Skip to main content
Erschienen in: Molecular Cancer 1/2015

Open Access 01.12.2015 | Review

Aurora kinase A in gastrointestinal cancers: time to target

verfasst von: Ahmed Katsha, Abbes Belkhiri, Laura Goff, Wael El-Rifai

Erschienen in: Molecular Cancer | Ausgabe 1/2015

Abstract

Gastrointestinal (GI) cancers are a major cause of cancer-related deaths. During the last two decades, several studies have shown amplification and overexpression of Aurora kinase A (AURKA) in several GI malignancies. These studies demonstrated that AURKA not only plays a role in regulating cell cycle and mitosis, but also regulates a number of key oncogenic signaling pathways. Although AURKA inhibitors have moved to phase III clinical trials in lymphomas, there has been slower progress in GI cancers and solid tumors. Ongoing clinical trials testing AURKA inhibitors as a single agent or in combination with conventional chemotherapies are expected to provide important clinical information for targeting AURKA in GI cancers. It is, therefore, imperative to consider investigations of molecular determinants of response and resistance to this class of inhibitors. This will improve evaluation of the efficacy of these drugs and establish biomarker based strategies for enrollment into clinical trials, which hold the future direction for personalized cancer therapy. In this review, we will discuss the available data on AURKA in GI cancers. We will also summarize the major AURKA inhibitors that have been developed and tested in pre-clinical and clinical settings.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

AK: Prepared the scientific material, write the main text, generated tables and made figures; AB: revised the scientific contents and edited the text; LG: revised the scientific contents; WE: developed the structure of the review, revised the scientific material, and edited the contents. All authors read and approved the final manuscript.
Abkürzungen
GI
Gastrointestinal
AURKA
Aurora kinase A
AURKB
Aurora kinase B
AURKC
Aurora kinase C
TPX2
Targeting protein for Xklp2
BRCA1/2
Breast cancer susceptibility gene
VEGF
Vascular endothelial growth factor
UGI
Upper gastrointestinal
ESCC
Esophageal squamous cell carcinoma
EAC
Esophageal adenocarcinomas
CCND1
Cyclin D1
FGF
Fibroblast growth factor
STAT3
Signal transducer and activator of transcription 3
BCL-xL
B-cell lymphoma-extra large
Bcl2
B-cell lymphoma 2
MCL1
Myeloid Cell Leukemia 1
HDM2
Human double minute 2
PUMA
p53 upregulated modulator of apoptosis
CRC
Colorectal cancer
CHFR
Checkpoint with forkhead and ring finger domains
MAPK
Mitogen-activated protein kinases
ERK
Extracellular signal-regulated kinases
HURP
Hepatoma up-regulated protein
HCC
Human hepatocellular carcinoma
HIF-1
Hypoxia-inducible factor-1
CML
Chronic myeloid leukemia
ALL
Acute lymphoblastic leukemia
AML
Acute myeloid leukemia
MCL
Mantle cell lymphoma
FLT3
FMS-like tyrosine kinase 3
PDGFRα
Alpha-type platelet-derived growth factor receptor
MM
Multiple myeloma
FDG
Fluorodeoxyglucose
HER2
Human epidermal growth factor receptor
hTERT
Human telomerase reverse transcriptase

Introduction

Mitotic kinases are the main proteins that coordinate accurate mitotic processing [1]. In lower organisms, mitotic kinases include polo-like kinases, NIMA-related kinases, cyclin-dependent kinase 1, WARTS/LATS1-related kinases, and Aurora/Ipl1-related kinases [2]. In humans, the aurora kinase family is considered homologous to Aurora/Ipl1 kinases [2]. This family consists of highly conserved serine-threonine kinases, which play a critical role in regulation of mitotic events like spindle assembly, function of centrosomes and cytoskeleton, and cytokinesis [3,4]. Members of this family are Aurora kinase A (AURKA), Aurora kinase B (AURKB), and Aurora kinase C (AURKC) [3,4]. AURKA is located at chromosome 20q13.2 [5,6] and was found to play an important role during mitosis. It has been shown that AURKA knockdown suppresses centrosome maturation [7,8]. In mice, AURKA genetic ablation or null mutation leads to mitotic arrest and embryonic death at the blastocyst stage [9-11]. Furthermore, AURKA is critical for bipolar-spindle assembly where it interacts with Ran-TPX2 pathway [12]. In addition to its role in mitosis, AURKA is recently reported to regulate stem cell self-renewal, reprogramming, and differentiation [13,14]. Overexpression of AURKA has been reported to impair DNA damage repair through inhibition recruitment of RAD51 to double strands breaks [15]. Additionally, AURKA was found to suppress BRCA1 and BRCA2, both play a major role in DNA damage response [16,17]. Furthermore, AURKA was also reported to regulate cell migration and adhesion [18] and to mediate an increase in VEGF mRNA expression [19]. AURKA activity is dependent on its phosphorylation at the 288-threonine residue (T288); located on the activation loop of the kinase. AURKA is activated through an autophosphorylation process upon binding with TPX2 [12,20], along with several other kinases. AURKA signaling networks are summarized in Table 1 and Figure 1.
Table 1
Selected cancer associated proteins regulated by AURKA
Protein
Type of regulation
Functional significance
References
p53
Phospho-Ser215
Abrogates transactivation
[48,56]
Phospho-Ser315
Abrogates transactivation and enhances proteasomal degradation
NF-κBp65
Phospho-Ser536
Promotes inflammation and cell survival
[49]
P73
Phospho-Ser235
Induces apoptosis
[52-56]
MDM2
Phospho-Ser166
Activates MDM2 and degradation of P53
[48]
GSK3β
Phospho-Ser9
Inhibits GSK3β and enhances β-catenin activity
[19]
IκBα
Phospho-Ser32
Induces degradation of IκBα and activation of NF-κB pathway
[49]
JAK2
Increased expression
Activates STAT3
[55]
N-MYC
Increased expression
Stabilizes N-MYC protein
[106]
SRC
Phospho-Tyr416
Activates SRC and promotes cancer cell invasion
[18]
IKKα/β
Phospho-Ser176/180
Activates NF-κB pathway
[107]
NF-κB2/p100
Phospho-Ser866/870
Activates non-canonical NF-κB pathway
[108]
STAT3
Phospho-Tyr705
Promotes cell survival
[55]
RalA
Phospho-Ser194
Enhances transformed cell growth
[74]
BRCA1/BRCA2
Decreased expression
Down-regulate cell cycle and DNA damage response
Several studies have shown that AURKA is frequently amplified in several tumors including breast, leukemia, bladder, ovarian, gastric, esophageal, liver, colorectal, and pancreatic cancers [21-30]. Notably, AURKA overexpression has been significantly associated with high-grade (grade II-IV) and high-stage (stage IIIB-IV) hepatocellular carcinoma tumors [30]. Furthermore, it was suggested that AURKA is an essential mediator of chemoresistance in colorectal and breast cancers [31,32]. Importantly, several studies indicated that AURKA overexpression directly leads to malignant transformation and tumor formation [25,33,34]. Additionally, AURKA inhibition or knockdown was shown to induce senescence in multiple myeloma [35] and colon cancer cells [36]. Together, these findings strongly suggest the key role of AURKA in tumorigenesis, and thus, underscore AURKA as an attractive target for cancer therapy.
Gastrointestinal (GI) Cancers are a leading cause of cancer-related deaths in the world. In fact, gastric cancer is the second cause of cancer deaths [37], whereas esophageal neoplasm is the eighth most common cancer worldwide and its incidence, especially adenocarcinoma type, is continuously increasing [38]. At the same time, colorectal cancer is the third most common cancer worldwide [39]. In 2013, more than 30,000 new cases of liver cancer were estimated in men and women in the United States [40]. Similarly, more than 45,000 new cases of pancreatic cancer were estimated in the US in 2014 while its survival rate hardly improved in the last three to four decades [40]. The development of new treatment modalities and targeted therapy approaches, based on the molecular features of the tumor, is urgently needed to improve the dismal survival rates of these highly prevalent cancers worldwide. This review will focus on AURKA as a potential molecular therapeutic target in GI cancers. It will also summarize the recent advancement of AURKA inhibitors in pre-clinical studies and clinical trials.

AURKA in gastrointestinal cancers

Cancers can develop in any anatomical site of the GI system including esophagus, stomach, small intestine, colon, rectum, liver, gall bladder, and pancreas. A cancer in any of these organs represents a unique type where different molecular mechanisms of tumorigenesis can exist. Recent studies have shown that AURKA is frequently overexpressed and/or amplified in several GI cancers [25-28]. In the following sections, we will review and discuss some of the recently reported studies about AURKA functions in GI cancers.

AURKA in upper gastrointestinal cancers

Upper gastrointestinal (UGI) cancers include tumors of the stomach and esophagus. While esophageal squamous cell carcinoma (ESCC) is the predominant histological type of esophageal cancers in the world, there has been a significant increase in the incidence of gastroesophageal reflux-related esophageal adenocarcinomas (EAC) in the Western world [41]. The majority of gastric cancers are adenocarcinomas; other subtypes such as lymphomas and gastrointestinal stromal tumors are rare and will not be discussed in this review. Amplifications of chromosomal region 20q13, where AURKA is located, have been described in gastric and esophageal cancers [42,43]. Polymorphisms in the AURKA gene have also been reported in UGI cancers [44,45]. Several studies have shown frequent overexpression of AURKA at the mRNA and protein levels in ESCC, EAC, and gastric cancers [28,46-49]. It has also been suggested that the increased AURKA expression might be used as a prognostic marker of ESCC [50]. In addition, overexpression of AURKA in premalignant and malignant histological stages of reflux-induced Barrett’s tumorigenesis has been reported [51]. Similarly, overexpression of AURKA has been observed in early pre-neoplastic stages of gastric cancer in mouse models and human [49]. Taken together, these reports strongly suggest a critical role for AURKA in carcinogenesis.
Molecular studies have shown that AURKA promotes cell survival signaling while it suppresses the pro-apoptotic machinery in UGI cancer cells [52,53]. We and others have reported that AURKA promotes activation of the AKT pro-survival signaling pathway [47,54]. Furthermore, it has been shown that AURKA can regulate and suppress GSK3β kinase activity in gastric cancer cell lines [19]. The AURKA-GSK3β interaction activates β-catenin/TCF transcription complex, which leads to increased mRNA expression of several oncogenic proteins such as CCND1, c-MYC, c-MYC-binding protein, CLDN1, FGF18, and VEGF [19]. Pro-inflammatory signaling is a significant component in the etiology of tumor development and progression of UGI cancers. In this context, recent reports indicated that AURKA overexpression promotes activation of NF-κB [49] and STAT3 [55] pathways in these cancers. In these studies, AURKA inhibition abrogates the pro-survival and pro-inflammatory signaling mediated by NF-κB and STAT3 with suppression of key pro-survival target genes such as BCL-xL, BCL2, and MCL1 [49,55]. Some of the main features of cancer cells include resistance to pro-apoptotic stimuli and the ability to overcome genotoxic stress and chemotherapeutic-induced death. We and others have shown that AURKA can suppress p53 pro-apoptotic functions [48,56]. A recent study has shown that AURKA regulates the key ubiquitin ligase involved in degradation of p53, HDM2, whereby overexpression of AURKA enhanced HDM2 stabilization and promoted degradation of p53, thereby abrogating p53 pro-apoptotic function in response to chemotherapy [48]. Not only does AURKA circumvent p53 pathway, but it also provides a mechanism for cancer cells to evade apoptosis by suppressing p73, an important p53 family protein [52,56]. Collectively, these signaling mechanisms mediated by AURKA can promote cancer cell survival and provide a chemoresistance phenotype. These findings also suggest AURKA as part of a signaling hub controlling several key pathways that regulate the hallmarks of the cancer cell network.
Several AURKA inhibitors have been developed to overcome AURKA-mediated pro-survival and anti-apoptotic activities in cancer cells. Inhibition of AURKA using investigational MLN8054 or MLN8237 led to reversal of anti-apoptotic signaling cascades with activation of pro-apoptotic p73 in p53 deficient cells with re-expression of several pro-apoptotic proteins such as PUMA, NOXA, and p21 [52]. AURKA inhibition by small molecule MLN8237 as a single agent or in combination with Cisplatin or Docetaxel significantly enhanced cell death in esophageal adenocarcinoma xenograft mouse model [53,57]. These findings strongly indicate that AURKA could be an important therapeutic target in upper GI cancers.

