU has dramatically decreased over the last decades; the use in the OR is limited to very specific settings, such as cardiac surgery or surgery in patients already admitted to the ICU with a PAC previous placed. Although PAC has been almost abandoned both in OR and ICU, it remains an excellent instrument for the diagnosis and management of several critically illness like pulmonary hypertension, cardiogenic shock and unexplained dyspnea [71].
Modern minimally invasive monitoring systems have replaced its use, but have several limitations [72]. Basic monitoring requires an arterial line, while more critical patients might benefit from non-calibrated or calibrated pulse contour monitors, to estimate cardiac output and vascular resistances. Chest ultrasound can investigate both the lungs and the cardiac function, and is increasingly being used in the emergency setting [73], helping to discriminate between respiratory and cardiac causes of gas exchange impairment, and to detect pulmonary hypertension or right ventricular failure, often reported in ARDS patients [74].

Pharmacologic strategies

Regarding the pharmacological intraoperative management, neuromuscular blocking agents should be used cautiously in patients who can be extubated after surgery, because if not appropriately reversed could result in postoperative residual curarisation and increased incidence of PPCs [2]. Furthermore, Kirmeier E. et al. found that the association between the use of neuromuscular blocking agents and PPCs is probably dose-independent, and even a single dose such as that used for intubation could promote respiratory function impairment [23]. Avoidance or limited use of opioids is feasible in most surgical procedures, and might offer benefits in particular in patients at high risk but planned for extubation after surgery [75], in obese patients and those with suspected or confirmed obstructive sleep apnoea syndrome [76].

Postoperative management

Planned ICU admission is suggested after emergency surgery that is associated to higher risk of complications, but criteria are poorly standardised and planned ICU admission was not associated with better outcome in elective surgery [77]. While ICU admission is obvious for ARDS patients, criteria for planned or unplanned admission in subjects at risk of ARDS undergoing emergency surgery are less clear. Specific indications to ICU admission could be based on clinical reasoning, mechanical ventilation requirement, need for respiratory and cardiac monitoring, difficult glycaemic control, intraoperative surgical or anaesthetic complications and organ failure [78].
To decrease the risk of respiratory complications, there are several postoperative strategies that could be adopted: head-up or sitting position, encouragement of deep breathing exercises, early mobilization, intensive physiotherapy, incentive spirometry [79], airway toilette careful fluid management and an adequate opioid-sparing analgesia. However, high-quality evidence for these strategies is lacking in both elective and emergency surgery. Non-invasive positive pressure ventilation can be used to treat early mild ARDS, but its role as prophylactic measure in patients with previously healthy lungs at risk of ARDS is unclear [80].
Pulmonary infections and pneumonia are the most common cause of pulmonary ARDS [81]. Early recognition of underlying respiratory infections and pneumonia should include the identification of the causative pathogens, with eventually early empiric antibiotic therapy and subsequent de-escalation to directed therapy in patients with sepsis [82]. They may need intensive treatments that require the critical care setting.
When ARDS is established, it should be managed according to international guidelines, and while treating the underlying conditions, when identifiable. Continuous monitoring of vital parameters after surgery allows prompt identification of complications at their earlier stage, in particular pulse oximetry which is still underused [23].

Conclusions

ARDS is a life-threatening condition, which can occur in the perioperative period in the critically ill surgical patients. Early recognition and treatment are necessary in this context to reduce mortality and morbidity. Specific intraoperative anaesthesiologic management and in particular the use of lung protective ventilation are first line strategies to meet the goals of alveolar protection and avoid further lung damage. Preventive strategies including a careful risk stratification of the patients and preoperative optimization of the clinical conditions, can significantly reduce the occurrence of pulmonary complications and prevent the development of ARDS. Patients at high risk or already affected by ARDS should be managed in the intensive care unit in the postoperative phase.

Acknowledgements

None
Not applicable
Not applicable

Competing interests

Lorenzo Ball and Marcelo Gama De Abreu are members of the Editorial board
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Aakre BM, Efem RI, Wilson GA, Kor DJ, Eisenach JH. Postoperative acute respiratory distress syndrome in patients with previous exposure to bleomycin. Mayo Clin Proc. 2014;89:181–9.PubMedCrossRef Aakre BM, Efem RI, Wilson GA, Kor DJ, Eisenach JH. Postoperative acute respiratory distress syndrome in patients with previous exposure to bleomycin. Mayo Clin Proc. 2014;89:181–9.PubMedCrossRef
2.
Zurück zum Zitat Ball L, Battaglini D, Pelosi P. Postoperative respiratory disorders. Curr Opin Crit Care. 2016;22:379–85.PubMedCrossRef Ball L, Battaglini D, Pelosi P. Postoperative respiratory disorders. Curr Opin Crit Care. 2016;22:379–85.PubMedCrossRef
3.
Zurück zum Zitat The ARDS Definition Task Force, Ranieri V, Rubenfeld G, Thompson B, Ferguson N, Caldwell E, et al. ARDS Guidelines JAMA 2012-ARDS the Berlin definition. Jama. 2012;307:1. The ARDS Definition Task Force, Ranieri V, Rubenfeld G, Thompson B, Ferguson N, Caldwell E, et al. ARDS Guidelines JAMA 2012-ARDS the Berlin definition. Jama. 2012;307:1.
