Skip to main content
Erschienen in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01.12.2019 | Research article

The impact of peppermint oil on the irritable bowel syndrome: a meta-analysis of the pooled clinical data

verfasst von: N. Alammar, L. Wang, B. Saberi, J. Nanavati, G. Holtmann, R. T. Shinohara, G. E. Mullin

Erschienen in: BMC Complementary Medicine and Therapies | Ausgabe 1/2019

Abstract

Background

Peppermint oil (PO) has intrinsic properties that may benefit patients with irritable bowel syndrome (IBS) symptoms. The study objective was to determine the effect of peppermint oil in the treatment of the IBS.

Methods

We systematically searched MEDLINE (PubMed), Cochrane Central Register of Controlled Trials (Cochrane CENTRAL), ClinicalTrials.gov, EMBASE (Ovid), and Web of Science for randomized controlled trials (RCTs) of PO for IBS. We appraised the eligible studies by the Cochrane risk of bias tool. We performed random-effects meta-analysis on primary outcomes including global improvement in IBS symptoms and abdominal pain. A PRISMA-compliant study protocol is registered in PROSPERO Register [2016, CRD42016050917].

Results

Twelve randomized trials with 835 patients were included. For global symptom improvement, the risk ratio (RR) from seven RCTs for the effect of PO (n = 253) versus placebo (n = 254) on global symptoms was 2.39 [95% confidence interval (CI): 1.93, 2.97], I2 = 0%, z = 7.93 (p < 0.00001). Regarding abdominal pain, the RR from six RCTs for the effect of PO (n = 278) versus placebo (n = 278) was 1.78 [95% CI: 1.43, 2.20], I2 = 0%, z = 5.23 (p < 0.00001). Overall, there were no differences in the reported adverse effects: PO (32 events, 344 total, 9.3%) versus placebo (20 events, 327 total, 6.1%) for eight RCTs; RR 1.40 [95% CI: 0.87, 2.26] I2 = 0%, z = 1.39 (p = 0.16). The number needed to treat with PO to prevent one patient from having persistent symptoms was three for global symptoms and four for abdominal pain.

Conclusions

In the most comprehensive meta-analysis to date, PO was shown to be a safe and effective therapy for pain and global symptoms in adults with IBS.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12906-018-2409-0) contains supplementary material, which is available to authorized users.
Abkürzungen
CI
Confidence interval
EPO
Enteric-coated peppermint oil
FODMAPs
Fermentable oligo-, di-, and monosaccharides and polyols
IBS
Irritable bowel syndrome
IBS-C
Irritable bowel syndrome: constipation predominant
IBS-D
Irritable bowel syndrome: diarrhea predominant
IBS-M
Irritable bowel syndrome: mixed
IBS-U
Irritable bowel syndrome: undetermined
NNT
Number needed to treat
PO
Peppermint oil
RCTs
Randomized clinical trials
RR
Risk ratio
TISS
Total IBS symptom score

Background

The irritable bowel syndrome (IBS) is a chronic, functional gastrointestinal syndrome characterized by relapsing abdominal pain and altered bowel habits, with either predominant symptoms of diarrhea (IBS-D), constipation (IBS-C), both (IBS-M), or undetermined (IBS-U), and is categorized according to the Rome IV criteria [1]. As a common digestive tract disorder, IBS affects an estimated 5–15% of Western populations [2]. Lovell and Ford conducted a meta-analysis of the world’s literature and reported that, on a global scale, IBS is seen predominantly in females, and the age of onset is typically under 50 years-of-age [3]. In their research, Lovell and Ford found the global prevalence of IBS to be 11.2% (95% confidence interval [CI], 9.8–12.8%) [3]. IBS accounts for a significant number of annual visits to primary care physicians, health-care utilization, quality of life, and adverse economics owing to absenteeism from work [4].
The pathophysiology of IBS is complex and involves an interaction of various factors, which includes, but is not limited to, genetic predisposition, gut-brain axis, visceral sensitivity, gastrointestinal motility, gut dysbiosis, neurotransmitters, food reactions, intestinal permeability, bile acids, inflammatory mediators, early-life stressors, psychosocial maladaptation, and somatization, among others [5]. IBS patients with mild and intermittent symptoms usually benefit from lifestyle and dietary modification, which includes a diet low in fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) [6]; and in some cases, lactose and gluten avoidance [7]. Smooth muscle relaxants and antispasmodics can also be used to help with IBS symptoms, especially abdominal pain and bloating [8].
Peppermint oil (PO) (Mentha Piperita) is a naturally-occurring carminative herb containing monoterpene compounds that target the pathophysiology of IBS. PO contains L-menthol, which blocks calcium channels in smooth muscle, thus producing antispasmodic effects on the gastrointestinal tract [9]. PO possesses antimicrobial, anti-inflammatory, antioxidant, immunomodulating, and anesthetic activities, all of which may be relevant for the treatment of IBS [1012]. Several case reports, observational studies, and randomized clinical trials (RCTs) with methodological inconsistencies and heterogeneous outcomes have been reported since the research conducted by Rees et al. in 1979 [8, 1320]. Earlier systematic reviews of RCTs of PO for IBS treatment revealed trial design flaws (e.g., no washout period for crossover trials), short follow-up duration, and conflicting trial results [14, 21]. Some more recent systematic reviews of RCTs of PO for IBS treatment were limited in the lack of evidence for adverse events [8, 18]. In addition, the risk-benefit profile of PO has been evolving as new RCTs continue to arise.
In 2016, Cash et al. reported the findings of a 4-week double blinded, placebo controlled RCT which tested a novel, proprietary, enteric-coated peppermint formulation (IBgard®) for its potential efficacy in reducing IBS symptoms in 72 patients with IBS-M or IBS-D [22]. The specialized enteric-coating utilized in their trial consisted of a solid-state matrix that was triple-coated and designed to deliver PO with sustained release to the small intestine with fewer potential adverse effects. After 24 h. of treatment, there was a reduction in the total IBS symptom score over baseline (mean change − 0.55, SD ± 0.613) vs. placebo (mean change − 0.27, SD ± 0.342) (p = 0.0092). At trial completion, there was a 40% reduction in the total IBS symptom score in the PO group compared to baseline (mean change − 1.16, SD ± 0.807) vs. 24.3% (mean change − 0.70, SD ± 0.737) with placebo (P = 0.0246). There was an increased improvement in both multiple and individual gastrointestinal symptoms, as well as in severe or unbearable symptoms compared to the placebo.
Given the recent findings by Cash et al. [22] and the potential limitations of previous meta-analyses, we conducted a systematic review and meta-analysis of available RCTs to determine the effect of peppermint oil in reducing the abdominal pain and global symptoms of irritable bowel syndrome and to evaluate the possible side effects of PO as compared to the placebo.