AURKA in colorectal cancer

Colorectal cancer (CRC) was one of the first cancers found to have AURKA amplification. A 1998 study showed that overexpression of AURKA resulted in centrosome amplification, chromosomal instability and transformation in mammalian cells, including colon cancer cells [34]. Genetic variations in the AURKA gene were also detected and associated with aneuploidy in human colon tumors and low penetrance CRC susceptibility factor [58,59]. AURKA overexpression was associated with the down-regulation of checkpoint with forkhead and ring finger domains (CHFR) in colorectal cancers with high microsatellite instability [60]. Importantly, recent reports indicated that AURKA is critical for tumorigenicity and chemoresistance in CRC stem cells [31], and suggested AURKA as a predictive marker for recurrence in stage III in colon tumors lacking microsatellite instability [61]. These studies, as well as other studies, focused mainly on the fact that overexpression of AURKA leads to chromosomal instability. In normal cells, expression of AURKA protein is predominantly confined to the nucleus and subject to spatio-temporal regulation during mitotic progression. In contrast, expression of AURKA protein is frequently observed in the cytoplasm, in addition to the nucleus, in cancer cells, suggesting an extended role of AURKA beyond regulation of mitosis [62]. This finding provides additional evidence supporting the wealth of signaling data for AURKA reported in upper GI cancers (summarized in the section above). For instance, Tseng and colleagues found that AURKA enhances formation and aggregation of mutant Ras (RasV12) through regulation of RAS/MEK/ERK pathways and AKT phosphorylation in colon cancer [63]. Aurora kinase pharmacological inhibition sensitized colon cancer cells to Tumor necrosis factor (TNF) and TNF-related apoptosis-inducing ligand (TRAIL) [64]. In addition, AURKA inhibition, using specific or pan Aurora kinase inhibitors, sensitized colon cancer cells to chemotherapy [65], TNF or TRAIL induced apoptosis [64] as well as mitotic failure and cell death when inhibited along with SRC [66]. Other reports showed that pharmacological inhibition of AURKA with MLN8054 in colon cancer HCT-116 xenografts induces senescence in vivo [36]. These findings suggest that more studies are needed to better characterize the role of AURKA in colon cancer signaling and therapeutics.

AURKA in pancreatic cancer

Overexpression of AURKA was reported in pancreatic cancer [26], in the early stages of abnormalities in pancreatic ducts and ductal dysplasia in transgenic mouse model for pancreatic cancer [67], and linked to chromosome instability and centrosome abnormality [68]. As observed in other GI cancers, suppression of AURKA using RNA interference [69] or small molecule inhibitor SNS-314 [70] suppresses tumor growth and enhances chemosensitivity. Similar results were obtained with specific AURKA inhibitor CYC3 in combination with Paclitaxel [71]. In addition, AURKA plays a role in protecting human pancreatic ductal adenocarcinoma cells from autophagic cell death induced by metabolic stress [72]. Interestingly, while it was shown in colorectal cancer that AURKA regulates MEK/ERK pathway [63], it was reported that AURKA is a downstream target of this pathway in pancreatic cancer [73], raising the possibility of an existing positive feedback loop between AURKA and MEK/ERK pathway. This signaling loop further underscores the potential therapeutic benefit of targeting AURKA in pancreatic cancer. Additionally, AURKA can phosphorylate RalA at Ser194 and regulate its subcellular localization, which is essential for Ras-mediated cellular transformation [74]. However, further studies by the same group failed to show correlation of RalA (S194) phosphorylation with responsiveness to MLN8237, indicating that the principal target of AURKA may not be RalA [75].

AURKA in liver cancer

In human hepatocellular carcinoma (HCC), AURKA was found to be overexpressed at mRNA level in 61% of HCC samples [30], whereas gene amplification was recorded in only 3 out of 224 HCC samples [30]. Notably, high expression levels of AURKA were associated with high-grade, high-stage tumors and poor outcome. Microarray studies suggested that AURKA phosphorylates and stabilizes hepatoma up-regulated protein (HURP) [76], a cell cycle regulated gene that is overexpressed in human hepatocellular carcinoma (HCC) [77]. On the other hand, it was reported that hypoxia and hypoxia-inducible factor-1 (HIF-1) are important in the tumor microenvironment and could regulate AURKA at the transcriptional level [78,79]. Other studies showed that AURKA, can in turn, regulate HIF-1α through activation of AKT and p38-MAPK signaling pathways leading to malignant phenotypes of HCC [80], indicating a positive feedback loop sustaining continuous activation of AURKA. Several preclinical studies investigated the effects of AURKA inhibition in HCC. For example, a report showed that the pan Aurora inhibitor PHA-739358 inhibits HCC tumor growth in a tumor xenograft mouse model [81]. Further, AURKA inhibition with small molecule R1498 was found to target mitosis pathway and suppress angiogenesis [82]. These studies emphasize the multifaceted roles of AURKA in HCC and imply AURKA as a feasible druggable target in HCC.

Clinical development of aurora kinase A inhibitors

The aforementioned preclinical studies shed light on the roles and contributions of AURKA in tumorigenesis, which serve as premise for the development of several pan Aurora kinase inhibitors (AKIs) and selective inhibitors of AURKA. In the following section, we will focus on the present investigational AURKA inhibitors in completed, ongoing, or planned clinical trials.

MLN8237 (alisertib)

MLN8237 (alisertib) is a second generation derivative of the initial small molecule MLN8054, developed by Millennium Pharmaceuticals, Inc. Both generations work as highly specific ATP-competitive AURKA inhibitors with an IC50 of 2 nM in chronic myeloid leukemia (CML) for MLN8237 [83,84]. The MLN8237 IC50 values vary in other cancers, ranging from 6.7 nM in HeLa cells to 469 nM in DLD-1 colon cancer cell line [85]. MLN8237 can target AURKB at higher doses (396.5 nM) [35,85]. The first generation MLN8054 was terminated in phase 1 clinical trials due to off-target toxicities [86]. Both drugs are ATP competitive, where they bind and inhibit AURKA phosphorylation at T288. In murine xenograft models, MLN8237 was well tolerated with doses ranging from 15 to 40 mg/kg/d. MLN8237 was also found to be well absorbed and steady state plasma levels were reached within 7 days of twice daily dosing in phase 1 clinical trials [87]. Investigations of MLN8237 in preclinical studies have shown that it induces abnormal G2/M cell cycle arrest, abnormalities in mitotic spindles, and apoptosis in upper GI cancers [48,49,53]. In addition, MLN8237 down-regulates several oncogenic pathways such as NF-κB [49,88], AKT [19], and STAT3 [55] in cancer cells. On the other hand, several reports demonstrated that treatment with MLN8237 could activate p53 [47,48,89] and p73 [52,56] apoptotic pathways. The effects of MLN8237 were tested in several non-GI cancers. It has been shown that MLN8237 sensitized PC3 and DU145 prostate cancer cells to radiation, increased the DNA double-strand breaks, induced G2/M cell cycle arrest and polyploidy [90]. Treatment of OVCAR-5 and SKOV3ip2 ovarian cancer cells with MLN8237 resulted in inhibition of cytoskeletal regulatory SRC (assessed by decreased phosphorylation at Tyr-416) and decreased migration and adhesion [18]. Moreover, MLN8237 has been tested on many pediatric cancer cell lines like Ewing sarcoma, neuroblastoma, glioblastoma, rhabdomyosarcoma, ALL, and AML where it inhibited cell growth and delayed tumor growth [91]. In vitro and in vivo tumor xenografts mouse models showed that MLN8237 enhances anti-tumor activity of chemotherapeutics. For instance, dual treatment of MLN8237 with Docetaxel enhanced apoptosis and anti-tumor activity in lymphoma [92] and UGI adenocarcinomas cell models [53]. Similarly, a combination of Cisplatin with MLN8237 had robust anti-tumor activity in tumor xenograft models of esophageal adenocarcinomas [57]. In B-cell Non-Hodgkin Lymphoma, MLN8237 in combination with Vincristine and Rituximab showed robust cell death in vitro and had curative effects in vivo using mantle cell lymphoma (MCL) mouse xenograft model [93]. Collectively, the present data indicate that MLN8237 is an effective drug with high specificity and limited off target activity that works in various models. Notably, there are 49 clinical trials with MLN8237 in leukemia, breast, lung, colorectal, ovarian, and pancreatic cancers (clinicaltrials.gov; March 2015). Phase 1 clinical studies of the drug as a single agent demonstrate preliminary activity where 37% of patients achieved a best response of stable disease for more than 6 months in some solid tumors (colorectal cancer, chondrosarcoma, leiomyosarcoma, and liposarcoma) with modest toxicity such as nausea, stomatitis, and alopecia among other adverse effects [87]. The recommended phase 2 dose of MLN8237 is 50 mg orally given twice daily on days 1–7 of a 21-day cycle for various solid tumors and hematologic malignancies [94]. Phase 2 studies of MLN8237 as a single agent are ongoing in multiple tumor types including lung, breast, ovarian, UGI, and pancreatic cancers (Table 2). In some of the clinical trials, MLN8237 has been tested in combination with other drugs such as Cetuximab and Docetaxel among others (Table 2). A recent phase 2 clinical trial of MLN8237 as a single agent in advanced solid tumors revealed that 9% of patients (4 out of 47 patients) with gastro-esophageal adenocarcinoma partially responded to the treatment [95]. A newly registered phase 1 clinical trial (NCT02319018) is ongoing to investigate the side effects of MLN8237 in combination with other chemotherapeutic drugs (fluorouracil, leucovorin calcium, oxaliplatin). This clinical trial will be the first to evaluate MLN8237 exclusively in gastrointestinal tumors (clinicaltrials.gov, Table 2).
Table 2
Selected clinical trials of Aurora kinases inhibitors
Inhibitor
Chemical structure
Target, selectivity (IC50)
NCT number, phase, status
Cancer type
Ref.
MLN8237
https://static-content.springer.com/image/art%3A10.1186%2Fs12943-015-0375-4/MediaObjects/12943_2015_375_Figa_HTML.gif
AURKA (2 nM)
NCT01898078, Phase 1, Ongoing
Advanced Solid Tumors; Lymphoma
 
NCT01045421, Phase 1/Phase 2, Completed
Nonhematological Malignancies
[95]
NCT01091428 Phase 1/Phase 2, Ongoing (Agent in combination with Paclitaxel)
Ovarian Carcinoma; Fallopian Tube Cancer; Peritoneal Cancer; Breast Carcinoma
 
NCT01471964, Phase 1/Phase 2, Ongoing (Agent in combination with Erlotinib)
Metastatic or Recurrent Non-Small Cell Lung Cancer
 
NCT02114229, Phase 2, Ongoing
Malignant Rhabdoid Tumor; Atypical Teratoid Rhabdoid Tumor
 
NCT00962091, Phase 1, Completed
Advanced Solid Tumors
 
NCT01512758, Phase 1, Completed
Adult East Asian Patients With Advanced Solid Tumors or Lymphomas
 
NCT02109328, Phase 2, Ongoing
Bladder Cancer; Transitional Cell Carcinoma
 
NCT01812005, Phase 2, Ongoing (Agent in combination with Rituximab)
Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma
 
NCT01397825, Phase 1/Phase 2, Ongoing (Agent in combination with Rituximab and Vincristine)
Relapsed or Refractory Aggressive B-Cell Lymphoma
 
NCT00500903, Phase 1, Completed
Advanced Solid Tumors
 
NCT00697346, Phase 1, Completed
Advanced Hematological Malignancies
[110]
NCT01799278, Phase 2, Ongoing
Metastatic Castrate Resistant and Neuroendocrine Prostate Cancer
 