4.
Zurück zum Zitat Gattinoni L, Pelosi P, Pesenti A, Brazzi L, Vitale G, Moretto A, et al. CT scan in ARDS: clinical and physiopathological insights. Acta Anaesthesiol Scand. 1991;35:87–96.CrossRef Gattinoni L, Pelosi P, Pesenti A, Brazzi L, Vitale G, Moretto A, et al. CT scan in ARDS: clinical and physiopathological insights. Acta Anaesthesiol Scand. 1991;35:87–96.CrossRef
5.
Zurück zum Zitat Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome : a clinical review. Lancet. 2007;369:1553–65.PubMedCrossRef Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome : a clinical review. Lancet. 2007;369:1553–65.PubMedCrossRef
6.
Zurück zum Zitat Neto AS, Hemmes SNT, Barbas CSV, Beiderlinden M, Fernandez-bustamante A, Futier E, et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery : a systematic review and meta-analysis. Lancet Respir. 2014;2:1007–15.CrossRef Neto AS, Hemmes SNT, Barbas CSV, Beiderlinden M, Fernandez-bustamante A, Futier E, et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery : a systematic review and meta-analysis. Lancet Respir. 2014;2:1007–15.CrossRef
7.
Zurück zum Zitat Neto AS, da Costa LGV, Hemmes SNT, Canet J, Hedenstierna G, Jaber S, et al. The LAS VEGAS risk score for prediction of postoperative pulmonary complications: an observational study. Eur J Anaesthesiol. 2018;35:691–701.PubMedPubMedCentral Neto AS, da Costa LGV, Hemmes SNT, Canet J, Hedenstierna G, Jaber S, et al. The LAS VEGAS risk score for prediction of postoperative pulmonary complications: an observational study. Eur J Anaesthesiol. 2018;35:691–701.PubMedPubMedCentral
8.
Zurück zum Zitat Pickering BW, Dong Y, Ahmed A, Giri J, Kilickaya O, Gupta A, et al. The implementation of clinician designed , human-centered electronic medical record viewer in the intensive care unit : A pilot step-wedge cluster randomized trial. Int J Med Inform. 2015;84:299–307.PubMedCrossRef Pickering BW, Dong Y, Ahmed A, Giri J, Kilickaya O, Gupta A, et al. The implementation of clinician designed , human-centered electronic medical record viewer in the intensive care unit : A pilot step-wedge cluster randomized trial. Int J Med Inform. 2015;84:299–307.PubMedCrossRef
9.
Zurück zum Zitat Ahmed AH, Thongprayoon C, Schenck LA, Malinchoc M, Konvalinová A, Keegan MT, et al. Adverse in-hospital events are associated with increased in-hospital mortality and length of stay in patients with or at risk of acute respiratory distress syndrome. Mayo Clin Proc. 2015;90:321–8.PubMedCrossRef Ahmed AH, Thongprayoon C, Schenck LA, Malinchoc M, Konvalinová A, Keegan MT, et al. Adverse in-hospital events are associated with increased in-hospital mortality and length of stay in patients with or at risk of acute respiratory distress syndrome. Mayo Clin Proc. 2015;90:321–8.PubMedCrossRef
10.
Zurück zum Zitat Nightingale CE, Margarson MP, Shearer E, Redman WJ, Lucas DN, Cousin JM, et al. Peri-operative management of the obese surgical patient 2015. Anaesthesia. 2015;70:859–76.PubMedPubMedCentralCrossRef Nightingale CE, Margarson MP, Shearer E, Redman WJ, Lucas DN, Cousin JM, et al. Peri-operative management of the obese surgical patient 2015. Anaesthesia. 2015;70:859–76.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Eikermann M, Santer P, Pandit J, Dahan A. Recent advances in understanding and managing postoperative respiratory problems. F1000Res. 2019;18:1–9. Eikermann M, Santer P, Pandit J, Dahan A. Recent advances in understanding and managing postoperative respiratory problems. F1000Res. 2019;18:1–9.
12.
Zurück zum Zitat Ball L, Hemmes SNT, Serpa Neto A, Bluth T, Canet J, Hiesmayr M, et al. Intraoperative ventilation settings and their associations with postoperative pulmonary complications in obese patients. Br J Anaesth. 2018;121(4):899–908.PubMedCrossRef Ball L, Hemmes SNT, Serpa Neto A, Bluth T, Canet J, Hiesmayr M, et al. Intraoperative ventilation settings and their associations with postoperative pulmonary complications in obese patients. Br J Anaesth. 2018;121(4):899–908.PubMedCrossRef
13.
Zurück zum Zitat Ball L. Best Practice & Research Clinical Anaesthesiology Monitoring respiration : what the clinician needs to know. Best Pract Res Clin Anaesthesiol. 2013;27:209–23.PubMedCrossRef Ball L. Best Practice & Research Clinical Anaesthesiology Monitoring respiration : what the clinician needs to know. Best Pract Res Clin Anaesthesiol. 2013;27:209–23.PubMedCrossRef
14.