Methods

Identification and retrieval of primary studies

We conducted this systematic review and meta-analysis as per the PRISMA guidelines (i.e., the preferred reporting items of systematic reviews and meta-analysis) [23]. An experienced medical informationist (JN) developed and executed the research strategy in collaboration with the co-authors. There were no restrictions placed on publication dates. A preliminary search was executed on October 10, 2016, and repeated on October 10, 2017, and April 11, 2018, using the following databases: MEDLINE (PubMed), Cochrane Central Register of Controlled Trials (Cochrane CENTRAL), ClinicalTrials.gov, EMBASE (Ovid), and Web of Science. Controlled vocabulary terms for each concept were identified and combined with keyword synonyms. Web of Science was searched using keyword terms only (please see Additional file 1. Medical Literature Search Results for full search strategies). All results were downloaded to Endnote X8 (Thompson and Reuters, Philadelphia, Pennsylvania) and duplicate citations were identified and removed. The protocol is registered in PROSPERO Register [2016:CRD42016050917; (http://​www.​crd.​york.​ac.​uk/​PROSPERO/​display_​record.​asp?​ID=​CRD42016050917)].

Study selection and data extractions

The titles and abstracts of the studies were carefully reviewed by two of the authors (GM, NA) independently to include RCTs that evaluated the influence of enteric-coated PO on IBS, based on the inclusion and exclusion criteria (Table 1). When there was a disagreement, a third reviewer (BS) determined whether the study qualified for inclusion. We also reviewed the bibliography of prior meta-analyses, review articles, and studies that underwent full-text screening for additional studies (reverse snowballing) to maximize the yield [24].
Table 1
Selection criteria for inclusion and exclusion
 
Criteria
Inclusion
1. Randomized placebo-controlled trials comparing peppermint oil and placebo for irritable bowel syndrome with a minimum treatment duration of 2 weeks.
2. Adult patients with irritable bowel syndrome as diagnosed using any of the following criteria for IBS: Manning, Rome I, II, III, IV diagnostic criteria.
Exclusion
1. Non-randomized trials; observational studies such as cohort study, cross-sectional study, etc..
2. Patients having organic disease or or did not have organic disease excluded.
3. Treatment duration of less than 2 weeks.
4. Studies with inadequate data.
Once the articles met the criteria, the full text was reviewed and data extraction performed by four independent reviewers (GM, BS, GH, LW) based on data quality, sufficiency, and relevance. Disagreements were resolved by a third reviewer to reach a consensus. Our primary outcomes are proportion of patients with improvement in global symptoms and proportion of patients with improvement in abdominal pain. Extracted data included last name of the first author, year of publication, country of origin, study setting, demographic information of patients, publication year, population, sample size, study design, subtype(s) of IBS (if specified), criterion used for the IBS diagnosis, peppermint oil dose, preparation of peppermint oil, and patients enrolled and completed, and quantitative results. For RCTs with cross-over design, we only extracted data from the first stage before the wash-out period to account for intra-patient correlation of outcomes.

Risk of bias, quality assessment, and data synthesis

We used the modified Cochrane Collaboration’s risk of bias assessment tool for RCTs. Bias was assessed as a judgment (high, low, or unclear) for individual elements from five domains (selection, performance, attrition, reporting, and other) [25]. Any disagreements were then discussed with a third reviewer (BS) with an agreement to be reached by consensus [25]. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) analysis was utilized to rate the evidence of our review, whereby very low = 1, low = 2, moderate = 3, high = 4. The strength of recommendations were 1 (strong) or 2 (weak) [26].

Statistical analysis

We pooled the results from included studies by random-effects meta-analysis with inverse variance weighting to determine the risk ratio (RR) and the 95% confidence interval (95% CI) for each outcome in RevMan 5.3.5 [27]. Q statistics, I-squared (I2), and tau-squared (τ2) were calculated to assess statistical heterogeneity. For Q statistics, a critical value of 0.1 was used to determine statistical significance. We considered an I2 greater than 0.75 as a cutoff for considerable heterogeneity across studies. We planned to use funnel plots and Egger’s test [28] to examine publication bias if the number of studies for an outcome is larger than ten. We conducted sensitivity analyses by removing studies with a high risk of bias per the Cochrane risk of bias tool.

Results

Study selection

A literature search conducted from inception to April 11, 2018, identified 759 studies. After duplicates were removed, a total of 427 studies remained for a review of titles and abstracts, from which 22 trials were identified that underwent full text screening. A total of ten studies were excluded (Additional file 2: Table of Excluded Studies), and twelve randomized studies (835 patients) that met the inclusion criteria were identified and underwent systematic review and data synthesis. A flow diagram of the study selection is summarized in Fig. 1.

