Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2015

Open Access 01.12.2015 | Research

Laparoscopic total pelvic exenteration for pelvic malignancies: the technique and short-time outcome of 11 cases

verfasst von: Kunlin Yang, Lin Cai, Lin Yao, Zheng Zhang, Cuijian Zhang, Xin Wang, Jianqiang Tang, Xuesong Li, Zhisong He, Liqun Zhou

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2015

Abstract

Background

Previous reports about laparoscopic total pelvic exenteration (LTPE) are still limited. In the present study, we described our single-center experience of the initial 11 cases.

Methods

Between April 2011 and September 2015, eight males and three females diagnosed as pelvic malignancies underwent LTPE by the same operation team. We retrospectively collected all cases’ parameters about surgical technique. Thirty-seven patients who received open surgery were also retrospectively collected. A comparison between LTPE and open surgery was performed to evaluate the feasibility and safety of LTPE.

Results

Eleven cases successfully underwent the LTPE without any intraoperative complication. No open conversion was required. Eight patients underwent Bricker’s procedure. Three patients were performed with the cutaneous ureterostomy. Anus preservation operation was performed in three patients. Compared with open surgery, LTPE had longer mean operative time (565.2 vs 468.2 min, p = 0.004) but less mean blood loss (547.3 vs 1033.0 ml, p < 0.001) and shorter postoperative hospitalization time (15.3 vs 22.4 days, p = 0.004). One patient died of pulmonary embolism in the 7th month of follow-up time. One patient died of recurrence in the 12th month of follow-up time. Nine patients are still alive without recurrence and metastasis. The mean follow-up time was 11.1 months.

Conclusions

The technique of LTPE seems to be feasible and safe in the treatment of carefully selected patients of pelvic malignancies. LTPE can also decrease the blood loss, the recovery time, and the hospital stay. But the oncological safety and long-term outcome of LTPE still need to be explored.
Hinweise
Kunlin Yang and Lin Cai contributed equally to this work.

Competing interests

All authors declare that they have no competing interests.

Authors’ contributions

KY and LC collected surgical data, reviewed related literatures, and drafted the article. KY processed the data and the images. JT and XL are corresponding authors who designed the study and revised the article. LY, ZZ, CZ, XW, JT, XL, ZH and LZ were a surgical team. All authors read and approved the final manuscript.
Abkürzungen
LTPE
laparoscopic total pelvic exenteration
TPE
total pelvic exenteration
UD
urinary diversion
IC
ileal conduit
DBWC
double-barreled wet colostomy
CU
cutaneous ureterostomy
UTI
urinary tract infection
DVT
deep vein thrombosis

Background

Total pelvic exenteration (TPE) is a surgical procedure that refers to a radical resection of the rectum, bladder, and reproductive organs. In 1948, it was first described by Brunschwig [1] as a palliative way for the terminal stages of the advanced pelvic malignancies. Classical open TPE has a high rate of postoperative morbidity but a relatively low mortality [2]. The open procedure is nowadays mainly used in the treatment of pelvic malignancies, such as locally advanced, recurrent cervical and colorectal cancer. It improves the long-term survival of patients with primary advanced rectal cancer [2].
In 2003, Pomel reported the first case of the laparoscopic total pelvic exenteration (LTPE) to treat the cervical cancer relapse [3]. From then, the LTPE was successively performed by some experienced laparoscopic centers. A cohort study has proved that the laparoscopic procedure is feasible and curative to selected patients [4]. From 2011, we began to carry out LTPE in our hospital by multidisciplinary cooperation.
We have searched for almost all literature about LTPE in the past decade. The articles about this procedure are still limited. In this study, we introduced our experience of LTPE with the initial eleven cases’ results.