NCT00807495, Phase 2, Completed
Aggressive Non-Hodgkin’s Lymphoma
 
NCT01567709, Phase 1, Ongoing (Agent in combination with Vorinostat)
Relapsed or Recurrent Hodgkin Lymphoma, B-Cell Non-Hodgkin Lymphoma, or Peripheral T-Cell Lymphoma
 
NCT00651664, Phase 1, Completed.
Advanced Solid Tumors; Lymphomas
 
NCT01695941, Phase 1, Ongoing (Agent in combination with Bortezomib and Rituximab)
Relapsed or Refractory Mantle Cell Lymphoma or B-Cell Low Grade Non-Hodgkin Lymphoma
 
NCT01154816, Phase 2, Completed
Recurrent or Refractory Solid Tumors or Leukemia
 
NCT02038647, Phase 2, Ongoing (Agent in combination with Placebo and Paclitaxel)
Small Cell Lung Cancer
 
NCT01779843, Phase 1, Ongoing (Agent in combination with Cytarabine and Idarubicin)
Acute Myeloid Leukemia
 
NCT00830518, Phase 2, Completed
Acute Myelogenous Leukemia and High-Grade Myelodysplastic Syndrome
 
NCT01677559, Phase 1, Ongoing (Agent in combination with Nab-Paclitaxel)
Advanced Solid Malignancies
 
NCT01924260, Phase 1, Ongoing (Agent in combination with Gemcitabine)
Solid Tumors or Pancreatic Cancer
 
NCT01897012, Phase 1, Ongoing (Agent in combination with Romidepsin)
Relapsed or Refractory B-Cell or T-Cell Lymphomas
 
NCT01034553, Phase 1/Phase 2, Ongoing (Agent in combination with Bortezomib)
Relapsed or Refractory Multiple Myeloma
 
NCT01482962, Phase 3, Ongoing (Agent in combination with Pralatrexate, Gemcitabine and Romidepsin)
Relapsed/Refractory Peripheral T-Cell Lymphoma
 
NCT01848067, Phase 1/Phase 2, Ongoing (Agent in combination with Abiraterone acetate and Prednisone)
Hormone-Resistant Prostate Cancer
 
NCT01466881, Phase 2, Ongoing
Relapsed or Refractory Peripheral T-Cell Non-Hodgkin Lymphoma
 
NCT01923337, Phase 1, Ongoing (Agent in combination with Irinotecan hydrochloride)
Advanced Solid Tumors or Colorectal Cancer
 
NCT01714947, Phase 1, Completed
Advanced Solid Tumors; Lymphoma
 
NCT01094288, Phase 1, Ongoing (Agent in combination with Docetaxel)
Advanced Solid Tumors Including Castration-Resistant Prostate Cancer
 
NCT01639911, Phase 1, Ongoing (Agent in combination with Pazopanib)
Solid Tumors
 
NCT00853307, Phase 2, Completed
Ovarian, Fallopian Tube, or Peritoneal Carcinoma
 
NCT01540682, Phase 1, Completed (Agent in combination with Cetuximab and radiotherapy)
Head and Neck Cancer
 
NCT01316692, Phase 2, Ongoing
Unresectable Stage III-IV Melanoma
 
NCT02187991, Phase 2, Ongoing (Agent in combination with Paclitaxel)
Metastatic or Locally Recurrent Breast Cancer
 
   
NCT02259010, Phase 1, Ongoing (Agent in combination with Itraconazole)
Advanced Solid Tumors or Relapsed/Refractory Lymphoma
 
NCT02367352, Phase 1, Ongoing (Agent in combination with Paclitaxel)
East Asian Patients With Advanced Solid Tumors
 
NCT02319018, Phase 1, Ongoing (Agent in combination with Leucovorin Calcium, Fluorouracil, and Oxaliplatin)
Gastrointestinal Tumors
 
NCT02219789, Phase 1, Ongoing (Agent in combination with Fulvestrant)
Hormone Receptor Positive, Metastatic or Advanced Breast Cancer
 
NCT02186509, Phase 1, Ongoing (Agent with radiation)
Recurrent High-Grade Gliomas
 
NCT01848067, Phase 1&2, Ongoing (Agent with Abiraterone acetate and Prednisone)
Hormone-Resistant Prostate Cancer
 
NCT01779843, Phase 1, Ongoing (Agent with Cytarabine and Idarubicin)
Acute Myeloid Leukemia
 
NCT02327169, Phase 1, Ongoing (Agent with MLN2480, MLN0128, and Paclitaxel)
Advanced Nonhematologic Malignancies
 
NCT00543387, Phase 1, Completed (Agent in combination with Docetaxel)
Advanced and/or Refractory Solid Tumors
 
MK-5108
https://static-content.springer.com/image/art%3A10.1186%2Fs12943-015-0375-4/MediaObjects/12943_2015_375_Figb_HTML.gif
AURKA (0.046 nM)
NCT01914510, Phase 2. Ongoing
Ovarian Clear Cell Cancers
 
ENMD-2076
https://static-content.springer.com/image/art%3A10.1186%2Fs12943-015-0375-4/MediaObjects/12943_2015_375_Figc_HTML.gif
AURKA (14 nM)
NCT01719744, Phase 2. Ongoing
Advanced/Metastatic Soft Tissue Sarcoma
 
NCT00904787, Phase 1. Completed
Relapsed or Refractory Hematological Malignancies
 
NCT01639248, Phase 2. Ongoing
Advanced and Metastatic Triple-Negative Breast Cancer
 
NCT00806065, Phase 1. Completed
Multiple Myeloma
 
NCT00658671, Phase 1. Completed
Advanced Cancer
[100]
NCT02234986, Phase 2, Ongoing
Advanced Fibrolamellar Carcinoma
 
NCT01104675, Phase 2, Completed
Ovarian Cancer
 

ENMD-2076

ENMD-2076 was originally developed by EntreMed, Inc. as a selective AURKA inhibitor with an IC50 of 14 nM in biochemical assays [96]. However, ENMD-2076 was found to inhibit several other oncogenic kinases at different IC50 including FLT3 (1.86 nM), SRC (20.2 nM), VEGFR3 (15.9 nM), VEGFR2 (58.2 nM), PDGFRα (56.4 nM), and FGFR1 (92.7 nM) [96]. This drug was shown to induce G2/M cell cycle arrest and apoptosis, consistent with AURKA inhibition responses. ENMD-2076 was found to be selectively toxic to multiple myeloma (MM) cells but minimally toxic to hematopoietic progenitor cells [97]. Interestingly, exposure as short as 6 hours induces apoptosis and reduces AURKA autophosphorylation at T288; however, this was achieved at doses that also inhibited AURKB and several other kinases [97]. In vitro studies in multiple myeloma showed that treatment with ENMD-2076 inhibited AKT phosphorylation, and thus, altered the activity of some of its targets, including GSK3β, survivin, and XIAP [97]. Additionally, ENMD-2076 was shown to down-regulate phosphorylation of STAT3 at Ser-727 [97]. In mouse xenograft models of multiple myeloma, ENMD-2076 showed good tolerability at doses up to 200 mg/kg, and immunohistochemistry analysis revealed reduced Ki67 and increased cleaved caspase-3 expression levels [97]. In a patient-derived xenograft model of CRC, ENMD-2076 inhibited tumor growth, which led to regression; this was associated with significant reduction in 18-FDG uptake at day 3 and 21 of treatment [98]. In breast cancer, ENMD-2076 was most effective against triple-negative tumors with increased mutant p53 expression [99]. In addition, cells lacking estrogen receptor expression and/or HER2 overexpression were the most sensitive cells to the drug [99]. A completed phase 1 clinical trial indicated that this drug is tolerable at 160 mg/m2 daily administered orally in patients with advanced solid tumors [100]. ENMD-2076 is currently being evaluated in phase 1 and 2 clinical trials, specifically in breast and ovarian cancers (clinicaltrials.gov, Table 2).

MK-5108

MK-5018 (VX689) is a specific AURKA inhibitor (IC50: 0.046 nM) developed by Vertex Pharmaceuticals [101]. MK-5018 also inhibits AURKB and AURKC, although at higher doses (200 folds higher than AURKA) with various IC50 values among different cancer cell lines [101]. Tumor xenografts treated with MK-5018 showed significant tumor inhibition at doses of 15 or 30 mg/kg twice daily for 12 days, indicating the high tolerability of the drug [101]. In addition to a typical AURKA inhibition response (polyploidy and cell cycle arrest), inhibition of NF-κB activity and reduction of cytokine production were observed after treatment of ovarian cancer stem cells with MK-5108 [102]. Further, MK-5108 was investigated in combination with other therapeutic agents. For instance, MK-5108, in combination with histone deacetylase inhibitor, vorinostat, induced lymphoma cell death along with reduction of c-Myc, hTERT, and micro RNA levels in vitro [103]. In a colon cancer xenograft mouse model, MK-5108 was tested in combination with Docetaxel and showed additive anti-tumor activity as compared to animals that received Docetaxel alone [101]. A completed phase 1 clinical trial of MK-5108 as a single agent or in combination with Docetaxel to test its safety, side effects, and tolerability showed moderate toxicities with some clinical activity as a single agent in patients with advanced and/or refractory solid tumors [104] (clinicaltrials.gov, Table 2).

Conclusions

Since their discovery, aurora kinases have been under constant investigation to uncover their roles in carcinogenesis. Several studies have indicated that AURKA is overexpressed and/or amplified in different malignances relative to normal cells. A large body of literature has shown that overexpression of AURKA mediates several pro-tumorigenic functions in addition to mitosis; thereby suggesting AURKA as a potential therapeutic target.
Several studies [19,48,49,52,55] identified multiple downstream targets of AURKA involved in critical cellular functions. These studies demonstrated that AURKA not only plays a role in regulating cell cycle and mitosis, but also interacts with a number of key oncogenic signaling networks, suggesting that AURKA is located at a signaling hub in cancer cells. Notably, many of these molecular regulations were established in GI cancers. These findings could be applicable to other types of tumors. However, rigorous investigations are required before a conclusion can be drawn. AURKA activates multiple oncogenic signaling pathways while suppressing critical tumor suppressor functions of p53 [48,89] and p73 [52,56] in cancer cells. AURKA regulates several fundamental properties of carcinogenesis such as cell survival, growth, invasion, inflammation, and angiogenesis. Furthermore, AURKA was shown to regulate pluripotency of embryonic stem cells [13,14], which may suggest that AURKA plays a role in regulating stemness features of cancer cells.
Although our understanding of the role of aurora kinases has improved significantly over the past few years, and several pan or specific Aurora inhibitors were developed with variable specificities, only a few have moved forward in clinical trials. One of the most widely studied inhibitors is MLN8237 (alisertib), which has been investigated in preclinical studies using in vitro and tumor xenograft mouse models with promising anti-tumor effects, alone and in combination with Cisplatin [57] or Docetaxel [53]. MLN8237 as single agent or in combination with chemotherapeutics has been evaluated in clinical trials (Table 2). In spite of the extensive preclinical studies on AURKA, few clinical trials were undertaken to evaluate the potentiality of AURKA as a target in GI cancers. The most advanced clinical trial (phase 3) is testing MLN8237 in hematologic malignancies (clinical trial# NCT01482962). In solid tumors, phase 2 clinical trials are currently testing MLN8237 alone or in combination with other chemotherapeutics or biologics (Paclitaxel, Erlotinib, Rituximab, Vincristine among others, Table 2). ENMD-2076 is another specific AURKA inhibitor, currently in phase 2 for ovarian and breast cancers (NCT01914510, NCT01639248, NCT01104675) that has not been tested in GI cancers. Given the experience from other targeted therapy approaches, it is unlikely that AURKA inhibition alone would be sufficient to achieve the desired therapeutic response in solid tumors. Clinical trials utilizing combinations with other anti-cancer drugs may have higher probabilities of success in cancer cell killing by circumventing the expected resistance due to tumor heterogeneity. However, these approaches should be carefully developed as they could be hindered by increased toxicities.
It is also a critical priority to investigate and identify molecular biomarkers of response and resistance to AURKA inhibitors. Biomarker based strategies for patient enrollment into clinical trials hold the future direction for personalized cancer therapy. Based on the available literature, several molecules could be potential biomarkers of response or resistance to AURKA inhibition. These molecules include targets of AURKA such as P53, P73, AKT, BRCA 1&2, STAT3, NF-κB, MDM2, SRC, and MYC [16,17,48,49,52,55,56]. For instance, a study aimed to predict biomarkers of response to the aurora kinase inhibitor, PF-03814735, found that the status of the MYC gene family and retinoblastoma pathway members significantly correlated with the efficacy of the inhibitor in small cell lung cancer and colon cancer cell lines [105]. Identification of biomarkers that can reliably predict benefits from AURKA inhibitors should be developed as an integral part of clinical trials in our pursuit for personalized medicine.
In summary, while there is relatively strong biology and several preclinical studies supporting AURKA as an attractive therapeutic target in GI cancers along with the availability of multiple inhibitors, larger and carefully designed clinical trials will be needed to clearly establish the role of AURKA inhibitors in the treatment of GI cancers.