Study characteristics

The included studies were published over five decades, from 1979 to 2016. Patients from Asia, Europe, and North America were recruited. Studies were of varied sample sizes, from 18 to 178. The settings of most trials were teaching hospitals. Most studies were double-blind parallel group RCTs with follow-up durations ranging from 3 weeks to 12 weeks. Cross-over design were observed in three studies. Table 2 summarizes the characteristics of the included studies. Of note, among the twelve included studies, there was significant variation in the use of validated tools for the diagnosis of IBS. Alam et al. [29], Cappello et al. [30], Capanni et al. [31], and Merat et al. [32] utilized the Rome II criteria. Cash et al. [22] used the Rome III criteria and found a statistically significant benefit for PO relative to placebos for the global improvement of IBS symptoms. Dew et al. [33] conducted a double-blind cross-over study with a washout period defined by the recurrence of active symptoms, however, they failed to utilize any validated inclusion criteria. Lech et al. [34] failed to utilize any validated inclusion criteria, though they did find a significant benefit for PO relative to placebo for improvements in abdominal pain. Liu et al. [35] failed to utilize any validated inclusion criteria, though they did find a significant benefit for PO relative to placebo for the improvement of abdominal pain. Rees et al. [20], Schneider et al. [36], Weiss et al. [37], and Carling et al. [38] also failed to mention the use of validated inclusion criteria.
Table 2
Characteristics of Included Studies
Year
Author
Country
Design
Setting
N Enrolled
N Completed
Duration of therapy
2013
Alam
Bangladesh
Double-Blind RCT
University Single-Center
74
65
6 weeks
2016
Cash
USA
Double-Blind RCT
Multicenter
72
70
4 weeks
2005
Capanni
Italy
Double-Blind RCT
University Single-Center
178
173
12 weeks
2007
Cappello
Italy
Double-Blind RCT
University Single-Center
57
50
4 weeks
1989
Carling
Sweden
Double-blind Cross Over 3-arm RCT 1-Week Washout
2 University Centers
40
38
2 weeks
1984
Dew
Wales
Double-Blind Cross Over Washout Period
Multicenter
29
29
2 weeks
1988
Lech
Dutch
Double-Blind RCT
University Single-Center
47
42
4 weeks
1997
Liu
China
Double-Blind RCT
University Single-Center
110
101
4 weeks
2009
Merat
Iran
Double-blind RCT
University Single- Center
90
60
8 weeks
1979
Rees
UK
Double-Blind Cross Over Washout Period Defined by Recurrence of Active Symptoms
University Single- Center
18
16
3 weeks
1990
Schneider
USA
Double-blind Cross Over RCT
2-Week Washout
University Single- Center
60
47
6 weeks
1988
Weiss
Germany
Single blinded, RCT
Hospital, single center
60
46
3 weeks

Risk of bias assessment

Incomplete outcome data was the most concerning problem observed in the included studies (Fig. 2). Six out of 12 studies were assessed as having high risk of attrition bias as these studies had over 10% loss to follow-up and dealt with missing data by excluding those patients from final analyses. Two studies were funded by industry and were assessed as having high risk of bias due to conflicts of interest. In addition, random sequence generation and allocation concealment were not reported (unclear risk of selection bias) in many studies. In contrast, the blinding of participants and personnel were well performed in all studies (low risk of performance bias). The selective reporting was not observed in any studies (low risk of reporting bias).

Meta-analysis

Seven studies reported treatment outcomes for the global improvement of IBS symptoms [20, 22, 31, 3335, 37] (Fig. 3a). The risk ratio (RR) for seven RCTs for the effect of PO (n = 253) versus placebo (n = 254) on global symptoms was 2.39 [95% confidence interval (CI): 1.93, 2.97], I2 = 0%, z = 7.93 (p < 0.00001) (Fig. 3a). The number of patients needed to be treated with peppermint oil versus the placebo to induce a global improvement of IBS symptoms was three (Table 3). No statistically significant heterogeneity was detected for this comparison (τ2 = 0.00, X2 = 5.29, P = 0.51, I2 = 0%) (Table 3).
Table 3
Summary of Findings. Peppermint Oil vs. Placebo for the Treatment of IBS
Patient or Population: Patients with Active IBS
Settings: Outpatients
Intervention: Enteric-coated Peppermint Oil Capsules vs. Placebo
Outcomes
Illustrative Comparative Risk*
    