Methods

Eight males and three females were diagnosed as pelvic malignancies by biopsy and were selected to receive LTPE from April 2011 to September 2015. The selected criteria included the following: preoperative pathological diagnosis of pelvic malignancies (e.g., colorectal cancer, cervical cancer, or prostate cancer.), no evidence of distant metastasis, the possibility of complete resection, no surgical contraindication, and sufficient understanding about this procedure’s risk by the patient. The surgery was performed by the same surgical team. All cases’ demographic data, preoperative parameters (see Table 1), surgical parameters, and follow-up information about LTPE were retrospectively collected. The study was approved by the institutional review board from Peking University First Hospital.
Table 1
Patient demographics and preoperative parameters
Patient no.
Gender
Age
BMI
Preoperative diagnosis
Preoperative complications
nCRT
ASA
1
Male
57
25.3
Bladder transitional cell carcinoma (grade 3) and rectal adenocarcinoma
Lower gastrointestinal bleeding
No
2
2
Male
62
23.5
Prostate sarcoma (recurrent)
Difficult defecation
No
2
3
Male
58
19.9
Sigmoid adenocarcinoma (bladder invasion)
Rectovesical fistula Colonic obstruction
No
2
4
Male
62
23.3
Rectal adenocarcinoma (bladder invasion)
Rectovesical fistula
No
2
5
Male
75
25.9
Bladder transitional cell carcinoma (grade 2) and rectal adenocarcinoma
Acute renal insufficiency Hypertension
No
2
6
Female
69
21.7
Sigmoid adenocarcinoma (bladder and uterus invasion)
Hypertension
No
2
7
Female
55
23.4
Sigmoid adenocarcinoma (bladder invasion)
Rectovesical fistula
No
2
8
Male
44
24.7
Rectal adenocarcinoma (bladder invasion)
Renal calculi
No
2
9
Female
65
22.3
Sigmoid adenocarcinoma (bladder invasion)
Diabetes mellitus
No
2
10
Male
71
25.1
Sigmoid adenocarcinoma (bladder invasion)
Benign prostatic hyperplasia colonic obstruction
No
2
11
Male
30
20.2
Rectal adenocarcinoma (bladder invasion)
Rectal obstruction
No
2
Mean
 
58.9 (median, 62)
23.2
    
nCRT neoadjuvant chemoradiotherapy, ASA American Standards Association, BMI body mass index
The following criteria for preoperative preparation were listed:
1.
All patients had confirmed diagnosis with a preoperative biopsy.
 
2.
Ultrasonography, enhanced computerized tomography scan or magnetic resonance imaging of the abdomen and pelvis, should be done to stage the disease and determine the extent of the tumor (see Fig. 2a–d, the bladder was invaded by tumor).
 
3.
Preoperative standard bowel preparation in no ileus patient.
 
4.
Evaluation of the physical condition to exclude any preoperative contraindication.
 
5.
Informed contents were accepted and signed off by all patients and their family members.
 
To evaluate the efficiency and safety of LTPE, we also retrospectively collected the surgical parameters of 37 patients who received classical TPE from 2011 to 2015 to perform a comparison between LTPE and open surgery. The classical TPE needed a longitudinal incision (at least 15 cm) on the abdominal midline.