Acknowledgements

This review was supported by R01CA131225 from the National Institutes of Health. The contents of this work are solely the responsibility of the authors and do not necessarily represent the official views of the National Cancer Institute or Vanderbilt University.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

AK: Prepared the scientific material, write the main text, generated tables and made figures; AB: revised the scientific contents and edited the text; LG: revised the scientific contents; WE: developed the structure of the review, revised the scientific material, and edited the contents. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol. 2001;2:21–32.PubMedCrossRef Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol. 2001;2:21–32.PubMedCrossRef
2.
Zurück zum Zitat Brown JR, Koretke KK, Birkeland ML, Sanseau P, Patrick DR. Evolutionary relationships of Aurora kinases: Implications for model organism studies and the development of anti-cancer drugs. BMC Evol Biol. 2004;4:39-49. Brown JR, Koretke KK, Birkeland ML, Sanseau P, Patrick DR. Evolutionary relationships of Aurora kinases: Implications for model organism studies and the development of anti-cancer drugs. BMC Evol Biol. 2004;4:39-49.
3.
Zurück zum Zitat Kollareddy M, Dzubak P, Zheleva D, Hajduch M. Aurora Kinases: Structure, Functions and Their Association with Cancer. Biomed Pap Olomouc. 2008;152:27–33.CrossRef Kollareddy M, Dzubak P, Zheleva D, Hajduch M. Aurora Kinases: Structure, Functions and Their Association with Cancer. Biomed Pap Olomouc. 2008;152:27–33.CrossRef
4.
Zurück zum Zitat Carmena M, Earnshaw WC. The cellular geography of aurora kinases. Nat Rev Mol Cell Biol. 2003;4:842–54.PubMedCrossRef Carmena M, Earnshaw WC. The cellular geography of aurora kinases. Nat Rev Mol Cell Biol. 2003;4:842–54.PubMedCrossRef
5.
Zurück zum Zitat Sen S, Zhou HY, White RA. A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene. 1997;14:2195–200.PubMedCrossRef Sen S, Zhou HY, White RA. A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene. 1997;14:2195–200.PubMedCrossRef
6.
Zurück zum Zitat Tanner MM, Grenman S, Koul A, Johannsson O, Meltzer P, Pejovic T, et al. Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Clin Cancer Res. 2000;6:1833–9.PubMed Tanner MM, Grenman S, Koul A, Johannsson O, Meltzer P, Pejovic T, et al. Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Clin Cancer Res. 2000;6:1833–9.PubMed
7.
Zurück zum Zitat Hannak E, Kirkham M, Hyman AA, Oegema K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J Cell Biol. 2001;155:1109–15.PubMedCentralPubMedCrossRef Hannak E, Kirkham M, Hyman AA, Oegema K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J Cell Biol. 2001;155:1109–15.PubMedCentralPubMedCrossRef
8.
Zurück zum Zitat Hirota T, Kunitoku N, Sasayama T, Marumoto T, Zhang DW, Nitta M, et al. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell. 2003;114:585–98.PubMedCrossRef Hirota T, Kunitoku N, Sasayama T, Marumoto T, Zhang DW, Nitta M, et al. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell. 2003;114:585–98.PubMedCrossRef
9.
Zurück zum Zitat Yoon Y, Cowley DO, Gallant J, Jones SN, Van Dyke T, Rivera-Perez JA. Conditional Aurora A deficiency differentially affects early mouse embryo patterning. Dev Biol. 2012;371:77–85.PubMedCentralPubMedCrossRef Yoon Y, Cowley DO, Gallant J, Jones SN, Van Dyke T, Rivera-Perez JA. Conditional Aurora A deficiency differentially affects early mouse embryo patterning. Dev Biol. 2012;371:77–85.PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Cowley DO, Rivera-Perez JA, Schliekelman M, He YJ, Oliver TG, Lu L, et al. Aurora-A Kinase Is Essential for Bipolar Spindle Formation and Early Development. Mol Cell Biol. 2009;29:1059–71.PubMedCentralPubMedCrossRef Cowley DO, Rivera-Perez JA, Schliekelman M, He YJ, Oliver TG, Lu L, et al. Aurora-A Kinase Is Essential for Bipolar Spindle Formation and Early Development. Mol Cell Biol. 2009;29:1059–71.PubMedCentralPubMedCrossRef
11.
Zurück zum Zitat Lu LY, Wood JL, Ye L, Minter-Dykhouse K, Saunders TL, Yu XC, et al. Aurora A Is Essential for Early Embryonic Development and Tumor Suppression. J Biol Chem. 2008;283:31785–90.PubMedCentralPubMedCrossRef Lu LY, Wood JL, Ye L, Minter-Dykhouse K, Saunders TL, Yu XC, et al. Aurora A Is Essential for Early Embryonic Development and Tumor Suppression. J Biol Chem. 2008;283:31785–90.PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat Tsai MY, Wiese C, Cao K, Martin O, Donovan P, Ruderman J, et al. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol. 2003;5:242–8.PubMedCrossRef Tsai MY, Wiese C, Cao K, Martin O, Donovan P, Ruderman J, et al. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol. 2003;5:242–8.PubMedCrossRef
13.
14.
Zurück zum Zitat Lee DF, Su J, Ang YS, Carvajal-Vergara X, Mulero-Navarro S, Pereira CF, et al. Regulation of Embryonic and Induced Pluripotency by Aurora Kinase-p53 Signaling. Cell Stem Cell. 2012;11:179–94.PubMedCentralPubMedCrossRef Lee DF, Su J, Ang YS, Carvajal-Vergara X, Mulero-Navarro S, Pereira CF, et al. Regulation of Embryonic and Induced Pluripotency by Aurora Kinase-p53 Signaling. Cell Stem Cell. 2012;11:179–94.PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Sourisseau T, Maniotis D, McCarthy A, Tang C, Lord CJ, Ashworth A, et al. Aurora-A expressing tumour cells are deficient for homology-directed DNA double strand-break repair and sensitive to PARP inhibition. EMBO Mol Med. 2010;2:130–42.PubMedCentralPubMedCrossRef Sourisseau T, Maniotis D, McCarthy A, Tang C, Lord CJ, Ashworth A, et al. Aurora-A expressing tumour cells are deficient for homology-directed DNA double strand-break repair and sensitive to PARP inhibition. EMBO Mol Med. 2010;2:130–42.PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Sankaran S, Crone DE, Palazzo RE, Parvin JD. Aurora-A kinase regulates breast cancer associated gene 1 inhibition of centrosome-dependent microtubule nucleation. Cancer Res. 2007;67:11186–94.PubMedCrossRef Sankaran S, Crone DE, Palazzo RE, Parvin JD. Aurora-A kinase regulates breast cancer associated gene 1 inhibition of centrosome-dependent microtubule nucleation. Cancer Res. 2007;67:11186–94.PubMedCrossRef
17.
Zurück zum Zitat Yang G, Chang B, Yang F, Guo XQ, Cai KQ, Xiao X, et al. Aurora Kinase A Promotes Ovarian Tumorigenesis through Dysregulation of the Cell Cycle and Suppression of BRCA2. Clin Cancer Res. 2010;16:3171–81.PubMedCentralPubMedCrossRef Yang G, Chang B, Yang F, Guo XQ, Cai KQ, Xiao X, et al. Aurora Kinase A Promotes Ovarian Tumorigenesis through Dysregulation of the Cell Cycle and Suppression of BRCA2. Clin Cancer Res. 2010;16:3171–81.PubMedCentralPubMedCrossRef
18.
Zurück zum Zitat Do TV, Xiao F, Bickel LE, Klein-Szanto AJ, Pathak HB, Hua X, et al. Aurora kinase A mediates epithelial ovarian cancer cell migration and adhesion. Oncogene. 2013;33:539-549. Do TV, Xiao F, Bickel LE, Klein-Szanto AJ, Pathak HB, Hua X, et al. Aurora kinase A mediates epithelial ovarian cancer cell migration and adhesion. Oncogene. 2013;33:539-549.
20.
Zurück zum Zitat Eyers PA, Erikson E, Chen LG, Maller JL. A novel mechanism for activation of the protein kinase aurora A. Curr Biol. 2003;13:691–7.PubMedCrossRef Eyers PA, Erikson E, Chen LG, Maller JL. A novel mechanism for activation of the protein kinase aurora A. Curr Biol. 2003;13:691–7.PubMedCrossRef
21.
Zurück zum Zitat Ochi T, Fujiwara H, Suemori K, Azuma T, Yakushijin Y, Hato T, et al. Aurora-A kinase: a novel target of cellular immunotherapy for leukemia. Blood. 2009;113:66–74.PubMedCrossRef Ochi T, Fujiwara H, Suemori K, Azuma T, Yakushijin Y, Hato T, et al. Aurora-A kinase: a novel target of cellular immunotherapy for leukemia. Blood. 2009;113:66–74.PubMedCrossRef
22.
Zurück zum Zitat Park HS, Park WS, Bondaruk J, Tanaka N, Katayama H, Lee S, Spiess PE, Steinberg JR, Wang Z, Katz RL, et al: Quantitation of aurora kinase A gene copy number in urine sediments and bladder cancer detection. J Natl Cancer Inst 2008, 100:1401-1411. Park HS, Park WS, Bondaruk J, Tanaka N, Katayama H, Lee S, Spiess PE, Steinberg JR, Wang Z, Katz RL, et al: Quantitation of aurora kinase A gene copy number in urine sediments and bladder cancer detection. J Natl Cancer Inst 2008, 100:1401-1411.
23.
Zurück zum Zitat Tanaka T, Kimura M, Matsunaga K, Fukada D, Mori H, Okano Y. Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res. 1999;59:2041–4.PubMed Tanaka T, Kimura M, Matsunaga K, Fukada D, Mori H, Okano Y. Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res. 1999;59:2041–4.PubMed
24.
Zurück zum Zitat Watanabe T, Imoto I, Katahira T, Hirasawa A, Ishiwata I, Emi M, et al. Differentially regulated genes as putative targets of amplifications at 20q in ovarian cancers. Jpn J Cancer Res. 2002;93:1114–22.PubMedCrossRef Watanabe T, Imoto I, Katahira T, Hirasawa A, Ishiwata I, Emi M, et al. Differentially regulated genes as putative targets of amplifications at 20q in ovarian cancers. Jpn J Cancer Res. 2002;93:1114–22.PubMedCrossRef
25.
Zurück zum Zitat Bischoff JR, Anderson L, Zhu YF, Mossie K, Ng L, Souza B, et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J. 1998;17:3052–65.PubMedCentralPubMedCrossRef Bischoff JR, Anderson L, Zhu YF, Mossie K, Ng L, Souza B, et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J. 1998;17:3052–65.PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat Li DH, Zhu JJ, Firozi PF, Abbruzzese JL, Evans DB, Cleary K, et al. Overexpression of oncogenic STK15/BTAK/aurora A kinase in human pancreatic cancer. Clin Cancer Res. 2003;9:991–7.PubMed Li DH, Zhu JJ, Firozi PF, Abbruzzese JL, Evans DB, Cleary K, et al. Overexpression of oncogenic STK15/BTAK/aurora A kinase in human pancreatic cancer. Clin Cancer Res. 2003;9:991–7.PubMed