Assumed risk
Corresponding risk
    
Control (per 1000)
Peppermint Oil vs. Placebo (per 1000)
Relative Risk (95% CI)
No. Participants (Studies)
Quality of Evidence (GRADE)
NNT (95% CI)
Global improvement in IBS symptoms
250†
598 (483 to 743)
2.39 (1.93–2.97)
507 (7)
⨁⨁⨁⨁‡ High
3 (2–4)
Improvement in abdominal pain
303†
539 (433 to 666)
1.78 (1.43–2.20)
556 (6)
⨁⨁⨁◯§ Moderate
4 (3–6)
Adverse events
21†
29 (18 to 47)
1.40 (0.87–2.26)
671 (8)
⨁⨁◯◯ǁ Low
125 (29-∞)
GRADE Working Group grades of evidence. High quality: further research is very unlikely to change our confidence in the estimate of effect. Moderate quality: further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate. Low quality: further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate. Very low quality: we are very uncertain about the estimate
*The basis for the assumed risk is the median control group risk across studies) . The corresponding risk (and its 95% CI) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI)
†Control group risk estimates come from the control arm of meta-analysis, based on included trials
⨁⨁⨁⨁‡ High: downgraded on risk of bias, upgraded on large magnitude of effect
⨁⨁⨁◯§ Moderate: downgraded on risk of bias
⨁⨁◯◯ǁ Low: downgraded on risk of bias and imprecision
CI indicates confidence interval
Six studies reported treatment outcomes of improvement of abdominal pain [22, 31, 32, 34, 36] (Fig. 3b). The RR for six RCTs for the effect of PO (n = 278) versus placebo (n = 278) on abdominal pain was 1.78 [95% CI: 1.43, 2.20], I2 = 0%, z = 5.23 (p < 0.00001) (Fig. 2b). The number of patients that needed to be treated with peppermint oil versus the placebo to improve abdominal pain was four (Table 3). No statistically significant heterogeneity was detected for this comparison (τ2 = 0.00, X2 = 3.01, P = 0.70, I2 = 0%) (Table 3).
Of the studies included, overall, only a few adverse events were reported. One study reported no adverse events [25]. Most of the reported adverse events were mild and transient. The adverse events included: heartburn [13, 15, 22, 23, 29, 30, 35], dry mouth [13, 23], belching [23], peppermint taste [15], rash [29], dizziness [23], headache [23], and less frequent increased appetite [23]. There was no statistically significant difference in reported adverse effects in IBS subjects using PO (32 events, 344 total, 9.3%) versus placebo (20 events, 327 total, 6.1%); RR 1.40 [95% CI: 0.87, 2.26], I2 = 0%, z = 1.39 (p = 0.16) (Fig. 3c).
The planned funnel plots and Egger’s test for publication bias was not applicable as the number of studies for each outcome is less than ten because test power is usually too low to distinguish chance from real asymmetry [28, 39]. The sensitivity analyses excluding studies with high attrition bias provided similar results to our primary analyses.
The GRADE criteria were used to assess the overall quality of the evidence reported (Table 3) [26]. The global improvement in IBS symptoms outcomes was upgraded to high because of the large magnitude of the effect. The outcome of improvement of abdominal pain was downgraded to moderate because of the risk of bias. The outcome “adverse events” was downgraded to “low quality” because of the risk of bias and imprecision (Table 3).

Discussion

In this systematic review, we assessed the largest cohort of RCTs published over five decades involving twelve randomized clinical trials with 835 IBS patients from around the world. Overall, treatment with PO significantly improves abdominal pain and global symptoms of IBS. The available data are also consistent with a good safety profile. The strength of our findings is reflected by the large effect size of PO over placebo in the improvement of abdominal pain and global symptoms and by the low heterogeneity across included studies.
The first systematic review of RCTs of PO for the treatment of IBS was published by Pitter and Ernst in 1998, which included eight randomized trials involving 295 patients with seven of the eight trials not using the accepted clinical features of IBS [14]. The researchers performed a quantitative synthesis of five double-blind, placebo-controlled RCTs involving 265 participants [20, 33, 34, 38, 40]. Four of the five RCTs had a Jadad methodological quality score of three, with no RCTs scoring the maximum of five points [41]. Overall, the results demonstrated that PO was effective for the improvement of global symptoms in IBS (p < 0.001). However, two of the five studies showed no difference when using a placebo in IBS symptom improvement, and overall, there was a significant variation between the placebo responses across the five studies (13–52%, p < 0.01). No definitive conclusion could be drawn owing to the low quality of the primary studies, the overrepresentation of short-term (< 1 month duration) studies, and the use of cross-over designs without washout periods in four of the five RCTs. The authors acknowledged that the results of their meta-analysis needed to be interpreted with caution due to the mentioned methodological flaws in the included studies. We also observed that six of the eight trials included in the Pittler and Ernst review [14] had treatment periods of one month or less. The studies included in this meta-analysis had treatment periods of two to twelve weeks, with seven studies being four weeks or greater, and found a significant benefit for PO relative to placebo for the improvement of abdominal pain and global IBS symptoms.