Surgical technique

Epidural anesthesia was applied in combination with general anesthesia. All patients were equipped with patient-controlled analgesia after surgery.
After anesthesia, patient was placed in Lloyd-Davis position. Pneumoperitoneum was established by open technique from the umbilicus. The positions of ports were modified from the Puntambekar’s way [5] (see Fig. 1a). A Trendelenburg (30°) position and right lateral tilt (30°) were maintained during the dissection of the sigmoid and rectum.
The procedure began with the dissection of posterior wall and lateral walls of the rectum. The right lateral peritoneum of the rectosigmoid was incised with the Harmonic Ace (Ethicon Endo-Surgery, Inc., Cincinnati, OH) by the middle enter approach. After entering to the posterior space of the rectosigmoid, the dissection was continued until to the root of inferior mesenteric artery. The inferior mesenteric vessels were ligated and cut. The left lateral peritoneum was also incised to meet with right lateral peritoneum. The retrorectal space was dissected to the level of levator ani muscle, and the lateral walls of the rectum were freed.
The tissues around the bladder and the ureter were dissected. Then, the bladder and the ureter were exposed. Seminiferous duct and superior vesical artery were bound with Hem-o-lok and cut with Harmonic Ace (Ethicon Endo-Surgery, Inc., Cincinnati, OH), following the bladder, lateral ligaments were cut with a Ligasure (Ligasure Vessel Sealing System: Valleylab, a division of Tyco Healthcare Group LP, Boulder, CO). The dissection should not be stopped until reaching the level of levator ani muscle. The urachus was cut off and the cave of Retzius was entered. The puboprostatic ligament was cut. After the dorsal vein complex was ligated and cut, the urethra and the ureter were cut with Harmonic Ace (Ethicon Endo-Surgery, Inc., Cincinnati, OH). The sigmoid was cut with the Endo-GIA.
Anus was sutured, and a new fusiform incision around the anus was performed. Ischiorectal fossa was dissected to the level of levator ani muscle. The specimen was removed (see Fig. 2e–h), and the fusiform incision was sutured. Further surgery needed a 4-cm vertical umbilical incision to perform the urinary diversion (like Bricker’s operation, cutaneous ureterostomy) and sigmoidostomy (see Fig. 1c).
If the patient was suitable for anus preservation operation, the operation was performed till the urethra and the ureter were cut according to the above steps. Then, the anterior rectal wall was exposed. After mesorectum was dissected, the rectum was cut with the Endo-GIA at about 5 cm away to the inferior margin of the tumor. A 4-cm vertical umbilical incision was performed. The bladder and rectal tumor was brought out from the incision, and the sigmoid was cut at about 10 cm away to the superior margin of the tumor. A string suture was performed at the end of the colon, and the anvil of a circular stapler was placed into it. The Bricker’s operation or cutaneous ureterostomy could be completed from the vertical incision (see Fig. 1b, c). Pneumoperitoneum was rebuilt after the incision was closed. At last, the head of the stapler was introduced from the anus into the distal stump. A colorectal anastomosis was successfully performed.
All patients routinely received the pelvic lymphadenectomy.

Postoperative management

The drain was removed depending on the drainage volume. The stomas should be kept flowing well. The patients diagnosed with metastatic lymph nodes by the pathological examination all received the adjuvant chemotherapy.

Results

Surgery was successfully performed in all patients. Eight patients underwent Bricker’s procedure after the bladder was resected. The cutaneous ureterostomy was performed in case 2, case 10, and case 11. Anus preservation operation was performed in case 4, case 7, and case 9. The details about operation parameters were shown in Table 2.
Table 2
Operative parameters and follow-up results
Patient no.
Radical
Construction type
Operative time/min
Blood loss/ml
Pathological stage
PRM
Postoperative hospitalization/day
Postoperative complication (<30 days after surgery)
Postoperative complication (>30 days after surgery)
Follow-up time/month
pCRT
Outcome
1
Yes
Bricker’s procedure and sigmoidostomy (Miles procedure)
620
500
Rectum pT2N0M0 and Bladder pT2bN0M0
Negative
23
No
DVT (7 months)
7
No
Died of non-oncological disease (PE)
2
Yes
Cutaneous ureterostomy and sigmoidostomy (Miles procedure)
415
600
Prostate pT4N0M0
Negative
10
No
UTI (6 months)
12
No
Died of oncological recurrence
3
Yes
Bricker’s procedure and sigmoidostomy (Hartmann procedure)
574
420
Sigmoid pT3 N1M0
Negative
15
No
No
24
XELOX
Alive
4
Yes
Bricker’s procedure and anus preservation operation
616
650
Rectum pT4b N1M0
Negative
11
No
No
22
XELOX
Alive
5
Yes
Bricker’s procedure and sigmoidostomy (Hartmann procedure)
690
800
Rectum pT3N0M0 Bladder pT1N0M0
Negative
26
No
No
14
No
Alive
6
Yes
Bricker’s procedure and sigmoidostomy (Hartmann procedure)
660
400
Sigmoid pT4b N1M0
Negative
14
No
No
14
XELOX
Alive
7
Yes
Bricker’s procedure and anus preservation operation
515
600
Sigmoid pT4b N0M0
Negative
9
No
No
10
XELOX
Alive
8
Yes
Bricker’s procedure and sigmoidostomy (Miles procedure)
520
850
Rectum pT4b N0M0
Negative
16
No
No
7
No
Alive
9
Yes
Bricker’s procedure and anus preservation operation
610
400
Sigmoid pT4b N0M0
Negative
13
No
No
5
No
Alive
10
Yes
Cutaneous ureterostomy and sigmoidostomy (Hartmann procedure)
450
200
Sigmoid pT4b N1M0
Negative
11
No
UTI
5
No
Alive
11
Yes
Cutaneous ureterostomy and sigmoidostomy (Miles procedure)
547
600
Rectum pT4b N1M0
Negative
20
Ileus
Ileus
2
XELOX
Alive
Mean
  