27.
Zurück zum Zitat Kamada K, Yamada Y, Hirao T, Fujimoto H, Takahama Y, Ueno M, et al. Amplification/overexpression of Aurora-A in human gastric carcinoma: Potential role in differentiated type gastric carcinogenesis. Oncol Rep. 2004;12:593–9.PubMed Kamada K, Yamada Y, Hirao T, Fujimoto H, Takahama Y, Ueno M, et al. Amplification/overexpression of Aurora-A in human gastric carcinoma: Potential role in differentiated type gastric carcinogenesis. Oncol Rep. 2004;12:593–9.PubMed
28.
Zurück zum Zitat Yang SB, Zhou XB, Zhu HX, Quan LP, Bai JF, He J, et al. Amplification and overexpression of Aurora-A in esophageal squamous cell carcinoma. Oncol Rep. 2007;17:1083–8.PubMed Yang SB, Zhou XB, Zhu HX, Quan LP, Bai JF, He J, et al. Amplification and overexpression of Aurora-A in esophageal squamous cell carcinoma. Oncol Rep. 2007;17:1083–8.PubMed
29.
Zurück zum Zitat Rojanala S, Han HY, Munoz RM, Browne W, Nagle R, Von Hoff DD, et al. The mitotic serine threonine kinase, Aurora-2, is a potential target for drug development in human pancreatic cancer. Mol Cancer Ther. 2004;3:451–7.PubMed Rojanala S, Han HY, Munoz RM, Browne W, Nagle R, Von Hoff DD, et al. The mitotic serine threonine kinase, Aurora-2, is a potential target for drug development in human pancreatic cancer. Mol Cancer Ther. 2004;3:451–7.PubMed
30.
Zurück zum Zitat Jeng YM, Peng SY, Lin CY, Hsu HC. Overexpression and amplification of Aurora-A in hepatocellular carcinoma. Clin Cancer Res. 2004;10:2065–71.PubMedCrossRef Jeng YM, Peng SY, Lin CY, Hsu HC. Overexpression and amplification of Aurora-A in hepatocellular carcinoma. Clin Cancer Res. 2004;10:2065–71.PubMedCrossRef
31.
Zurück zum Zitat Cammareri P, Scopelliti A, Todaro M, Eterno V, Francescangeli F, Moyer MP, et al. Aurora-a is essential for the tumorigenic capacity and chemoresistance of colorectal cancer stem cells. Cancer Res. 2010;70:4655–65.PubMedCrossRef Cammareri P, Scopelliti A, Todaro M, Eterno V, Francescangeli F, Moyer MP, et al. Aurora-a is essential for the tumorigenic capacity and chemoresistance of colorectal cancer stem cells. Cancer Res. 2010;70:4655–65.PubMedCrossRef
32.
Zurück zum Zitat Lee HH, Zhu YS, Govindasamy KM, Gopalan G. Downregulation of Aurora-A overrides estrogen-mediated growth and chemoresistance in breast cancer cells. Endocr Relat Cancer. 2008;15:765–75.PubMedCrossRef Lee HH, Zhu YS, Govindasamy KM, Gopalan G. Downregulation of Aurora-A overrides estrogen-mediated growth and chemoresistance in breast cancer cells. Endocr Relat Cancer. 2008;15:765–75.PubMedCrossRef
33.
Zurück zum Zitat Wang X, Zhou YX, Qiao W, Tominaga Y, Ouchi M, Ouchi T, et al. Overexpression of aurora kinase A in mouse mammary epithelium induces genetic instability preceding mammary tumor formation. Oncogene. 2006;25:7148–58.PubMedCrossRef Wang X, Zhou YX, Qiao W, Tominaga Y, Ouchi M, Ouchi T, et al. Overexpression of aurora kinase A in mouse mammary epithelium induces genetic instability preceding mammary tumor formation. Oncogene. 2006;25:7148–58.PubMedCrossRef
34.
Zurück zum Zitat Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet. 1998;20:189–93.PubMedCrossRef Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet. 1998;20:189–93.PubMedCrossRef
35.
Zurück zum Zitat Gorgun G, Calabrese E, Hideshima T, Ecsedy J, Perrone G, Mani M, et al. A novel Aurora-A kinase inhibitor MLN8237 induces cytotoxicity and cell-cycle arrest in multiple myeloma. Blood. 2010;115:5202–13.PubMedCentralPubMedCrossRef Gorgun G, Calabrese E, Hideshima T, Ecsedy J, Perrone G, Mani M, et al. A novel Aurora-A kinase inhibitor MLN8237 induces cytotoxicity and cell-cycle arrest in multiple myeloma. Blood. 2010;115:5202–13.PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat Huck JJ, Zhang MK, McDonald A, Bowman D, Hoar KM, Stringer B, et al. MLN8054, an Inhibitor of Aurora A Kinase, Induces Senescence in Human Tumor Cells Both In vitro and In vivo. Mol Cancer Res. 2010;8:373–84.PubMedCrossRef Huck JJ, Zhang MK, McDonald A, Bowman D, Hoar KM, Stringer B, et al. MLN8054, an Inhibitor of Aurora A Kinase, Induces Senescence in Human Tumor Cells Both In vitro and In vivo. Mol Cancer Res. 2010;8:373–84.PubMedCrossRef
38.
Zurück zum Zitat Devesa SS, Blot WJ, Fraumeni Jr JF. Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer. 1998;83:2049–53.PubMedCrossRef Devesa SS, Blot WJ, Fraumeni Jr JF. Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer. 1998;83:2049–53.PubMedCrossRef
39.
Zurück zum Zitat Wiseman M. The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc. 2008;67:253–6.PubMedCrossRef Wiseman M. The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc. 2008;67:253–6.PubMedCrossRef
40.
41.
Zurück zum Zitat Turcotte S, Duranceau A. Gastroesophageal reflux and cancer. Thorac Surg Clin. 2005;15:341–52.PubMedCrossRef Turcotte S, Duranceau A. Gastroesophageal reflux and cancer. Thorac Surg Clin. 2005;15:341–52.PubMedCrossRef
42.
Zurück zum Zitat Fujita Y, Sakakura C, Shimomura K, Nakanishi M, Yasuoka R, Aragane H, et al. Chromosome arm 20q gains and other genomic alterations in esophageal squamous cell carcinoma, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization. Hepatogastroenterology. 2003;50:1857–63.PubMed Fujita Y, Sakakura C, Shimomura K, Nakanishi M, Yasuoka R, Aragane H, et al. Chromosome arm 20q gains and other genomic alterations in esophageal squamous cell carcinoma, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization. Hepatogastroenterology. 2003;50:1857–63.PubMed
43.
Zurück zum Zitat Sakakura C, Hagiwara A, Yasuoka R, Fujita Y, Nakanishi M, Masuda K, et al. Tumour-amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation. Br J Cancer. 2001;84:824–31.PubMedCentralPubMedCrossRef Sakakura C, Hagiwara A, Yasuoka R, Fujita Y, Nakanishi M, Masuda K, et al. Tumour-amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation. Br J Cancer. 2001;84:824–31.PubMedCentralPubMedCrossRef
44.
Zurück zum Zitat Miao X, Sun T, Wang Y, Zhang X, Tan W, Lin D. Functional STK15 Phe31Ile polymorphism is associated with the occurrence and advanced disease status of esophageal squamous cell carcinoma. Cancer Res. 2004;64:2680–3.PubMedCrossRef Miao X, Sun T, Wang Y, Zhang X, Tan W, Lin D. Functional STK15 Phe31Ile polymorphism is associated with the occurrence and advanced disease status of esophageal squamous cell carcinoma. Cancer Res. 2004;64:2680–3.PubMedCrossRef
45.
Zurück zum Zitat Ju H, Cho H, Kim YS, Kim WH, Ihm C, Noh SM, et al. Functional polymorphism 57Val>Ile of aurora kinase A associated with increased risk of gastric cancer progression. Cancer Lett. 2006;242:273–9.PubMedCrossRef Ju H, Cho H, Kim YS, Kim WH, Ihm C, Noh SM, et al. Functional polymorphism 57Val>Ile of aurora kinase A associated with increased risk of gastric cancer progression. Cancer Lett. 2006;242:273–9.PubMedCrossRef
46.
Zurück zum Zitat Tong T, Zhong Y, Kong J, Dong L, Song Y, Fu M, et al. Overexpression of Aurora-A contributes to malignant development of human esophageal squamous cell carcinoma. Clin Cancer Res. 2004;10:7304–10.PubMedCrossRef Tong T, Zhong Y, Kong J, Dong L, Song Y, Fu M, et al. Overexpression of Aurora-A contributes to malignant development of human esophageal squamous cell carcinoma. Clin Cancer Res. 2004;10:7304–10.PubMedCrossRef
47.
Zurück zum Zitat Dar AA, Zaika A, Piazuelo MB, Correa P, Koyama T, Belkhiri A, et al. Frequent overexpression of Aurora Kinase A in upper gastrointestinal adenocarcinomas correlates with potent antiapoptotic functions. Cancer. 2008;112:1688–98.PubMedCentralPubMedCrossRef Dar AA, Zaika A, Piazuelo MB, Correa P, Koyama T, Belkhiri A, et al. Frequent overexpression of Aurora Kinase A in upper gastrointestinal adenocarcinomas correlates with potent antiapoptotic functions. Cancer. 2008;112:1688–98.PubMedCentralPubMedCrossRef
48.
Zurück zum Zitat Sehdev V, Katsha A, Arras J, Peng D, Soutto M, Ecsedy J, et al. HDM2 regulation by AURKA promotes cell survival in gastric cancer. Clin Cancer Res. 2014;20:76–86.PubMedCentralPubMedCrossRef Sehdev V, Katsha A, Arras J, Peng D, Soutto M, Ecsedy J, et al. HDM2 regulation by AURKA promotes cell survival in gastric cancer. Clin Cancer Res. 2014;20:76–86.PubMedCentralPubMedCrossRef
49.
Zurück zum Zitat Katsha A, Soutto M, Sehdev V, Peng D, Washington MK, Piazuelo MB, et al. Aurora kinase A promotes inflammation and tumorigenesis in mice and human gastric neoplasia. Gastroenterology. 2013;145:1312–22. Katsha A, Soutto M, Sehdev V, Peng D, Washington MK, Piazuelo MB, et al. Aurora kinase A promotes inflammation and tumorigenesis in mice and human gastric neoplasia. Gastroenterology. 2013;145:1312–22.
50.
Zurück zum Zitat Tanaka E, Hashimoto Y, Ito T, Okumura T, Kan T, Watanabe G, et al. The clinical significance of Aurora-A/STK15/BTAK expression in human esophageal squamous cell carcinoma. Clin Cancer Res. 2005;11:1827–34.PubMedCrossRef Tanaka E, Hashimoto Y, Ito T, Okumura T, Kan T, Watanabe G, et al. The clinical significance of Aurora-A/STK15/BTAK expression in human esophageal squamous cell carcinoma. Clin Cancer Res. 2005;11:1827–34.PubMedCrossRef
51.
Zurück zum Zitat Rugge M, Fassan M, Zaninotto G, Pizzi M, Giacomelli L, Battaglia G, et al. Aurora kinase A in Barrett’s carcinogenesis. Hum Pathol. 2010;41:1380–6.PubMedCrossRef Rugge M, Fassan M, Zaninotto G, Pizzi M, Giacomelli L, Battaglia G, et al. Aurora kinase A in Barrett’s carcinogenesis. Hum Pathol. 2010;41:1380–6.PubMedCrossRef
52.
Zurück zum Zitat Dar AA, Belkhiri A, Ecsedy J, Zaika A, El-Rifai W. Aurora kinase A inhibition leads to p73-dependent apoptosis in p53-deficient cancer cells. Cancer Res. 2008;68:8998–9004.PubMedCentralPubMedCrossRef Dar AA, Belkhiri A, Ecsedy J, Zaika A, El-Rifai W. Aurora kinase A inhibition leads to p73-dependent apoptosis in p53-deficient cancer cells. Cancer Res. 2008;68:8998–9004.PubMedCentralPubMedCrossRef