In 2004, Lesbros-Pantoflickova et al. performed a meta-analysis of the available pharmacological treatments for the irritable bowel syndrome, which included PO [21]. The authors included five studies [20, 33, 34, 38, 40], with four having a Jadad score ≥ 3 [33, 38, 40]. Overall, the odds ratio (OR) of the five included studies favored PO for global symptoms over the placebo [OR 3.6, 95 CI% 2.2–6.0]. Lesbros-Pantoflickova et al.’s systematic review and meta-analysis lacked several methodological details and improperly concluded that Pittler’s meta-analysis failed to demonstrate a beneficial effect for PO vs. placebo for improving IBS symptoms [14].
In 2008, Ford et al. reported the results of a qualitative and quantitative synthesis of the available studies for the effect of fiber, antispasmodics, and PO in the treatment of IBS [8]. Four of the included studies had a Jadad score ≥ 3 [30, 31, 34, 35] with a total of 392 participants to evaluate the effect of PO versus placebo on IBS symptoms. Ford et al. excluded the cross-over trials included by Pittler and Ernst [14]. They reported that the relative risk of persistent symptoms was 43% less with PO (52/197; 26%) when compared to placebo (127/195; 65%) (relative risk, 0.43) without any significant heterogeneity between studies (I2 = 31.1%, P = 0.23). The number needed to treat (NNT) with peppermint oil to prevent one patient from having persistent symptoms was 2.5 (2.0–3.0). The methodological details of the selection criteria and extraction were provided, however, the criteria to define symptom improvement was heterogeneous and included pain and/or global symptom improvement [8]. We separately analyzed the ability of PO to improve abdominal pain and global IBS symptoms. A limited risk of bias showed that all studies lacked concealed allocation. It is worth mentioning that a meta-analysis was not conducted on the side-effect data as only three trials reported adverse events.
In 2011, Ruepert et al. published the results of their systematic review and meta-analysis on the effectiveness of antispasmodics, antidepressants, and bulking agents in IBS, which included the randomized controlled trials of PO versus placebo [17]. PO was shown to improve global symptoms; risk ratio was 2.25 [1.70–2.98] in two studies with 225 patients [31, 34]. PO also improved the IBS symptom score vs. placebo; risk ratio was 1.94 [1.09–3.46] in three studies with 269 patients [30, 31, 42]. Their analysis of spasmolytics for the relief of abdominal pain demonstrated the superiority of PO versus placebo; risk ratio was 2.15 [1.54, 3.00] in one trial of 101 patients [35].
The most recent meta-analysis by Khanna et al. (2014) evaluated 726 patients [19] from nine [29, 3032, 3437, 43] included studies. Global IBS symptom improvement was reported to be greater for PO versus placebo (5 studies, 392 patients, relative risk 2.23; 95% confidence interval, 1.78–2.81), and likewise for improvement in abdominal pain (5 studies, 357 patients, relative risk 2.14; 95% confidence interval, 1.64–2.79). Khanna et al.’s pooled analysis of seven studies and 474 patients reported that IBS patients treated with PO, as compared to the placebo, were more likely to experience an adverse event, such as heartburn, which tended to be mild and transient [19].
In 2018 Ford et al. published a systematic review of RCTs using medical, psychological and nutritional therapies for IBS as an updated monograph for the American College of Gastroenterology [44]. The 2014 version included five RCTs of PO versus placebo for IBS [45]. The primary outcome of improved IBS outcome was not defined according to global symptoms versus pain relief. The search terms were merged for a number of interventions (i.e. fiber, diet) with colpermin and peppermint oil being utilized to identify RCTs using PO for IBS. Seven RCTs involving 634 patients were included and the pooled analysis showed benefit for PO over placebo (RR-0.54; 95% CI 0.39–0.76). The number needed to treat in order for one patient to benefit was four but the endpoint of IBS improvement was not defined and heterogeneity was high (I2 = 73%, P = 0.001). Pooled data on adverse events from six studies did not show a difference between PO and placebo. One of the two new included studies was a comparative study of peppermint oil and anise oil to placebo [46] with a visual analog scale and quality of life as primary and secondary endpoints. For these reasons, this study was excluded from our analysis.
Overall, we evaluated 835 adult patients from twelve studies that met the inclusion criteria. Improved global IBS symptomatology was greater for PO when compared to placebo, as well as for abdominal pain. We included studies excluded by Khanna et al. [20, 22, 33, 38] and excluded their included study on pediatric IBS [47]. Unlike Khanna et al., we did not detect a difference in the adverse events reported in IBS subjects using PO versus placebo. Our risk of bias analysis also differed from that of Khanna et al., as we found a high risk of bias for Cash et al. [22] for industry funding and attrition bias for Cappello et al. [30], Rees et al. [20], and Weiss et al. [37], which shall bring necessary caution to result interpretation. In our study, the number needed to treat with PO to prevent one patient from having persistent symptoms was three for global symptoms and four for abdominal pain.