565.2
547.3
  
15.3
  
11.1
  
pCRT postdischarge chemoradiotherapy, XELOX capecitabine + oxaliplatin, PE pulmonary embolism, PRM pathological resection margin, DVT deep vein thrombosis
The comparison between LTPE and open surgery was shown in Table 3. We could find that there were no differences in gender and age between two groups. But it was quite clear that LTPE had longer mean operative time (565.2 vs 468.2 min, p = 0.004), less mean blood loss (547.3 vs 1033.0 min, p < 0.001), and shorter mean postoperative hospitalization time (15.3 vs 22.4 days, p = 0.004).
Table 3
Comparison between LTPE and open surgery
 
LTPE
Open surgery
p
Gender, (male/female)/n
8/3
20/17
0.60
Median age, range/year
62 (30–75)
55 (35–80)
0.53
Mean operative time ± SD, range/minute
565.2 ± 81.4 (415–690)
468.2 ± 51.8 (360–560)
0.004
Mean blood loss ± SD, range/ml
547.3 ± 180.1 (200–850)
1033.0 ± 284.6 (670–2000)
<0.001
Mean postoperative hospitalization ± SD, range/day
15.3 ± 5.3 (9–23)
22.4 ± 9.0 (10–45)
0.004
LTPE laparoscopic total pelvic exenteration, SD standard deviation
The mean follow-up time was 11.1 months. Case 1 died of pulmonary embolism in the 7th month of follow-up time. Case 2 died of oncological recurrence and metastasis in the 12th month of follow-up time. Case 3 to case 11 were still alive without indication of recurrence and metastasis when followed up. Case 11 suffered from ileus after surgery. After conservative treatment, the ileus was relieved without surgical intervention. Five patients received adjuvant chemotherapy of XELOX regiment (Oxaliplatin, 130 mg/m2, IV over 2 h, day 1 plus capecitabine, 850–1000 mg/m2, twice daily, PO, for 14 days; repeat every 3 weeks) 3 weeks after hospital discharge.