53.
Zurück zum Zitat Sehdev V, Katsha A, Ecsedy J, Zaika A, Belkhiri A, El-Rifai W. The combination of alisertib, an investigational Aurora kinase A inhibitor, and docetaxel promotes cell death and reduces tumor growth in preclinical cell models of upper gastrointestinal adenocarcinomas. Cancer. 2013;119:904–14.PubMedCentralPubMedCrossRef Sehdev V, Katsha A, Ecsedy J, Zaika A, Belkhiri A, El-Rifai W. The combination of alisertib, an investigational Aurora kinase A inhibitor, and docetaxel promotes cell death and reduces tumor growth in preclinical cell models of upper gastrointestinal adenocarcinomas. Cancer. 2013;119:904–14.PubMedCentralPubMedCrossRef
54.
Zurück zum Zitat Guan Z, Wang XR, Zhu XF, Huang XF, Xu J, Wang LH, et al. Aurora-A, a negative prognostic marker, increases migration and decreases radiosensitivity in cancer cells. Cancer Res. 2007;67:10436–44.PubMedCrossRef Guan Z, Wang XR, Zhu XF, Huang XF, Xu J, Wang LH, et al. Aurora-A, a negative prognostic marker, increases migration and decreases radiosensitivity in cancer cells. Cancer Res. 2007;67:10436–44.PubMedCrossRef
55.
Zurück zum Zitat Katsha A, Arras J, Soutto M, Belkhiri A, El-Rifai W. AURKA regulates JAK2-STAT3 activity in human gastric and esophageal cancers. Mol Oncol. 2014. doi:10.1016/j.molonc.2014.05.012. Katsha A, Arras J, Soutto M, Belkhiri A, El-Rifai W. AURKA regulates JAK2-STAT3 activity in human gastric and esophageal cancers. Mol Oncol. 2014. doi:10.1016/j.molonc.2014.05.012.
56.
Zurück zum Zitat Katayama H, Wang J, Treekitkarnmongkol W, Kawai H, Sasai K, Zhang H, et al. Aurora kinase-A inactivates DNA damage-induced apoptosis and spindle assembly checkpoint response functions of p73. Cancer Cell. 2012;21:196–211.PubMedCentralPubMedCrossRef Katayama H, Wang J, Treekitkarnmongkol W, Kawai H, Sasai K, Zhang H, et al. Aurora kinase-A inactivates DNA damage-induced apoptosis and spindle assembly checkpoint response functions of p73. Cancer Cell. 2012;21:196–211.PubMedCentralPubMedCrossRef
57.
Zurück zum Zitat Sehdev V, Peng D, Soutto M, Washington MK, Revetta F, Ecsedy J, et al. The aurora kinase A inhibitor MLN8237 enhances cisplatin-induced cell death in esophageal adenocarcinoma cells. Mol Cancer Ther. 2012;11:763–74.PubMedCentralPubMedCrossRef Sehdev V, Peng D, Soutto M, Washington MK, Revetta F, Ecsedy J, et al. The aurora kinase A inhibitor MLN8237 enhances cisplatin-induced cell death in esophageal adenocarcinoma cells. Mol Cancer Ther. 2012;11:763–74.PubMedCentralPubMedCrossRef
58.
Zurück zum Zitat Ewart-Toland A, Briassouli P, de Koning JP, Mao JH, Yuan J, Chan F, et al. Identification of Stk6/STK15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human. Nat Genet. 2003;34:403–12.PubMedCrossRef Ewart-Toland A, Briassouli P, de Koning JP, Mao JH, Yuan J, Chan F, et al. Identification of Stk6/STK15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human. Nat Genet. 2003;34:403–12.PubMedCrossRef
59.
Zurück zum Zitat Hienonen T, Salovaara R, Mecklin JP, Jarvinen H, Karhu A, Aaltonen LA. Preferential amplification of AURKA 91A (Ile31) in familial colorectal cancers. Int J Cancer. 2006;118:505–8.PubMedCrossRef Hienonen T, Salovaara R, Mecklin JP, Jarvinen H, Karhu A, Aaltonen LA. Preferential amplification of AURKA 91A (Ile31) in familial colorectal cancers. Int J Cancer. 2006;118:505–8.PubMedCrossRef
60.
Zurück zum Zitat Fu Z, Regan K, Zhang LZ, Muders MH, Thibodeau SN, French A, et al. Deficiencies in Chfr and Mlh1 synergistically enhance tumor susceptibility in mice. J Clin Invest. 2009;119:2714–24.PubMedCentralPubMed Fu Z, Regan K, Zhang LZ, Muders MH, Thibodeau SN, French A, et al. Deficiencies in Chfr and Mlh1 synergistically enhance tumor susceptibility in mice. J Clin Invest. 2009;119:2714–24.PubMedCentralPubMed
61.
Zurück zum Zitat Belt EJ, Brosens RP, Delis-van Diemen PM, Bril H, Tijssen M, van Essen DF, et al. Cell cycle proteins predict recurrence in stage II and III colon cancer. Ann Surg Oncol. 2012;19 Suppl 3:S682–92.PubMedCrossRef Belt EJ, Brosens RP, Delis-van Diemen PM, Bril H, Tijssen M, van Essen DF, et al. Cell cycle proteins predict recurrence in stage II and III colon cancer. Ann Surg Oncol. 2012;19 Suppl 3:S682–92.PubMedCrossRef
62.
Zurück zum Zitat Burum-Auensen E, De Angelis PM, Schjolberg AR, Kravik KL, Aure M, Clausen OP. Subcellular localization of the spindle proteins Aurora A, Mad2, and BUBR1 assessed by immunohistochemistry. J Histochem Cytochem. 2007;55:477–86.PubMedCrossRef Burum-Auensen E, De Angelis PM, Schjolberg AR, Kravik KL, Aure M, Clausen OP. Subcellular localization of the spindle proteins Aurora A, Mad2, and BUBR1 assessed by immunohistochemistry. J Histochem Cytochem. 2007;55:477–86.PubMedCrossRef
63.
Zurück zum Zitat Tseng YS, Lee JC, Huang CYF, Liu HS. Aurora-A overexpression enhances cell-aggregation of Ha-ras transformants through the MEK/ERK signaling pathway. BMC Cancer. 2009;9:435-446. Tseng YS, Lee JC, Huang CYF, Liu HS. Aurora-A overexpression enhances cell-aggregation of Ha-ras transformants through the MEK/ERK signaling pathway. BMC Cancer. 2009;9:435-446.
64.
Zurück zum Zitat Kuratnik A, Senapati VE, Verma R, Mellone BG, Vella AT, Giardina C. Acute sensitization of colon cancer cells to inflammatory cytokines by prophase arrest. Biochem Pharmacol. 2012;83:1217–28.PubMedCentralPubMedCrossRef Kuratnik A, Senapati VE, Verma R, Mellone BG, Vella AT, Giardina C. Acute sensitization of colon cancer cells to inflammatory cytokines by prophase arrest. Biochem Pharmacol. 2012;83:1217–28.PubMedCentralPubMedCrossRef
65.
Zurück zum Zitat Shionome Y, Lin WH, Shiao HY, Hsieh HP, Hsu JT, Ouchi T. A novel aurora-A inhibitor, BPR1K0609S1, sensitizes colorectal tumor cells to 5-fluorofracil (5-FU) treatment. Int J Biol Sci. 2013;9:403–11.PubMedCentralPubMedCrossRef Shionome Y, Lin WH, Shiao HY, Hsieh HP, Hsu JT, Ouchi T. A novel aurora-A inhibitor, BPR1K0609S1, sensitizes colorectal tumor cells to 5-fluorofracil (5-FU) treatment. Int J Biol Sci. 2013;9:403–11.PubMedCentralPubMedCrossRef
66.
Zurück zum Zitat Ratushny V, Pathak HB, Beeharry N, Tikhmyanova N, Xiao F, Li T, et al. Dual inhibition of SRC and Aurora kinases induces postmitotic attachment defects and cell death. Oncogene. 2012;31:1217–27.PubMedCentralPubMedCrossRef Ratushny V, Pathak HB, Beeharry N, Tikhmyanova N, Xiao F, Li T, et al. Dual inhibition of SRC and Aurora kinases induces postmitotic attachment defects and cell death. Oncogene. 2012;31:1217–27.PubMedCentralPubMedCrossRef
67.
Zurück zum Zitat Warner SL, Munoz RM, Bearss DJ, Grippo P, Han H, Von Hoff DD. Pdx-1-driven overexpression of aurora a kinase induces mild ductal dysplasia of pancreatic ducts near islets in transgenic mice. Pancreas. 2008;37:e39–44.PubMedCentralPubMedCrossRef Warner SL, Munoz RM, Bearss DJ, Grippo P, Han H, Von Hoff DD. Pdx-1-driven overexpression of aurora a kinase induces mild ductal dysplasia of pancreatic ducts near islets in transgenic mice. Pancreas. 2008;37:e39–44.PubMedCentralPubMedCrossRef
68.
Zurück zum Zitat Zhu J, Abbruzzese JL, Izzo J, Hittelman WN, Li D. AURKA amplification, chromosome instability, and centrosome abnormality in human pancreatic carcinoma cells. Cancer Genet Cytogenet. 2005;159:10–7.PubMedCrossRef Zhu J, Abbruzzese JL, Izzo J, Hittelman WN, Li D. AURKA amplification, chromosome instability, and centrosome abnormality in human pancreatic carcinoma cells. Cancer Genet Cytogenet. 2005;159:10–7.PubMedCrossRef
69.
Zurück zum Zitat Hata T, Furukawa T, Sunamura M, Egawa S, Motoi F, Ohmura N, et al. RNA interference targeting aurora kinase a suppresses tumor growth and enhances the taxane chemosensitivity in human pancreatic cancer cells. Cancer Res. 2005;65:2899–905.PubMedCrossRef Hata T, Furukawa T, Sunamura M, Egawa S, Motoi F, Ohmura N, et al. RNA interference targeting aurora kinase a suppresses tumor growth and enhances the taxane chemosensitivity in human pancreatic cancer cells. Cancer Res. 2005;65:2899–905.PubMedCrossRef
70.
Zurück zum Zitat Arbitrario JP, Belmont BJ, Evanchik MJ, Flanagan WM, Fucini RV, Hansen SK, et al. SNS-314, a pan-Aurora kinase inhibitor, shows potent anti-tumor activity and dosing flexibility in vivo. Cancer Chemother Pharmacol. 2010;65:707–17.PubMedCrossRef Arbitrario JP, Belmont BJ, Evanchik MJ, Flanagan WM, Fucini RV, Hansen SK, et al. SNS-314, a pan-Aurora kinase inhibitor, shows potent anti-tumor activity and dosing flexibility in vivo. Cancer Chemother Pharmacol. 2010;65:707–17.PubMedCrossRef
71.
Zurück zum Zitat Lin Y, Richards FM, Krippendorff BF, Bramhall JL, Harrington JA, Bapiro TE, et al. Paclitaxel and CYC3, an aurora kinase A inhibitor, synergise in pancreatic cancer cells but not bone marrow precursor cells. Br J Cancer. 2012;107:1692–701.PubMedCentralPubMedCrossRef Lin Y, Richards FM, Krippendorff BF, Bramhall JL, Harrington JA, Bapiro TE, et al. Paclitaxel and CYC3, an aurora kinase A inhibitor, synergise in pancreatic cancer cells but not bone marrow precursor cells. Br J Cancer. 2012;107:1692–701.PubMedCentralPubMedCrossRef
72.
Zurück zum Zitat Hamidi T, Cano CE, Grasso D, Garcia MN, Sandi MJ, Calvo EL, et al. Nupr1-aurora kinase A pathway provides protection against metabolic stress-mediated autophagic-associated cell death. Clin Cancer Res. 2012;18:5234–46.PubMedCrossRef Hamidi T, Cano CE, Grasso D, Garcia MN, Sandi MJ, Calvo EL, et al. Nupr1-aurora kinase A pathway provides protection against metabolic stress-mediated autophagic-associated cell death. Clin Cancer Res. 2012;18:5234–46.PubMedCrossRef
73.