Conclusions

Enteric-coated peppermint oil is a safe and effective therapy for the relief of abdominal pain and global symptoms and in adults with IBS.

Acknowledgments

Not applicable.

Funding

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Not applicable.
Not applicable.

Competing interests

Dr. Mullin is an Associate Editor of BMC Complementary and Alternative Medicine.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Schmulson MJ, Drossman DA. What is new in Rome IV. J Neurogastroenterol Motil. 2017;23(2):151–63.CrossRef Schmulson MJ, Drossman DA. What is new in Rome IV. J Neurogastroenterol Motil. 2017;23(2):151–63.CrossRef
2.
Zurück zum Zitat Choung RS, Locke GR 3rd. Epidemiology of IBS. Gastroenterol Clin N Am. 2011;40(1):1–10.CrossRef Choung RS, Locke GR 3rd. Epidemiology of IBS. Gastroenterol Clin N Am. 2011;40(1):1–10.CrossRef
3.
Zurück zum Zitat Lovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin Gastroenterol Hepatol. 2012;10(7):712–21.e4.CrossRef Lovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin Gastroenterol Hepatol. 2012;10(7):712–21.e4.CrossRef
4.
Zurück zum Zitat Buono JL, Carson RT, Flores NM. Health-related quality of life, work productivity, and indirect costs among patients with irritable bowel syndrome with diarrhea. Health Qual Life Outcomes. 2017;15(1):35.CrossRef Buono JL, Carson RT, Flores NM. Health-related quality of life, work productivity, and indirect costs among patients with irritable bowel syndrome with diarrhea. Health Qual Life Outcomes. 2017;15(1):35.CrossRef
5.
Zurück zum Zitat Oswiecimska J, Szymlak A, Roczniak W, Girczys-Poledniok K, Kwiecien J. New insights into the pathogenesis and treatment of irritable bowel syndrome. Adv Med Sci. 2017;62(1):17–30.CrossRef Oswiecimska J, Szymlak A, Roczniak W, Girczys-Poledniok K, Kwiecien J. New insights into the pathogenesis and treatment of irritable bowel syndrome. Adv Med Sci. 2017;62(1):17–30.CrossRef
6.
Zurück zum Zitat Singh R, Salem A, Nanavati J, Mullin GE. The role of diet in the treatment of irritable bowel syndrome: a systematic review. Gastroenterol Clin N Am. 2018;47(1):107–37.CrossRef Singh R, Salem A, Nanavati J, Mullin GE. The role of diet in the treatment of irritable bowel syndrome: a systematic review. Gastroenterol Clin N Am. 2018;47(1):107–37.CrossRef
7.
Zurück zum Zitat Mullin GE, Shepherd SJ, Chander Roland B, Ireton-Jones C, Matarese LE. Irritable bowel syndrome: contemporary nutrition management strategies. JPEN J Parenter Enteral Nutr. 2014;38(7):781–99.CrossRef Mullin GE, Shepherd SJ, Chander Roland B, Ireton-Jones C, Matarese LE. Irritable bowel syndrome: contemporary nutrition management strategies. JPEN J Parenter Enteral Nutr. 2014;38(7):781–99.CrossRef
8.
Zurück zum Zitat Ford AC, Talley NJ, Spiegel BM, Foxx-Orenstein AE, Schiller L, Quigley EM, et al. Effect of fibre, antispasmodics, and peppermint oil in the treatment of irritable bowel syndrome: systematic review and meta-analysis. BMJ. 2008;337:a2313.CrossRef Ford AC, Talley NJ, Spiegel BM, Foxx-Orenstein AE, Schiller L, Quigley EM, et al. Effect of fibre, antispasmodics, and peppermint oil in the treatment of irritable bowel syndrome: systematic review and meta-analysis. BMJ. 2008;337:a2313.CrossRef
9.
Zurück zum Zitat Hawthorn M, Ferrante J, Luchowski E, Rutledge A, Wei XY, Triggle DJ. The actions of peppermint oil and menthol on calcium channel dependent processes in intestinal, neuronal and cardiac preparations. Aliment Pharmacol Ther. 1988;2(2):101–18.CrossRef Hawthorn M, Ferrante J, Luchowski E, Rutledge A, Wei XY, Triggle DJ. The actions of peppermint oil and menthol on calcium channel dependent processes in intestinal, neuronal and cardiac preparations. Aliment Pharmacol Ther. 1988;2(2):101–18.CrossRef
10.
Zurück zum Zitat de Sousa Guedes JP, da Costa Medeiros JA, de Souza ESRS, de Sousa JM, da Conceicao ML, de Souza EL. The efficacy of Mentha arvensis L. and M. piperita L. essential oils in reducing pathogenic bacteria and maintaining quality characteristics in cashew, guava, mango, and pineapple juices. Int J Food Microbiol. 2016;238:183–92.CrossRef de Sousa Guedes JP, da Costa Medeiros JA, de Souza ESRS, de Sousa JM, da Conceicao ML, de Souza EL. The efficacy of Mentha arvensis L. and M. piperita L. essential oils in reducing pathogenic bacteria and maintaining quality characteristics in cashew, guava, mango, and pineapple juices. Int J Food Microbiol. 2016;238:183–92.CrossRef
11.
Zurück zum Zitat McKay DL, Blumberg JB. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother Res. 2006;20(8):619–33.CrossRef McKay DL, Blumberg JB. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother Res. 2006;20(8):619–33.CrossRef
12.
Zurück zum Zitat Grigoleit HG, Grigoleit P. Gastrointestinal clinical pharmacology of peppermint oil. Phytomedicine. 2005;12(8):607–11.CrossRef Grigoleit HG, Grigoleit P. Gastrointestinal clinical pharmacology of peppermint oil. Phytomedicine. 2005;12(8):607–11.CrossRef
13.
Zurück zum Zitat Ford AC. Effect of fibre, antispasmodics, and peppermint oil in the treatment of irritable bowel syndrome: systematic review and meta-analysis (vol 337, a2313, 2008). Br Med J. 2009;338. Ford AC. Effect of fibre, antispasmodics, and peppermint oil in the treatment of irritable bowel syndrome: systematic review and meta-analysis (vol 337, a2313, 2008). Br Med J. 2009;338.
14.
Zurück zum Zitat Pittler MH, Ernst E. Peppermint oil for irritable bowel syndrome: a critical review and metaanalysis. Am J Gastroenterol. 1998;93(7):1131–5.CrossRef Pittler MH, Ernst E. Peppermint oil for irritable bowel syndrome: a critical review and metaanalysis. Am J Gastroenterol. 1998;93(7):1131–5.CrossRef