Discussion

TPE has become a major surgical technique widely used for curative resection of locally advanced or recurrent pelvic malignancies since the 1940s. The classical TPE is open surgery which has a high rate of postoperative complication but relatively low surgical mortality. With the improvement of surgical techniques, the overall major morbidity rate after TPE is still up to 75 % (13 to 75 %) in previous literature [69], but the mortality has decreased from rates up to 33 % [1014] down to rates less than 10 % (0 to 10 %) [1517].
The emergence of laparoscopic surgery is an important milestone of the modern surgery. This revolution means the arrival of the minimal invasive surgery. Compared with open procedure, less intraoperative blood loss, less postoperative pain, and shorter hospital stay are the outstanding advantages of the laparoscopic procedure. Previously, the oncological outcome of the laparoscopic surgery was not acceptable, and the resection of the tumors was considered incomplete due to its small operative space. But in a randomized trail of 209 cases of colonic adenocarcinoma, the results showed that laparoscopy-assisted colectomy was more effective than open colectomy for treatment of colon cancer in terms of morbidity, hospital stay, tumor recurrence, and cancer-related survival [18]. Many other published studies have also proved the oncological safety of laparoscopic procedure [1922]. With the advancement of technology and surgical skills, the laparoscopy is now widely used in the treatment of gynecological, colonic, and prostatic cancer.
In 2003, Pomel et al. reported the first case of LTPE with a cervical cancer relapse and showed the feasibility and safety of the procedure [3]. Subsequently, Lin et al. reported a case of laparoscopy-assisted transvaginal TPE [23]. In 2009, a robotic-assisted TPE was first reported by Peter in USA [24]. In 2011, an entirely robotic total pelvic exenteration and extended lymphadenectomy for recurrent endometrial cancer was reported by Vasilescu et al. [25]. Among the published literature, we found that 22 cases of different kinds of pelvic malignancies underwent LTPE in several oncological institutions around the world in the last decade (see Table 4) [3, 5, 2331]. At present, there is still no large sample report about the long-term outcome of LTPE.
Table 4
Previous reports of laparoscopic total pelvic exenteration
Investigators
Year
Patient no.
Preoperative treatment
Mean operative time/min
Mean blood loss/ml
Type of UD
Conversion rate/%
Complication
Mean postoperative hospitalization/day
Follow-up time/mon
Follow-up outcome
5-year survival
Pomel et al. [3]
2003
1
Chemoradiotherapy
540
250
Bricker
0
0
16
NS
NS
NS
Lin et al. [23]
2004
1
Radiotherapy
540
200
US
0
UTI, SSI
19
12
Alive (disease free)
NS
Uzan et al. [24]
2005
2
Chemoradiotherapy
510 (480–540)
525 (250–800)
Bricker
0
UTI, CRAF
23.5 (17–30)
8.5 (6–11)
Dead
NS
Puntambekar et al. [25]
2006
2
NS
240
200
Wet colostomy
0
NS
3.5
15
NS
NS
[5]
2009
7
NS
230 (±15)
250 (±50)
Five wet colostomy, two Bricker
0
NS
8 (7–21)
11 (4–24)
Four died of distant metastases, three disease free more than a year
NS
Skrovina M et al. [26]
2006
3
1 NS 2 nCRT
NS
NS
Bricker
NS
One Wound dehiscence and AMI
NS
NS
NS
NS
Patel H et al. [27]
2009
2
Chemoradiotherapy
330
1200
Bricker
0
NS
11
NS
NS
NS
Lim PC [28] (robotic-assisted)
2009
1
Chemoradiotherapy
540
1000
Bricker
0
NS
23
NS
NS
NS
Figueiredo et al. [29]
2010
1
nCRT
450
NS
NS
NS
NS
NS
10
Alive (no evidence of recurrence and metastasis)
NS
Vasilescu et al. [30] (entirely robotic)
2011
1
Radiotherapy
250
365
Cutaneous ureterostomy
0
0
11
NS
NS
NS
Mukai et al. [31]
2013
1
nCRT
831
600
Cutaneous ureterostomy
0
Ileus
29
NS
NS
NS
Total
 