Zurück zum Zitat Furukawa T, Kanai N, Shiwaku HO, Soga N, Uehara A, Horii A. AURKA is one of the downstream targets of MAPK1/ERK2 in pancreatic cancer. Oncogene. 2006;25:4831–9.PubMedCrossRef Furukawa T, Kanai N, Shiwaku HO, Soga N, Uehara A, Horii A. AURKA is one of the downstream targets of MAPK1/ERK2 in pancreatic cancer. Oncogene. 2006;25:4831–9.PubMedCrossRef
74.
Zurück zum Zitat Lim KH, Brady DC, Kashatus DF, Ancrile BB, Der CJ, Cox AD, et al. Aurora-A Phosphorylates, Activates, and Relocalizes the Small GTPase RalA. Mol Cell Biol. 2010;30:508–23.PubMedCentralPubMedCrossRef Lim KH, Brady DC, Kashatus DF, Ancrile BB, Der CJ, Cox AD, et al. Aurora-A Phosphorylates, Activates, and Relocalizes the Small GTPase RalA. Mol Cell Biol. 2010;30:508–23.PubMedCentralPubMedCrossRef
75.
Zurück zum Zitat Neel NF, Stratford JK, Shinde V, Ecsedy JA, Martin TD, Der CJ, et al. Response to MLN8237 in Pancreatic Cancer Is Not Dependent on RalA Phosphorylation. Mol Cancer Ther. 2014;13:122–33.PubMedCentralPubMedCrossRef Neel NF, Stratford JK, Shinde V, Ecsedy JA, Martin TD, Der CJ, et al. Response to MLN8237 in Pancreatic Cancer Is Not Dependent on RalA Phosphorylation. Mol Cancer Ther. 2014;13:122–33.PubMedCentralPubMedCrossRef
76.
Zurück zum Zitat Yu CTR, Hsu JM, Lee YCG, Tsou AP, Chou CK, Huang CYF. Phosphorylation and stabilization of HURP by aurora-A: Implication of HURP as a transforming target of aurora-A. Mol Cell Biol. 2005;25:5789–800.PubMedCentralPubMedCrossRef Yu CTR, Hsu JM, Lee YCG, Tsou AP, Chou CK, Huang CYF. Phosphorylation and stabilization of HURP by aurora-A: Implication of HURP as a transforming target of aurora-A. Mol Cell Biol. 2005;25:5789–800.PubMedCentralPubMedCrossRef
77.
Zurück zum Zitat Tsou AP, Yang CW, Huang CYF, Yu RCT, Lee YCG, Chang CW, et al. Identification of a novel cell cycle regulated gene, HURP, overexpressed in human hepatocellular carcinoma. Oncogene. 2003;22:298–307.PubMedCrossRef Tsou AP, Yang CW, Huang CYF, Yu RCT, Lee YCG, Chang CW, et al. Identification of a novel cell cycle regulated gene, HURP, overexpressed in human hepatocellular carcinoma. Oncogene. 2003;22:298–307.PubMedCrossRef
78.
Zurück zum Zitat Klein A, Flugel D, Kietzmann T. Transcriptional regulation of serine/threonine kinase-15 (STK15) expression by hypoxia and HIF-1. Mol Biol Cell. 2008;19:3667–75.PubMedCentralPubMedCrossRef Klein A, Flugel D, Kietzmann T. Transcriptional regulation of serine/threonine kinase-15 (STK15) expression by hypoxia and HIF-1. Mol Biol Cell. 2008;19:3667–75.PubMedCentralPubMedCrossRef
79.
Zurück zum Zitat Gao P, Wang R, Shen JJ, Lin F, Wang X, Dong K, et al. Hypoxia-inducible enhancer/alpha-fetoprotein promoter-driven RNA interference targeting STK15 suppresses proliferation and induces apoptosis in human hepatocellular carcinoma cells. Cancer Sci. 2008;99:2209–17.PubMedCrossRef Gao P, Wang R, Shen JJ, Lin F, Wang X, Dong K, et al. Hypoxia-inducible enhancer/alpha-fetoprotein promoter-driven RNA interference targeting STK15 suppresses proliferation and induces apoptosis in human hepatocellular carcinoma cells. Cancer Sci. 2008;99:2209–17.PubMedCrossRef
80.
Zurück zum Zitat Cui SY, Huang JY, Chen YT, Song HZ, Huang GC, De W, et al. The role of Aurora A in hypoxia-inducible factor 1alpha-promoting malignant phenotypes of hepatocelluar carcinoma. Cell Cycle. 2013;12:2849–66.PubMedCentralPubMedCrossRef Cui SY, Huang JY, Chen YT, Song HZ, Huang GC, De W, et al. The role of Aurora A in hypoxia-inducible factor 1alpha-promoting malignant phenotypes of hepatocelluar carcinoma. Cell Cycle. 2013;12:2849–66.PubMedCentralPubMedCrossRef
81.
Zurück zum Zitat Benten D, Keller G, Quaas A, Schrader J, Gontarewicz A, Balabanov S, et al. Aurora kinase inhibitor PHA-739358 suppresses growth of hepatocellular carcinoma in vitro and in a xenograft mouse model. Neoplasia. 2009;11:934–44.PubMedCentralPubMedCrossRef Benten D, Keller G, Quaas A, Schrader J, Gontarewicz A, Balabanov S, et al. Aurora kinase inhibitor PHA-739358 suppresses growth of hepatocellular carcinoma in vitro and in a xenograft mouse model. Neoplasia. 2009;11:934–44.PubMedCentralPubMedCrossRef
82.
Zurück zum Zitat Zhang C, Wu XH, Zhang MF, Zhu LC, Zhao R, Xu DQ, et al. Small Molecule R1498 as a Well-Tolerated and Orally Active Kinase Inhibitor for Hepatocellular Carcinoma and Gastric Cancer Treatment via Targeting Angiogenesis and Mitosis Pathways. PLoS One. 2013, 8. Zhang C, Wu XH, Zhang MF, Zhu LC, Zhao R, Xu DQ, et al. Small Molecule R1498 as a Well-Tolerated and Orally Active Kinase Inhibitor for Hepatocellular Carcinoma and Gastric Cancer Treatment via Targeting Angiogenesis and Mitosis Pathways. PLoS One. 2013, 8.
83.
Zurück zum Zitat Kelly KR, Ecsedy J, Medina E, Mahalingam D, Padmanabhan S, Nawrocki ST, et al. The novel Aurora A kinase inhibitor MLN8237 is active in resistant chronic myeloid leukaemia and significantly increases the efficacy of nilotinib. J Cell Mol Med. 2011;15:2057–70.PubMedCentralPubMedCrossRef Kelly KR, Ecsedy J, Medina E, Mahalingam D, Padmanabhan S, Nawrocki ST, et al. The novel Aurora A kinase inhibitor MLN8237 is active in resistant chronic myeloid leukaemia and significantly increases the efficacy of nilotinib. J Cell Mol Med. 2011;15:2057–70.PubMedCentralPubMedCrossRef
84.
Zurück zum Zitat Manfredi MG, Ecsedy JA, Meetze KA, Balani SK, Burenkova O, Chen W, et al. Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc Natl Acad Sci U S A. 2007;104:4106–11.PubMedCentralPubMedCrossRef Manfredi MG, Ecsedy JA, Meetze KA, Balani SK, Burenkova O, Chen W, et al. Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc Natl Acad Sci U S A. 2007;104:4106–11.PubMedCentralPubMedCrossRef
85.
Zurück zum Zitat Manfredi MG, Ecsedy JA, Chakravarty A, Silverman L, Zhang M, Hoar KM, et al. Characterization of Alisertib (MLN8237), an Investigational Small-Molecule Inhibitor of Aurora A Kinase Using Novel In Vivo Pharmacodynamic Assays. Clin Cancer Res. 2011;17:7614–24.PubMedCrossRef Manfredi MG, Ecsedy JA, Chakravarty A, Silverman L, Zhang M, Hoar KM, et al. Characterization of Alisertib (MLN8237), an Investigational Small-Molecule Inhibitor of Aurora A Kinase Using Novel In Vivo Pharmacodynamic Assays. Clin Cancer Res. 2011;17:7614–24.PubMedCrossRef
86.
Zurück zum Zitat Kollareddy M, Zheleva D, Dzubak P, Brahmkshatriya PS, Lepsik M, Hajduch M. Aurora kinase inhibitors: progress towards the clinic. Invest New Drugs. 2012;30:2411–32.PubMedCentralPubMedCrossRef Kollareddy M, Zheleva D, Dzubak P, Brahmkshatriya PS, Lepsik M, Hajduch M. Aurora kinase inhibitors: progress towards the clinic. Invest New Drugs. 2012;30:2411–32.PubMedCentralPubMedCrossRef
87.
Zurück zum Zitat Cervantes A, Elez E, Roda D, Ecsedy J, Macarulla T, Venkatakrishnan K, et al. Phase I pharmacokinetic/pharmacodynamic study of MLN8237, an investigational, oral, selective aurora a kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2012;18:4764–74.PubMedCrossRef Cervantes A, Elez E, Roda D, Ecsedy J, Macarulla T, Venkatakrishnan K, et al. Phase I pharmacokinetic/pharmacodynamic study of MLN8237, an investigational, oral, selective aurora a kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2012;18:4764–74.PubMedCrossRef
88.
Zurück zum Zitat Briassouli P, Chan F, Savage K, Reis-Filho JS, Linardopoulos S. Aurora-A regulation of nuclear factor-kappaB signaling by phosphorylation of IkappaBalpha. Cancer Res. 2007;67:1689–95.PubMedCrossRef Briassouli P, Chan F, Savage K, Reis-Filho JS, Linardopoulos S. Aurora-A regulation of nuclear factor-kappaB signaling by phosphorylation of IkappaBalpha. Cancer Res. 2007;67:1689–95.PubMedCrossRef
89.
Zurück zum Zitat Yang H, He L, Kruk P, Nicosia SV, Cheng JQ. Aurora-A induces cell survival and chemoresistance by activation of Akt through a p53-dependent manner in ovarian cancer cells. Int J Cancer. 2006;119:2304–12.PubMedCrossRef Yang H, He L, Kruk P, Nicosia SV, Cheng JQ. Aurora-A induces cell survival and chemoresistance by activation of Akt through a p53-dependent manner in ovarian cancer cells. Int J Cancer. 2006;119:2304–12.PubMedCrossRef
90.
Zurück zum Zitat Moretti L, Niermann K, Schleicher S, Giacalone NJ, Varki V, Kim KW, et al. MLN8054, a small molecule inhibitor of aurora kinase a, sensitizes androgen-resistant prostate cancer to radiation. Int J Radiat Oncol Biol Phys. 2011;80:1189–97.PubMedCrossRef Moretti L, Niermann K, Schleicher S, Giacalone NJ, Varki V, Kim KW, et al. MLN8054, a small molecule inhibitor of aurora kinase a, sensitizes androgen-resistant prostate cancer to radiation. Int J Radiat Oncol Biol Phys. 2011;80:1189–97.PubMedCrossRef
91.
Zurück zum Zitat Maris JM, Morton CL, Gorlick R, Kolb EA, Lock R, Carol H, et al. Initial testing of the aurora kinase A inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP). Pediatr Blood Cancer. 2010;55:26–34.PubMedCentralPubMed Maris JM, Morton CL, Gorlick R, Kolb EA, Lock R, Carol H, et al. Initial testing of the aurora kinase A inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP). Pediatr Blood Cancer. 2010;55:26–34.PubMedCentralPubMed
92.
Zurück zum Zitat Qi W, Cooke LS, Liu X, Rimsza L, Roe DJ, Manziolli A, et al. Aurora inhibitor MLN8237 in combination with docetaxel enhances apoptosis and anti-tumor activity in mantle cell lymphoma. Biochem Pharmacol. 2011;81:881–90.PubMedCentralPubMedCrossRef Qi W, Cooke LS, Liu X, Rimsza L, Roe DJ, Manziolli A, et al. Aurora inhibitor MLN8237 in combination with docetaxel enhances apoptosis and anti-tumor activity in mantle cell lymphoma. Biochem Pharmacol. 2011;81:881–90.PubMedCentralPubMedCrossRef
93.