Zurück zum Zitat Schultz MJ, Hemmes SNT, Neto AS, Binnekade JM, Canet J, Hedenstierna G, et al. Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications: LAS VEGAS - an observational study in 29 countries. Eur J Anaesthesiol. 2017;34:492–507.CrossRef Schultz MJ, Hemmes SNT, Neto AS, Binnekade JM, Canet J, Hedenstierna G, et al. Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications: LAS VEGAS - an observational study in 29 countries. Eur J Anaesthesiol. 2017;34:492–507.CrossRef
15.
Zurück zum Zitat Kor DJ, Warner DO, Alsara A, Fernandez-Perez ER, Malinchoc M, Kashyap R, et al. Derivation and diagnostic accuracy of the surgical lung injury prediction model. Anesthesiology. 2011;115:117–28.PubMedCrossRef Kor DJ, Warner DO, Alsara A, Fernandez-Perez ER, Malinchoc M, Kashyap R, et al. Derivation and diagnostic accuracy of the surgical lung injury prediction model. Anesthesiology. 2011;115:117–28.PubMedCrossRef
16.
Zurück zum Zitat Bauman ZM, Gassner MY, Coughlin MA, Mahan M, Watras J. Lung injury prediction score is useful in predicting acute respiratory distress syndrome and mortality in surgical critical care patients. Crit Care Res Pract. 2015;2015:157408.PubMedPubMedCentral Bauman ZM, Gassner MY, Coughlin MA, Mahan M, Watras J. Lung injury prediction score is useful in predicting acute respiratory distress syndrome and mortality in surgical critical care patients. Crit Care Res Pract. 2015;2015:157408.PubMedPubMedCentral
17.
Zurück zum Zitat Canet J, Hardman J, Sabaté S, Langeron O, De Abreu MG, Gallart L, et al. PERISCOPE study: predicting post-operative pulmonary complications in Europe. Eur J Anaesthesiol. 2011;28:459–61.PubMedCrossRef Canet J, Hardman J, Sabaté S, Langeron O, De Abreu MG, Gallart L, et al. PERISCOPE study: predicting post-operative pulmonary complications in Europe. Eur J Anaesthesiol. 2011;28:459–61.PubMedCrossRef
18.
Zurück zum Zitat Mazo V, Sabaté S, Canet J, Gallart L, De Abreu MG, Belda J, et al. Prospective external validation of a predictive score for postoperative pulmonary complications. Anesthesiology. 2014;121:219–31.PubMedCrossRef Mazo V, Sabaté S, Canet J, Gallart L, De Abreu MG, Belda J, et al. Prospective external validation of a predictive score for postoperative pulmonary complications. Anesthesiology. 2014;121:219–31.PubMedCrossRef
19.
Zurück zum Zitat Arozullah AM, Khuri SF, Henderson WG, Daley J. Development and validation of a multifactorial risk index for predicting postoperative pneumonia after major noncardiac surgery. Ann Intern Med. 2001;135:847–57.PubMedCrossRef Arozullah AM, Khuri SF, Henderson WG, Daley J. Development and validation of a multifactorial risk index for predicting postoperative pneumonia after major noncardiac surgery. Ann Intern Med. 2001;135:847–57.PubMedCrossRef
20.
Zurück zum Zitat Festic E, Banscal V, Kor DJ, Gajic O. US critical illness and injury trials group: lung injury prevention study investigators (USCIITG–LIPS). SpO 2 /FiO 2 ratio on hospital admission is an Indicator of early acute respiratory distress syndrome development among patients at risk. J Intensive Care Med. 2015;30:209–16.PubMedCrossRef Festic E, Banscal V, Kor DJ, Gajic O. US critical illness and injury trials group: lung injury prevention study investigators (USCIITG–LIPS). SpO 2 /FiO 2 ratio on hospital admission is an Indicator of early acute respiratory distress syndrome development among patients at risk. J Intensive Care Med. 2015;30:209–16.PubMedCrossRef
21.
Zurück zum Zitat Boden I, Skinner EH, Browning L, Reeve J, Anderson L, Hill C, et al. Preoperative physiotherapy for the prevention of respiratory complications after upper abdominal surgery: pragmatic, double blinded, multicentre randomised controlled trial. BMJ. 2018;360:j5916.PubMedPubMedCentralCrossRef Boden I, Skinner EH, Browning L, Reeve J, Anderson L, Hill C, et al. Preoperative physiotherapy for the prevention of respiratory complications after upper abdominal surgery: pragmatic, double blinded, multicentre randomised controlled trial. BMJ. 2018;360:j5916.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Mullen MG, Michaels AD, Mehaffey JH, Guidry CA, Turrentine FE, Hedrick TL, et al. Risk associated with complications and mortality after urgent surgery vs elective and emergency surgery: implications for defining “quality” and reporting outcomes for urgent surgery. JAMA Surg. 2017;152:768–74.PubMedPubMedCentralCrossRef Mullen MG, Michaels AD, Mehaffey JH, Guidry CA, Turrentine FE, Hedrick TL, et al. Risk associated with complications and mortality after urgent surgery vs elective and emergency surgery: implications for defining “quality” and reporting outcomes for urgent surgery. JAMA Surg. 2017;152:768–74.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Kirmeier E, Eriksson LI, Lewald H, Jonsson Fagerlund M, Hoeft A, Hollmann M, et al. Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): a multicentre, prospective observational study. Lancet Respir Med. 2018;7(2):129–40.PubMedCrossRef Kirmeier E, Eriksson LI, Lewald H, Jonsson Fagerlund M, Hoeft A, Hollmann M, et al. Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): a multicentre, prospective observational study. Lancet Respir Med. 2018;7(2):129–40.PubMedCrossRef
24.