16.
Zurück zum Zitat Mann N, Sandhu K. Peppermint oil in irritable bowel syndrome: evaluation of 1634 cases with qualitative meta-analysis. Am J Gastroenterol. 2010;105:S481–S2.CrossRef Mann N, Sandhu K. Peppermint oil in irritable bowel syndrome: evaluation of 1634 cases with qualitative meta-analysis. Am J Gastroenterol. 2010;105:S481–S2.CrossRef
17.
Zurück zum Zitat Ruepert L, Quartero AO, de Wit NJ, van der Heijden GJ, Rubin G, Muris JW. Bulking agents, antispasmodics and antidepressants for the treatment of irritable bowel syndrome. Cochrane Database Syst Rev. 2011;(8):Cd003460. Ruepert L, Quartero AO, de Wit NJ, van der Heijden GJ, Rubin G, Muris JW. Bulking agents, antispasmodics and antidepressants for the treatment of irritable bowel syndrome. Cochrane Database Syst Rev. 2011;(8):Cd003460.
18.
Zurück zum Zitat Mann NS, Sandhu KS. Peppermint oil in irritable bowel syndrome: systematic evaluation of 1634 cases with meta-analysis. Int Med J. 2012;19(1):5–6. Mann NS, Sandhu KS. Peppermint oil in irritable bowel syndrome: systematic evaluation of 1634 cases with meta-analysis. Int Med J. 2012;19(1):5–6.
19.
Zurück zum Zitat Khanna R, MacDonald JK, Levesque BG. Peppermint oil for the treatment of irritable bowel syndrome: a systematic review and meta-analysis. J Clin Gastroenterol. 2014;48(6):505–12.PubMed Khanna R, MacDonald JK, Levesque BG. Peppermint oil for the treatment of irritable bowel syndrome: a systematic review and meta-analysis. J Clin Gastroenterol. 2014;48(6):505–12.PubMed
20.
Zurück zum Zitat Rees WD, Evans BK, Rhodes J. Treating irritable bowel syndrome with peppermint oil. Br Med J. 1979;2(6194):835–6.CrossRef Rees WD, Evans BK, Rhodes J. Treating irritable bowel syndrome with peppermint oil. Br Med J. 1979;2(6194):835–6.CrossRef
21.
Zurück zum Zitat Lesbros-Pantoflickova D, Michetti P, Fried M, Beglinger C, Blum AL. Meta-analysis: the treatment of irritable bowel syndrome. Aliment Pharmacol Ther. 2004;20(11–12):1253–69.CrossRef Lesbros-Pantoflickova D, Michetti P, Fried M, Beglinger C, Blum AL. Meta-analysis: the treatment of irritable bowel syndrome. Aliment Pharmacol Ther. 2004;20(11–12):1253–69.CrossRef
22.
Zurück zum Zitat Cash BD, Epstein MS, Shah SM. A novel delivery system of peppermint oil is an effective therapy for irritable bowel syndrome symptoms. Dig Dis Sci. 2016;61(2):560–71.CrossRef Cash BD, Epstein MS, Shah SM. A novel delivery system of peppermint oil is an effective therapy for irritable bowel syndrome symptoms. Dig Dis Sci. 2016;61(2):560–71.CrossRef
23.
Zurück zum Zitat Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100.CrossRef Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100.CrossRef
25.
Zurück zum Zitat Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.CrossRef Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.CrossRef
26.
Zurück zum Zitat Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011;64(4):401–6.CrossRef Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011;64(4):401–6.CrossRef
27.
Zurück zum Zitat Higgins JPT. Cochrane Handbook for Systematic Reviews of Interventions. . Version 510 The Cochrane Collaboration 2016. Higgins JPT. Cochrane Handbook for Systematic Reviews of Interventions. . Version 510 The Cochrane Collaboration 2016.
28.
Zurück zum Zitat Egger M, Smith GD, Phillips AN. Meta-analysis: principles and procedures. BMJ. 1997;315(7121):1533–7.CrossRef Egger M, Smith GD, Phillips AN. Meta-analysis: principles and procedures. BMJ. 1997;315(7121):1533–7.CrossRef
29.
Zurück zum Zitat Alam MS, Roy PK, Miah AR, Mollick SH, Khan MR, Mahmud MC, et al. Efficacy of peppermint oil in diarrhea predominant IBS - a double blind randomized placebo - controlled study. Mymensingh medical journal : MMJ. 2013;22(1):27–30.PubMed Alam MS, Roy PK, Miah AR, Mollick SH, Khan MR, Mahmud MC, et al. Efficacy of peppermint oil in diarrhea predominant IBS - a double blind randomized placebo - controlled study. Mymensingh medical journal : MMJ. 2013;22(1):27–30.PubMed
30.
Zurück zum Zitat Cappello G, Spezzaferro M, Grossi L, Manzoli L, Marzio L. Peppermint oil (Mintoil((R))) in the treatment of irritable bowel syndrome: a prospective double blind placebo-controlled randomized trial. Dig Liver Dis. 2007;39(6):530–6.CrossRef Cappello G, Spezzaferro M, Grossi L, Manzoli L, Marzio L. Peppermint oil (Mintoil((R))) in the treatment of irritable bowel syndrome: a prospective double blind placebo-controlled randomized trial. Dig Liver Dis. 2007;39(6):530–6.CrossRef
31.
Zurück zum Zitat Capanni M, Surrenti E, Biagini MR, Milani S, Surrenh C, Galli A. Efficacy of peppermint oil in the treatment of irritable bowel syndrome: a randomized, controlled trial. Gazz med ital arch sci med [Internet]. 2005; 164(2):119–26. Capanni M, Surrenti E, Biagini MR, Milani S, Surrenh C, Galli A. Efficacy of peppermint oil in the treatment of irritable bowel syndrome: a randomized, controlled trial. Gazz med ital arch sci med [Internet]. 2005; 164(2):119–26.
32.
Zurück zum Zitat Merat S, Khalili S, Mostajabi P, Ghorbani A, Ansari R, Malekzadeh R. The effect of enteric-coated, delayed-release peppermint oil on irritable bowel syndrome. Dig Dis Sci. 2010;55(5):1385–90.CrossRef Merat S, Khalili S, Mostajabi P, Ghorbani A, Ansari R, Malekzadeh R. The effect of enteric-coated, delayed-release peppermint oil on irritable bowel syndrome. Dig Dis Sci. 2010;55(5):1385–90.CrossRef
33.