Zurück zum Zitat Mahadevan D, Stejskal A, Cooke LS, Manziello A, Morales C, Persky DO, et al. Aurora A Inhibitor (MLN8237) plus Vincristine plus Rituximab Is Synthetic Lethal and a Potential Curative Therapy in Aggressive B-cell Non-Hodgkin Lymphoma. Clin Cancer Res. 2012;18:2210–9.PubMedCrossRef Mahadevan D, Stejskal A, Cooke LS, Manziello A, Morales C, Persky DO, et al. Aurora A Inhibitor (MLN8237) plus Vincristine plus Rituximab Is Synthetic Lethal and a Potential Curative Therapy in Aggressive B-cell Non-Hodgkin Lymphoma. Clin Cancer Res. 2012;18:2210–9.PubMedCrossRef
94.
Zurück zum Zitat Dees EC, Cohen RB, von Mehren M, Stinchcombe TE, Liu H, Venkatakrishnan K, et al. Phase I study of aurora A kinase inhibitor MLN8237 in advanced solid tumors: safety, pharmacokinetics, pharmacodynamics, and bioavailability of two oral formulations. Clin Cancer Res. 2012;18:4775–84.PubMedCrossRef Dees EC, Cohen RB, von Mehren M, Stinchcombe TE, Liu H, Venkatakrishnan K, et al. Phase I study of aurora A kinase inhibitor MLN8237 in advanced solid tumors: safety, pharmacokinetics, pharmacodynamics, and bioavailability of two oral formulations. Clin Cancer Res. 2012;18:4775–84.PubMedCrossRef
95.
Zurück zum Zitat Melichar B, Adenis A, Lockhart AC, Bennouna J, Dees EC, Kayaleh O, et al. Safety and activity of alisertib, an investigational aurora kinase A inhibitor, in patients with breast cancer, small-cell lung cancer, non-small-cell lung cancer, head and neck squamous-cell carcinoma, and gastro-oesophageal adencarcinoma: a five-arm phase 2 study. Lancet Oncol. 2015;16:395-405. Melichar B, Adenis A, Lockhart AC, Bennouna J, Dees EC, Kayaleh O, et al. Safety and activity of alisertib, an investigational aurora kinase A inhibitor, in patients with breast cancer, small-cell lung cancer, non-small-cell lung cancer, head and neck squamous-cell carcinoma, and gastro-oesophageal adencarcinoma: a five-arm phase 2 study. Lancet Oncol. 2015;16:395-405.
96.
Zurück zum Zitat Fletcher GC, Brokx RD, Denny TA, Hembrough TA, Plum SM, Fogler WE, et al. ENMD-2076 Is an Orally Active Kinase Inhibitor with Antiangiogenic and Antiproliferative Mechanisms of Action. Mol Cancer Ther. 2011;10:126–37.PubMedCrossRef Fletcher GC, Brokx RD, Denny TA, Hembrough TA, Plum SM, Fogler WE, et al. ENMD-2076 Is an Orally Active Kinase Inhibitor with Antiangiogenic and Antiproliferative Mechanisms of Action. Mol Cancer Ther. 2011;10:126–37.PubMedCrossRef
97.
Zurück zum Zitat Wang X, Sinn AL, Pollok K, Sandusky G, Zhang S, Chen L, et al. Preclinical activity of a novel multiple tyrosine kinase and aurora kinase inhibitor, ENMD-2076, against multiple myeloma. Br J Haematol. 2010;150:313–25.PubMedCrossRef Wang X, Sinn AL, Pollok K, Sandusky G, Zhang S, Chen L, et al. Preclinical activity of a novel multiple tyrosine kinase and aurora kinase inhibitor, ENMD-2076, against multiple myeloma. Br J Haematol. 2010;150:313–25.PubMedCrossRef
98.
Zurück zum Zitat Tentler JJ, Bradshaw-Pierce EL, Serkova NJ, Hasebroock KM, Pitts TM, Diamond JR, et al. Assessment of the in vivo antitumor effects of ENMD-2076, a novel multitargeted kinase inhibitor, against primary and cell line-derived human colorectal cancer xenograft models. Clin Cancer Res. 2010;16:2989–98.PubMedCentralPubMedCrossRef Tentler JJ, Bradshaw-Pierce EL, Serkova NJ, Hasebroock KM, Pitts TM, Diamond JR, et al. Assessment of the in vivo antitumor effects of ENMD-2076, a novel multitargeted kinase inhibitor, against primary and cell line-derived human colorectal cancer xenograft models. Clin Cancer Res. 2010;16:2989–98.PubMedCentralPubMedCrossRef
99.
Zurück zum Zitat Diamond JR, Eckhardt SG, Tan AC, Newton TP, Selby HM, Brunkow KL, et al. Predictive biomarkers of sensitivity to the aurora and angiogenic kinase inhibitor ENMD-2076 in preclinical breast cancer models. Clin Cancer Res. 2013;19:291–303.PubMedCentralPubMedCrossRef Diamond JR, Eckhardt SG, Tan AC, Newton TP, Selby HM, Brunkow KL, et al. Predictive biomarkers of sensitivity to the aurora and angiogenic kinase inhibitor ENMD-2076 in preclinical breast cancer models. Clin Cancer Res. 2013;19:291–303.PubMedCentralPubMedCrossRef
100.
Zurück zum Zitat Diamond JR, Bastos BR, Hansen RJ, Gustafson DL, Eckhardt SG, Kwak EL, et al. Phase I safety, pharmacokinetic, and pharmacodynamic study of ENMD-2076, a novel angiogenic and Aurora kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2011;17:849–60.PubMedCrossRef Diamond JR, Bastos BR, Hansen RJ, Gustafson DL, Eckhardt SG, Kwak EL, et al. Phase I safety, pharmacokinetic, and pharmacodynamic study of ENMD-2076, a novel angiogenic and Aurora kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2011;17:849–60.PubMedCrossRef
101.
Zurück zum Zitat Shimomura T, Hasako S, Nakatsuru Y, Mita T, Ichikawa K, Kodera T, et al. MK-5108, a Highly Selective Aurora-A Kinase Inhibitor, Shows Antitumor Activity Alone and in Combination with Docetaxel. Mol Cancer Ther. 2010;9:157–66.PubMedCrossRef Shimomura T, Hasako S, Nakatsuru Y, Mita T, Ichikawa K, Kodera T, et al. MK-5108, a Highly Selective Aurora-A Kinase Inhibitor, Shows Antitumor Activity Alone and in Combination with Docetaxel. Mol Cancer Ther. 2010;9:157–66.PubMedCrossRef
102.
Zurück zum Zitat Chefetz I, Holmberg JC, Alvero AB, Visintin I, Mor G. Inhibition of Aurora-A kinase induces cell cycle arrest in epithelial ovarian cancer stem cells by affecting NFkB pathway. Cell Cycle. 2011;10:2206–14.PubMedCentralPubMedCrossRef Chefetz I, Holmberg JC, Alvero AB, Visintin I, Mor G. Inhibition of Aurora-A kinase induces cell cycle arrest in epithelial ovarian cancer stem cells by affecting NFkB pathway. Cell Cycle. 2011;10:2206–14.PubMedCentralPubMedCrossRef
103.
Zurück zum Zitat Kretzner L, Scuto A, Dino PM, Kowolik CM, Wu J, Ventura P, et al. Combining histone deacetylase inhibitor vorinostat with aurora kinase inhibitors enhances lymphoma cell killing with repression of c-Myc, hTERT, and microRNA levels. Cancer Res. 2011;71:3912–20.PubMedCentralPubMedCrossRef Kretzner L, Scuto A, Dino PM, Kowolik CM, Wu J, Ventura P, et al. Combining histone deacetylase inhibitor vorinostat with aurora kinase inhibitors enhances lymphoma cell killing with repression of c-Myc, hTERT, and microRNA levels. Cancer Res. 2011;71:3912–20.PubMedCentralPubMedCrossRef
104.
Zurück zum Zitat Minton SE, LoRusso P, Lockhart AC, Saif M, Krishnamurthi SS, Pickett-Gies CA, et al. A phase I study of MK-5108, an oral aurora A kinase inhibitor, in both monotherapy and in combination with docetaxel in patients with advanced solid tumors. J Clin Oncol. 2010;28(15_suppl (May 20 Supplement), 2010):e13026. Minton SE, LoRusso P, Lockhart AC, Saif M, Krishnamurthi SS, Pickett-Gies CA, et al. A phase I study of MK-5108, an oral aurora A kinase inhibitor, in both monotherapy and in combination with docetaxel in patients with advanced solid tumors. J Clin Oncol. 2010;28(15_suppl (May 20 Supplement), 2010):e13026.
105.
Zurück zum Zitat Hook KE, Garza SJ, Lira ME, Ching KA, Lee NV, Cao J, et al. An integrated genomic approach to identify predictive biomarkers of response to the aurora kinase inhibitor PF-03814735. Mol Cancer Ther. 2012;11:710–9.PubMedCrossRef Hook KE, Garza SJ, Lira ME, Ching KA, Lee NV, Cao J, et al. An integrated genomic approach to identify predictive biomarkers of response to the aurora kinase inhibitor PF-03814735. Mol Cancer Ther. 2012;11:710–9.PubMedCrossRef
106.
Zurück zum Zitat Otto T, Horn S, Brockmann M, Eilers U, Schuttrumpf L, Popov N, et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell. 2009;15:67–78.PubMedCrossRef Otto T, Horn S, Brockmann M, Eilers U, Schuttrumpf L, Popov N, et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell. 2009;15:67–78.PubMedCrossRef
107.
Zurück zum Zitat Prajapati S, Tu Z, Yamamoto Y, Gaynor RB. IKKalpha regulates the mitotic phase of the cell cycle by modulating Aurora A phosphorylation. Cell Cycle. 2006;5:2371–80.PubMedCrossRef Prajapati S, Tu Z, Yamamoto Y, Gaynor RB. IKKalpha regulates the mitotic phase of the cell cycle by modulating Aurora A phosphorylation. Cell Cycle. 2006;5:2371–80.PubMedCrossRef
108.
Zurück zum Zitat Mazzera L, Lombardi G, Abeltino M, Ricca M, Donofrio G, Giuliani N, et al. Aurora and IKK kinases cooperatively interact to protect multiple myeloma cells from Apo2L/TRAIL. Blood. 2013;122:2641–53.PubMedCrossRef Mazzera L, Lombardi G, Abeltino M, Ricca M, Donofrio G, Giuliani N, et al. Aurora and IKK kinases cooperatively interact to protect multiple myeloma cells from Apo2L/TRAIL. Blood. 2013;122:2641–53.PubMedCrossRef
109.
Zurück zum Zitat Ouchi M, Fujiuchi N, Sasai K, Katayama H, Minamishima YA, Ongusaha PP, et al. BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition. J Biol Chem. 2004;279:19643–8. Ouchi M, Fujiuchi N, Sasai K, Katayama H, Minamishima YA, Ongusaha PP, et al. BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition. J Biol Chem. 2004;279:19643–8.
110.
Zurück zum Zitat Kelly KR, Shea TC, Goy A, Berdeja JG, Reeder CB, McDonagh KT, et al. Phase I study of MLN8237-investigational Aurora A kinase inhibitor-in relapsed/refractory multiple myeloma, Non-Hodgkin lymphoma and chronic lymphocytic leukemia. Invest New Drugs. 2014;32:489–99.PubMedCentralPubMedCrossRef Kelly KR, Shea TC, Goy A, Berdeja JG, Reeder CB, McDonagh KT, et al. Phase I study of MLN8237-investigational Aurora A kinase inhibitor-in relapsed/refractory multiple myeloma, Non-Hodgkin lymphoma and chronic lymphocytic leukemia. Invest New Drugs. 2014;32:489–99.PubMedCentralPubMedCrossRef
Metadaten
Titel
Aurora kinase A in gastrointestinal cancers: time to target
verfasst von
Ahmed Katsha
Abbes Belkhiri
Laura Goff
Wael El-Rifai
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2015
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-015-0375-4

Weitere Artikel der Ausgabe 1/2015

Molecular Cancer 1/2015 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.