Zurück zum Zitat Cortegiani A, Gregoretti C, Neto AS, Hemmes SNT, Ball L, Canet J, et al. Association between night-time surgery and occurrence of intraoperative adverse events and postoperative pulmonary complications. Br J Anaesth. 2019;122:361–9.PubMedCrossRef Cortegiani A, Gregoretti C, Neto AS, Hemmes SNT, Ball L, Canet J, et al. Association between night-time surgery and occurrence of intraoperative adverse events and postoperative pulmonary complications. Br J Anaesth. 2019;122:361–9.PubMedCrossRef
25.
Zurück zum Zitat Pelosi P, Ball L, Schultz MJ. How to optimize critical care resources in surgical patients : intensive care without physical borders. Curr Opin Crit Care. 2018;6:581–7.CrossRef Pelosi P, Ball L, Schultz MJ. How to optimize critical care resources in surgical patients : intensive care without physical borders. Curr Opin Crit Care. 2018;6:581–7.CrossRef
26.
Zurück zum Zitat Uhlig C, Bluth T, Schwarz K, Deckert S, Heinrich L, De Hert S, et al. Effects of volatile anesthetics on mortality and postoperative pulmonary and other complications in patients undergoing surgery. Anesthesiology. 2016;124:1230–45.PubMedCrossRef Uhlig C, Bluth T, Schwarz K, Deckert S, Heinrich L, De Hert S, et al. Effects of volatile anesthetics on mortality and postoperative pulmonary and other complications in patients undergoing surgery. Anesthesiology. 2016;124:1230–45.PubMedCrossRef
27.
Zurück zum Zitat Erturk E. Ischemia-reperfusion injury and volatile anesthetics. Biomed Res Int. 2014;2014. Erturk E. Ischemia-reperfusion injury and volatile anesthetics. Biomed Res Int. 2014;2014.
28.
Zurück zum Zitat Fujinaga T, Nakamura T, Fukuse T, Chen F, Zhang J, Ueda S, et al. Isoflurane inhalation after circulatory arrest protects against warm ischemia reperfusion injury of the lungs. Transplantation. 2006;82:1168–74.PubMedCrossRef Fujinaga T, Nakamura T, Fukuse T, Chen F, Zhang J, Ueda S, et al. Isoflurane inhalation after circulatory arrest protects against warm ischemia reperfusion injury of the lungs. Transplantation. 2006;82:1168–74.PubMedCrossRef
29.
Zurück zum Zitat Macfarlane AJR, Prasad GA, Chan VWS, Brull R. Does regional anaesthesia improve outcome after total hip arthroplasty ? A systematic review. Br J Anaesth. 2009;103:335–45.PubMedCrossRef Macfarlane AJR, Prasad GA, Chan VWS, Brull R. Does regional anaesthesia improve outcome after total hip arthroplasty ? A systematic review. Br J Anaesth. 2009;103:335–45.PubMedCrossRef
30.
Zurück zum Zitat Pöpping DM, Elia N, Marret E, Remy C, Tramèr MR. Protective effects of epidural analgesia on pulmonary complications after abdominal and thoracic surgery: a meta-analysis. Arch Surg. 2008;143:990–9.PubMedCrossRef Pöpping DM, Elia N, Marret E, Remy C, Tramèr MR. Protective effects of epidural analgesia on pulmonary complications after abdominal and thoracic surgery: a meta-analysis. Arch Surg. 2008;143:990–9.PubMedCrossRef
31.
32.
33.
Zurück zum Zitat Van Woerden G, Van Den Brand CL, Den Hartog CF, Idenburg FJ, Grootendorst DC, Van Der Linden MC. Increased analgesia administration in emergency medicine after implementation of revised guidelines. Int J Emerg Med. 2016;9:4.PubMedPubMedCentralCrossRef Van Woerden G, Van Den Brand CL, Den Hartog CF, Idenburg FJ, Grootendorst DC, Van Der Linden MC. Increased analgesia administration in emergency medicine after implementation of revised guidelines. Int J Emerg Med. 2016;9:4.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Lewis SR, Butler AR, Parker J, Cook TM, Smith AF. Videolaryngoscopy versus direct laryngoscopy for adult patients requiring tracheal intubation. Cochrane Database Syst Rev. 2016;2016:CD011136.PubMedCentral Lewis SR, Butler AR, Parker J, Cook TM, Smith AF. Videolaryngoscopy versus direct laryngoscopy for adult patients requiring tracheal intubation. Cochrane Database Syst Rev. 2016;2016:CD011136.PubMedCentral
35.
Zurück zum Zitat Michard F, Giglio MT, Brienza N. Perioperative goal-directed therapy with uncalibrated pulse contour methods: impact on fluid management and postoperative outcome. Br J Anaesth. 2017;119:22–30.PubMedCrossRef Michard F, Giglio MT, Brienza N. Perioperative goal-directed therapy with uncalibrated pulse contour methods: impact on fluid management and postoperative outcome. Br J Anaesth. 2017;119:22–30.PubMedCrossRef
36.