Zurück zum Zitat Dew MJ, Evans BK, Rhodes J. Peppermint Oil for the Irritable Bowel Syndrome - a Multicenter Trial. Br J Clin Pract. 1984;38(11–1):394.PubMed Dew MJ, Evans BK, Rhodes J. Peppermint Oil for the Irritable Bowel Syndrome - a Multicenter Trial. Br J Clin Pract. 1984;38(11–1):394.PubMed
34.
Zurück zum Zitat Lech Y, Olesen KM, Hey H, Rask-Pedersen E, Vilien M, Ostergaard O. Treatment of irritable bowel syndrome with peppermint oil. A double-blind investigation with a placebo. Ugeskr Laeger. 1988;150(40):2388–9.PubMed Lech Y, Olesen KM, Hey H, Rask-Pedersen E, Vilien M, Ostergaard O. Treatment of irritable bowel syndrome with peppermint oil. A double-blind investigation with a placebo. Ugeskr Laeger. 1988;150(40):2388–9.PubMed
35.
Zurück zum Zitat Liu JH, Chen GH, Yeh HZ, Huang CK, Poon SK. Enteric-coated peppermint-oil capsules in the treatment of irritable bowel syndrome: a prospective, randomized trial. J Gastroenterol. 1997;32(6):765–8.CrossRef Liu JH, Chen GH, Yeh HZ, Huang CK, Poon SK. Enteric-coated peppermint-oil capsules in the treatment of irritable bowel syndrome: a prospective, randomized trial. J Gastroenterol. 1997;32(6):765–8.CrossRef
36.
Zurück zum Zitat Schneider MMEOM. Efficacy of Colpermin in the treatment of patients with irritable bowel syndrome. Gastroenterology. 1990;98. Schneider MMEOM. Efficacy of Colpermin in the treatment of patients with irritable bowel syndrome. Gastroenterology. 1990;98.
37.
Zurück zum Zitat Weiss WKC. Treatment of irritable bowel syndromewith peppermint oil capsules: results of a double blind study. Therapiewoche Osterreich. 1988;3:3–8. Weiss WKC. Treatment of irritable bowel syndromewith peppermint oil capsules: results of a double blind study. Therapiewoche Osterreich. 1988;3:3–8.
38.
Zurück zum Zitat Carling L, Svedberg LE, Hulten S. Short term treatment of the irritable bowel syndrome: a placebo-controlled trial of peppermint oil against hyoscyamine. Opuscula Medica. 1989;34(3):55–7. Carling L, Svedberg LE, Hulten S. Short term treatment of the irritable bowel syndrome: a placebo-controlled trial of peppermint oil against hyoscyamine. Opuscula Medica. 1989;34(3):55–7.
39.
Zurück zum Zitat Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343:d4002.CrossRef Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343:d4002.CrossRef
40.
Zurück zum Zitat Nash P, Gould SR, Bernardo DE. Peppermint oil does not relieve the pain of irritable bowel syndrome. Br J Clin Pract. 1986;40(7):292–3.PubMed Nash P, Gould SR, Bernardo DE. Peppermint oil does not relieve the pain of irritable bowel syndrome. Br J Clin Pract. 1986;40(7):292–3.PubMed
41.
Zurück zum Zitat Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1–12.CrossRef Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1–12.CrossRef
42.
Zurück zum Zitat Czalbert HJNM, Feher K. Experiences with colpermintherapy (Tillots-England) at patients of irritable colon syndrome. Gyogyszereszet. 1990;34(5):251–3. Czalbert HJNM, Feher K. Experiences with colpermintherapy (Tillots-England) at patients of irritable colon syndrome. Gyogyszereszet. 1990;34(5):251–3.
43.
Zurück zum Zitat Kline RM, Kline JJ, Di Palma J, Barbero GJ. Enteric-coated, pH-dependent peppermint oil capsules for the treatment of irritable bowel syndrome in children. J Pediatr. 2001;138(1):125–8.CrossRef Kline RM, Kline JJ, Di Palma J, Barbero GJ. Enteric-coated, pH-dependent peppermint oil capsules for the treatment of irritable bowel syndrome in children. J Pediatr. 2001;138(1):125–8.CrossRef
44.
Zurück zum Zitat Ford AC, Moayyedi P, Chey WD, Harris LA, Lacy BE, Saito YA, et al. American College of Gastroenterology monograph on management of irritable bowel syndrome. Am J Gastroenterol. 2018;113(Suppl 2):1–18.CrossRef Ford AC, Moayyedi P, Chey WD, Harris LA, Lacy BE, Saito YA, et al. American College of Gastroenterology monograph on management of irritable bowel syndrome. Am J Gastroenterol. 2018;113(Suppl 2):1–18.CrossRef
45.
Zurück zum Zitat Ford AC, Moayyedi P, Lacy BE, Lembo AJ, Saito YA, Schiller LR, et al. American College of Gastroenterology monograph on the management of irritable bowel syndrome and chronic idiopathic constipation. Am J Gastroenterol. 2014;109( Suppl 1):S2–26; quiz S7. Ford AC, Moayyedi P, Lacy BE, Lembo AJ, Saito YA, Schiller LR, et al. American College of Gastroenterology monograph on the management of irritable bowel syndrome and chronic idiopathic constipation. Am J Gastroenterol. 2014;109( Suppl 1):S2–26; quiz S7.
46.
Zurück zum Zitat Mosaffa-Jahromi M, Lankarani KB, Pasalar M, Afsharypuor S, Tamaddon AM. Efficacy and safety of enteric coated capsules of anise oil to treat irritable bowel syndrome. J Ethnopharmacol. 2016;194:937–46.CrossRef Mosaffa-Jahromi M, Lankarani KB, Pasalar M, Afsharypuor S, Tamaddon AM. Efficacy and safety of enteric coated capsules of anise oil to treat irritable bowel syndrome. J Ethnopharmacol. 2016;194:937–46.CrossRef
47.
Zurück zum Zitat Klein KB. Treatment of the irritable bowel syndrome. Drugs of Today. 1988;24(8):589–95. Klein KB. Treatment of the irritable bowel syndrome. Drugs of Today. 1988;24(8):589–95.
Metadaten
Titel
The impact of peppermint oil on the irritable bowel syndrome: a meta-analysis of the pooled clinical data
verfasst von
N. Alammar
L. Wang
B. Saberi
J. Nanavati
G. Holtmann
R. T. Shinohara
G. E. Mullin
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Complementary Medicine and Therapies / Ausgabe 1/2019
Elektronische ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2409-0

Weitere Artikel der Ausgabe 1/2019

BMC Complementary Medicine and Therapies 1/2019 Zur Ausgabe