Zurück zum Zitat Futier E, Constantin JM, Pelosi P, Chanques G, Massone A, Petit A, et al. Noninvasive ventilation and alveolar recruitment maneuver improve respiratory function during and after intubation of morbidly obese patients: a randomized controlled study. Anesthesiology. 2011;114:1354–63.PubMedCrossRef Futier E, Constantin JM, Pelosi P, Chanques G, Massone A, Petit A, et al. Noninvasive ventilation and alveolar recruitment maneuver improve respiratory function during and after intubation of morbidly obese patients: a randomized controlled study. Anesthesiology. 2011;114:1354–63.PubMedCrossRef
37.
Zurück zum Zitat Wetterslev J, Meyhoff CS, Jørgensen LN, Gluud C, Lindschou J, Rasmussen LS. The effects of high perioperative inspiratory oxygen fraction for adult surgical patients. In: Cochrane database of systematic reviews. Wiley: Chichester, UK; 2015.CrossRef Wetterslev J, Meyhoff CS, Jørgensen LN, Gluud C, Lindschou J, Rasmussen LS. The effects of high perioperative inspiratory oxygen fraction for adult surgical patients. In: Cochrane database of systematic reviews. Wiley: Chichester, UK; 2015.CrossRef
38.
Zurück zum Zitat De Jong A, Futier E, Millot A, Coisel Y, Jung B, Chanques G, et al. How to preoxygenate in operative room: Healthy subjects and situations “at risk”. Ann Fr Anesth Reanim. 2014;33:453–6.CrossRef De Jong A, Futier E, Millot A, Coisel Y, Jung B, Chanques G, et al. How to preoxygenate in operative room: Healthy subjects and situations “at risk”. Ann Fr Anesth Reanim. 2014;33:453–6.CrossRef
39.
Zurück zum Zitat Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–16.PubMedCrossRef Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–16.PubMedCrossRef
40.
41.
Zurück zum Zitat Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, et al. An official American Thoracic Society/European society of intensive care medicine/society of critical care medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195:1253–63.PubMedCrossRef Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, et al. An official American Thoracic Society/European society of intensive care medicine/society of critical care medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195:1253–63.PubMedCrossRef
42.
Zurück zum Zitat Ball L, Costantino F, Orefice G, Chandrapatham K, Pelosi P. Intraoperative mechanical ventilation: state of the art. Minerva Anestesiol. 2017;83:1075–88.PubMed Ball L, Costantino F, Orefice G, Chandrapatham K, Pelosi P. Intraoperative mechanical ventilation: state of the art. Minerva Anestesiol. 2017;83:1075–88.PubMed
43.
Zurück zum Zitat Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.CrossRef Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.CrossRef
44.
Zurück zum Zitat Serpa Neto A, Hemmes SNT, Barbas CSV, Beiderlinden M, Biehl M, Binnekade JM, et al. Protective versus conventional ventilation for surgery. Anesthesiology. 2015;123:66–78.PubMedCrossRef Serpa Neto A, Hemmes SNT, Barbas CSV, Beiderlinden M, Biehl M, Binnekade JM, et al. Protective versus conventional ventilation for surgery. Anesthesiology. 2015;123:66–78.PubMedCrossRef
45.
46.
Zurück zum Zitat Cressoni M, Chiumello D, Algieri I, Brioni M, Chiurazzi C, Colombo AA, et al. Opening pressures and atelectrauma in acute respiratory distress syndrome. Intensive Care Med. 2017;43:603–11.PubMedCrossRef Cressoni M, Chiumello D, Algieri I, Brioni M, Chiurazzi C, Colombo AA, et al. Opening pressures and atelectrauma in acute respiratory distress syndrome. Intensive Care Med. 2017;43:603–11.PubMedCrossRef
47.
Zurück zum Zitat Cavalcanti AB, Suzumura ÉA, Laranjeira LN, De Moraes PD, Damiani LP, Guimarães HP, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome - a randomized clinical trial. JAMA. 2017;318:1335–45.PubMedPubMedCentralCrossRef Cavalcanti AB, Suzumura ÉA, Laranjeira LN, De Moraes PD, Damiani LP, Guimarães HP, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome - a randomized clinical trial. JAMA. 2017;318:1335–45.PubMedPubMedCentralCrossRef
48.
49.
Zurück zum Zitat Pelosi P, Ball L, de Abreu MG, Rocco PRM. General anesthesia closes the lungs: keep them resting. Turk Anesteziyoloji ve Reanimasyon Dern Derg. 2016;44:163–4. Pelosi P, Ball L, de Abreu MG, Rocco PRM. General anesthesia closes the lungs: keep them resting. Turk Anesteziyoloji ve Reanimasyon Dern Derg. 2016;44:163–4.
50.
Zurück zum Zitat Chacko B, Peter JV, Tharyan P, John G, Jeyaseelan L. Pressure-controlled versus volume-controlled ventilation for acute respiratory failure due to acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Cochrane Database Syst Rev. 2015;1:CD008807.PubMed Chacko B, Peter JV, Tharyan P, John G, Jeyaseelan L. Pressure-controlled versus volume-controlled ventilation for acute respiratory failure due to acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Cochrane Database Syst Rev. 2015;1:CD008807.PubMed
51.
Zurück zum Zitat Bagchi A, Rudolph MI, Ng PY, Timm FP, Long DR, Shaefi S, et al. The association of postoperative pulmonary complications in 109,360 patients with pressure-controlled or volume-controlled ventilation. Anaesthesia. 2017;72:1334–43.PubMedCrossRefPubMedCentral Bagchi A, Rudolph MI, Ng PY, Timm FP, Long DR, Shaefi S, et al. The association of postoperative pulmonary complications in 109,360 patients with pressure-controlled or volume-controlled ventilation. Anaesthesia. 2017;72:1334–43.PubMedCrossRefPubMedCentral
52.
Zurück zum Zitat Gama de Abreu M, Güldner A, Pelosi P. Spontaneous breathing activity in acute lung injury and acute respiratory distress syndrome. Curr Opin Anaesthesiol. 2012;25:148–55.PubMedCrossRef Gama de Abreu M, Güldner A, Pelosi P. Spontaneous breathing activity in acute lung injury and acute respiratory distress syndrome. Curr Opin Anaesthesiol. 2012;25:148–55.PubMedCrossRef
53.
Zurück zum Zitat Del Sorbo L, Goligher EC, McAuley DF, Rubenfeld GD, Brochard LJ, Gattinoni L, et al. Mechanical ventilation in adults with acute respiratory distress syndrome. Summary of the experimental evidence for the clinical practice guideline. Ann Am Thorac Soc. 2017;14(Supplement_4):S261–70.PubMedCrossRef Del Sorbo L, Goligher EC, McAuley DF, Rubenfeld GD, Brochard LJ, Gattinoni L, et al. Mechanical ventilation in adults with acute respiratory distress syndrome. Summary of the experimental evidence for the clinical practice guideline. Ann Am Thorac Soc. 2017;14(Supplement_4):S261–70.PubMedCrossRef
54.
Zurück zum Zitat Güldner A, Kiss T, Serpa Neto A, Hemmes SNT, Canet J, Spieth PM, et al. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications. Anesthesiology. 2015;123:692–713.PubMedCrossRef Güldner A, Kiss T, Serpa Neto A, Hemmes SNT, Canet J, Spieth PM, et al. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications. Anesthesiology. 2015;123:692–713.PubMedCrossRef
55.
Zurück zum Zitat Cai H, Gong H, Zhang L, Wang Y, Tian Y. Effect of low tidal volume ventilation on atelectasis in patients during general anesthesia: a computed tomographic scan. J Clin Anesth. 2007;19:125–9.PubMedCrossRef Cai H, Gong H, Zhang L, Wang Y, Tian Y. Effect of low tidal volume ventilation on atelectasis in patients during general anesthesia: a computed tomographic scan. J Clin Anesth. 2007;19:125–9.PubMedCrossRef
56.
Zurück zum Zitat Simonis FD, Serpa Neto A, Binnekade JM, Braber A, Bruin KCM, Determann RM, et al. Effect of a low vs intermediate tidal volume strategy on ventilator-free days in intensive care unit patients without ARDS. JAMA. 2018;320:1872.PubMedPubMedCentralCrossRef Simonis FD, Serpa Neto A, Binnekade JM, Braber A, Bruin KCM, Determann RM, et al. Effect of a low vs intermediate tidal volume strategy on ventilator-free days in intensive care unit patients without ARDS. JAMA. 2018;320:1872.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Pelosi P, Quintel M, Malbrain M. Effect of intra-abdominal pressure on respiratory mechanics. Acta Clin Belg. 2007;62(Suppl 1):78–88.PubMedCrossRef Pelosi P, Quintel M, Malbrain M. Effect of intra-abdominal pressure on respiratory mechanics. Acta Clin Belg. 2007;62(Suppl 1):78–88.PubMedCrossRef
58.
Zurück zum Zitat Moraes L, Silva PL, Thompson A, Santos CL, Santos RS, Fernandes MVS, et al. Impact of different tidal volume levels at low mechanical power on ventilator-induced lung injury in rats. Front Physiol. 2018;9:318.PubMedPubMedCentralCrossRef Moraes L, Silva PL, Thompson A, Santos CL, Santos RS, Fernandes MVS, et al. Impact of different tidal volume levels at low mechanical power on ventilator-induced lung injury in rats. Front Physiol. 2018;9:318.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Travis WD, Costabel U, Hansell DM, King TE, Lynch DA, Nicholson AG, et al. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 2013;188:733–48.PubMedPubMedCentralCrossRef Travis WD, Costabel U, Hansell DM, King TE, Lynch DA, Nicholson AG, et al. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 2013;188:733–48.PubMedPubMedCentralCrossRef
60.
61.
Zurück zum Zitat Staehr-Rye AK, Meyhoff CS, Scheffenbichler FT, Vidal Melo MF, Gätke MR, Walsh JL, et al. High intraoperative inspiratory oxygen fraction and risk of major respiratory complication. Br J Anaesth. 2017;1:140–9.CrossRef Staehr-Rye AK, Meyhoff CS, Scheffenbichler FT, Vidal Melo MF, Gätke MR, Walsh JL, et al. High intraoperative inspiratory oxygen fraction and risk of major respiratory complication. Br J Anaesth. 2017;1:140–9.CrossRef
62.
Zurück zum Zitat PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology, SNT H, Gama de Abreu M, Pelosi P, Schultz MJ. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet. 2014;384:495–503.CrossRef PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology, SNT H, Gama de Abreu M, Pelosi P, Schultz MJ. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet. 2014;384:495–503.CrossRef
63.
Zurück zum Zitat Ball L, Dameri M, Pelosi P. Modes of mechanical ventilation for the operating room. Best Pract Res Clin Anaesthesiol. 2015;29:285–99.PubMedCrossRef Ball L, Dameri M, Pelosi P. Modes of mechanical ventilation for the operating room. Best Pract Res Clin Anaesthesiol. 2015;29:285–99.PubMedCrossRef
64.
Zurück zum Zitat Santos RS, Silva PL, Pelosi P, Rocco PR. Recruitment maneuvers in acute respiratory distress syndrome: the safe way is the best way. World J Crit Care Med. 2015;4:278.PubMedPubMedCentralCrossRef Santos RS, Silva PL, Pelosi P, Rocco PR. Recruitment maneuvers in acute respiratory distress syndrome: the safe way is the best way. World J Crit Care Med. 2015;4:278.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Futier E, Constantin J-M, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369:428–37.PubMedCrossRef Futier E, Constantin J-M, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369:428–37.PubMedCrossRef
66.
Zurück zum Zitat Ball L, Hemmes SNT, Neto AS, Bluth T, Canet J, Hiesmayr M, et al. Intraoperative ventilation settings and their associations with postoperative pulmonary complications in obese patients investigators 14, the PROVE Network 14, the Clinical Trial Network of the; 2018. p. 899–908. Ball L, Hemmes SNT, Neto AS, Bluth T, Canet J, Hiesmayr M, et al. Intraoperative ventilation settings and their associations with postoperative pulmonary complications in obese patients investigators 14, the PROVE Network 14, the Clinical Trial Network of the; 2018. p. 899–908.
67.
Zurück zum Zitat Pasquier EK, Andersson E, Ph D. Pulmonary recruitment maneuver reduces pain after laparoscopic bariatric surgery: a randomized controlled clinical trial. Surg Obes Relat Dis. 2017:1–7. Pasquier EK, Andersson E, Ph D. Pulmonary recruitment maneuver reduces pain after laparoscopic bariatric surgery: a randomized controlled clinical trial. Surg Obes Relat Dis. 2017:1–7.
68.
69.
Zurück zum Zitat Serpa Neto A, Juffermans NP, Hemmes SNT, Barbas CSV, Beiderlinden M, Biehl M, et al. Interaction between peri-operative blood transfusion, tidal volume, airway pressure and postoperative ARDS: an individual patient data meta-analysis. Ann Transl Med. 2018;6:23.PubMedPubMedCentralCrossRef Serpa Neto A, Juffermans NP, Hemmes SNT, Barbas CSV, Beiderlinden M, Biehl M, et al. Interaction between peri-operative blood transfusion, tidal volume, airway pressure and postoperative ARDS: an individual patient data meta-analysis. Ann Transl Med. 2018;6:23.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Uhlig C, Silva PL, Deckert S, Schmitt J, de Abreu MG. Albumin versus crystalloid solutions in patients with the acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care. 2014;18:R10.PubMedPubMedCentralCrossRef Uhlig C, Silva PL, Deckert S, Schmitt J, de Abreu MG. Albumin versus crystalloid solutions in patients with the acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care. 2014;18:R10.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Rapoport J, Teres D, Steingrub J, Higgins T, McGee W, Lemeshow S. Patient characteristics and ICU organizational factors that influence frequency of pulmonary artery catheterization. JAMA. 2000;283:2559–67.PubMedCrossRef Rapoport J, Teres D, Steingrub J, Higgins T, McGee W, Lemeshow S. Patient characteristics and ICU organizational factors that influence frequency of pulmonary artery catheterization. JAMA. 2000;283:2559–67.PubMedCrossRef
72.
Zurück zum Zitat Watson X, Cecconi M. Haemodynamic monitoring in the peri-operative period: the past, the present and the future. Anaesthesia. 2017;72:7–15.PubMedCrossRef Watson X, Cecconi M. Haemodynamic monitoring in the peri-operative period: the past, the present and the future. Anaesthesia. 2017;72:7–15.PubMedCrossRef
73.
74.
Zurück zum Zitat Price S, Platz E, Cullen L, Tavazzi G, Christ M, Cowie MR, et al. Expert consensus document: echocardiography and lung ultrasonography for the assessment and management of acute heart failure. Nat Rev Cardiol. 2017;14:427–40.PubMedPubMedCentralCrossRef Price S, Platz E, Cullen L, Tavazzi G, Christ M, Cowie MR, et al. Expert consensus document: echocardiography and lung ultrasonography for the assessment and management of acute heart failure. Nat Rev Cardiol. 2017;14:427–40.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Sultana A, Torres D, Schumann R. Special indications for opioid free Anaesthesia and analgesia, patient and procedure related: including obesity, sleep apnoea, chronic obstructive pulmonary disease, complex regional pain syndromes, opioid addiction and cancer surgery. Best Pract Res Clin Anaesthesiol. 2017;31:547–60.PubMedCrossRef Sultana A, Torres D, Schumann R. Special indications for opioid free Anaesthesia and analgesia, patient and procedure related: including obesity, sleep apnoea, chronic obstructive pulmonary disease, complex regional pain syndromes, opioid addiction and cancer surgery. Best Pract Res Clin Anaesthesiol. 2017;31:547–60.PubMedCrossRef
76.
Zurück zum Zitat Beloeil H, Laviolle B, Menard C, Paugam-Burtz C, Garot M, Asehnoune K, et al. POFA trial study protocol: a multicentre, double-blind, randomised, controlled clinical trial comparing opioid-free versus opioid anaesthesia on postoperative opioid-related adverse events after major or intermediate non-cardiac surgery. BMJ Open. 2018;8:e020873.PubMedPubMedCentralCrossRef Beloeil H, Laviolle B, Menard C, Paugam-Burtz C, Garot M, Asehnoune K, et al. POFA trial study protocol: a multicentre, double-blind, randomised, controlled clinical trial comparing opioid-free versus opioid anaesthesia on postoperative opioid-related adverse events after major or intermediate non-cardiac surgery. BMJ Open. 2018;8:e020873.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Kahan BC, Koulenti D, Arvaniti K, Beavis V, Campbell D, Chan M, et al. Critical care admission following elective surgery was not associated with survival benefit: prospective analysis of data from 27 countries. Intensive Care Med. 2017;43:971–9.PubMedCrossRef Kahan BC, Koulenti D, Arvaniti K, Beavis V, Campbell D, Chan M, et al. Critical care admission following elective surgery was not associated with survival benefit: prospective analysis of data from 27 countries. Intensive Care Med. 2017;43:971–9.PubMedCrossRef
78.
Zurück zum Zitat Wang D, Carrano FM, Fisichella PM, Desiato V, Newman E, Berman R, et al. A quest for optimization of postoperative triage after major surgery. J Laparoendosc Adv Surg Tech. 2019;29:203–5.CrossRef Wang D, Carrano FM, Fisichella PM, Desiato V, Newman E, Berman R, et al. A quest for optimization of postoperative triage after major surgery. J Laparoendosc Adv Surg Tech. 2019;29:203–5.CrossRef
79.
Zurück zum Zitat do Nascimento Junior P, NSP M, Andrade S, MMF G, Braz LG, El Dib R. Incentive spirometry for prevention of postoperative pulmonary complications in upper abdominal surgery. Cochrane Database Syst Rev. 2014;2014:CD006058.PubMedCentral do Nascimento Junior P, NSP M, Andrade S, MMF G, Braz LG, El Dib R. Incentive spirometry for prevention of postoperative pulmonary complications in upper abdominal surgery. Cochrane Database Syst Rev. 2014;2014:CD006058.PubMedCentral
80.
Zurück zum Zitat Ireland CJ, Chapman TM, Mathew SF, Herbison GP, Zacharias M. Continuous positive airway pressure (CPAP) during the postoperative period for prevention of postoperative morbidity and mortality following major abdominal surgery. Cochrane Database Syst Rev. 2014;2014:CD008930.PubMedCentral Ireland CJ, Chapman TM, Mathew SF, Herbison GP, Zacharias M. Continuous positive airway pressure (CPAP) during the postoperative period for prevention of postoperative morbidity and mortality following major abdominal surgery. Cochrane Database Syst Rev. 2014;2014:CD008930.PubMedCentral
82.
Zurück zum Zitat Torres A, Niederman MS, Chastre J, Ewig S, Fernandez-Vandellos P, Hanberger H, et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia. Eur Respir J. 2017;50:1700582.PubMedCrossRef Torres A, Niederman MS, Chastre J, Ewig S, Fernandez-Vandellos P, Hanberger H, et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia. Eur Respir J. 2017;50:1700582.PubMedCrossRef
83.
Zurück zum Zitat Gajic O, Dabbagh O, Park PK, Adesanya A, Chang SY, Hou P, et al. Early Identification of Patients at Risk of Acute Lung Injury. Am J Respir Crit Care Med. 2011;183:462–70.PubMedCrossRef Gajic O, Dabbagh O, Park PK, Adesanya A, Chang SY, Hou P, et al. Early Identification of Patients at Risk of Acute Lung Injury. Am J Respir Crit Care Med. 2011;183:462–70.PubMedCrossRef
84.
Zurück zum Zitat Gupta H, Gupta PK, Fang X, Miller WJ, Cemaj S, Forse RA, Morrow LE. Development and Validation of a Risk Calculator Predicting Postoperative Respiratory Failure. Chest. 2011;140(5):1207–15.PubMedCrossRef Gupta H, Gupta PK, Fang X, Miller WJ, Cemaj S, Forse RA, Morrow LE. Development and Validation of a Risk Calculator Predicting Postoperative Respiratory Failure. Chest. 2011;140(5):1207–15.PubMedCrossRef
Metadaten
Titel
Perioperative anaesthetic management of patients with or at risk of acute distress respiratory syndrome undergoing emergency surgery
verfasst von
Denise Battaglini
Chiara Robba
Patricia Rieken Macêdo Rocco
Marcelo Gama De Abreu
Paolo Pelosi
Lorenzo Ball
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Anesthesiology / Ausgabe 1/2019
Elektronische ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-019-0804-9

Weitere Artikel der Ausgabe 1/2019

BMC Anesthesiology 1/2019 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.