22
          
UD urinary diversion, NS not stated, UTI urinary tract infection, SSI surgical site infection, US ureterosigmoidostomy, CRAF colorectal anastomosis fistula, nCRT neoadjuvant chemoradiotherapy, AMI acute myocardial infarction
Previous reports show that mean operative time of LTPE is ranging from 230 up to 831 min, and mean postoperative hospitalization stay varies from 3.5 to 29 days. In our series, mean operative time and mean hospital stay are similar to others, respectively 565.2 min and 15.3 days. But both parameters are much shorter in Indian study than other studies. It may be the result of different surgical techniques and different health policies. In addition, all the cases were female patients whose anatomy is relatively simple in Indian study. The hospital stay is also closely associated with the postoperative complications. The mean estimated blood loss of our study is obviously reduced when patients underwent laparoscopic approach, ranging from 200 to 850 ml, compared to classical open approach, ranging from 1000 to 7550 ml [6, 32].
TPE is one of the most spoiling surgeries, requiring en bloc resection of the pelvic organs. More than half of the patients underwent the TPE suffered from different kinds of major or minor complications associated with urinary diversion and bowel reconstruction [33], especially previous radiotherapy before surgery [34]. We hope that the laparoscopic approach can play an important role in reducing the morbidity rate. But dramatically, in a cohort study, it did not work when compared to open approach [4]. Few data were reported. More scientific studies are still needed.
The most commonly used form of urinary diversion (UD) for pelvic exentenration is Bricker’s ileal conduit (IC) described first in 1950 [35]. IC has been the safest and easiest way for urinary diversion while decreasing the morbidity rate. The advantage of this form is to overcome the high complication rate caused by primary wet colostomy. Primary wet colostomy has been abandoned because of the 9 % high mortality rate of complications [36], like electrolyte abnormalities, ascending pyelonephritis, and malodorous watery diarrhea. In 1989, Carter et al. [37] first described a modified wet colostomy technique called double-barreled wet colostomy (DBWC). In 2010, Golda et al. [38] reported their single institution experience about DBWC drawing a conclusion that DBWC is an alternative option for patients after TPE when reconstruction of the fecal and urinary streams is not possible. Compared with traditional IC, DBWC provides a single stoma allowing for easier maintenance and not increasing the morbidity rates. Chokshi et al. [39] concluded the similar result with Golda’s study that DBWC is able to provide a safe and feasible technique for urinary and fecal diversion.
In 11 cases of our study, eight patients underwent Bricker’s IC and three patients received cutaneous ureterostomy (CU). Because three patients were terminal, CU was performed as a temporary diversion. We can find that the operative time of case 2 and case 10 was obviously much shorter than others. The procedure of CU is simple and no need for bowel resection and anastomosis. CU is just widely used for abdominal wall diversion in children but rarely done in adult. The procedure is only used for diversion in terminal stage or when bowel resection cannot be performed [40].
For fecal diversion, eight patients underwent the sigmoidostomy and three patients underwent anus preservation operation. In case 1, the distance of rectal tumor from the anus verge was 3 cm, so a sigmoidostomy (Miles procedure) was performed. But in case 4, patient received the anus preservation operation as the distance of tumor from the anus verge was 10 cm (>5 cm). This situation was similar to case 7 and case 9. For case 2, case 3, case 5, case 6, and case 10, Hartmann’s procedure was performed in consideration of the possible subsequent radiotherapy or chemotherapy and the high risk of bowel anastomosis’ leakage.
Traditionally, open TPE is associated with high complications rates of UD and fecal diversion. Complication rate directly related to UD after laparoscopic approach is reported more than 50 % [4]. According to both open approach and laparoscopic approach, the most common complication is infection, especially urinary tract infection (UTI, 21–36 %) [4], followed by ureteral stricture (5–22.1 %) [4], ureteral/anastomosis leaks (8–14 %) [4], urinary stomal stricture (4–25 %) [4], and stone formation (2–18 %) [4]. In our study, UTI occurred in two patients (2/7, 28.6 %) more than 30 days after operation. Deep vein thrombosis (DVT) occurred in one patient, and the patient died of pulmonary embolism; the others were well. The patient suffered increased stool frequency at 2 months after anus preservation operation. It was still unknown whether LTPE can really reduce the high morbidity rates or not. More contrast studies about morbidity rate of TPE between open approach and laparoscopic approach need to be done. It is proved, in this study, that the laparoscopic approach is advantageous in decreasing the recovery time, blood loss, and hospital stay.
In this study, all patients did not received the preoperative chemotherapy and radiotherapy. For case 3, case 4, case 6, and case 11, because the pathologic staging information showed positive regional lymph nodes, XELOX regimen as postoperative chemotherapy was recommended to patients. Case 10 refused to accept postoperative chemotherapy. No complications-related chemotherapy occurred. By now, no evidences of recurrence and metastasis have been found in these patients.
In reported literature, more than half of cases were females who underwent the LTPE because of cervical cancer. But in our study, only three cases were females. Because the physiology and pelvic anatomy of the male are different from those of the female, we do not know whether the gender is an influencing factor to the LTPE or not. Larger sample and gender-related analysis will be needed in further study.
Although the oncological safety of the laparoscopic approach has been accepted in treating many oncological diseases, the oncological safety of LTPE is still indeterminate as follow-up time was very limited; no series reach 5 years of follow-up time.
We believe that the selection of patients is crucial for a satisfactory oncological result. Patients’ compliance and patients’ education regarding the LTPE are also important. The patient should know this surgical approach means the obvious decrease of the quality of life. The multidisciplinary team is an important guaranty of the successful LTPE. Based on our experiences, at least the urologist, the colorectal specialist and special postoperative nursing group are needed.
Although in our study, the number of cases is maybe the largest compared with previous published articles, 11 was far from enough for a persuasive study. In addition, this was a retrospective study which was another limitation. A randomized control trial will be needed in our later work.

Conclusions

In conclusion, with the initial experience of 11 cases of LTPE, we think that the technique of LTPE seems to be a feasible and safe procedure in the treatment of carefully selected patients of pelvic malignancies. LTPE is also advantageous in decreasing blood loss, recovery time, and hospital stay. But the oncological safety and long-term outcome of LTPE still need to be explored in the future.
Written informed consent was obtained from the patient for the publication of this report and any accompanying images.

Acknowledgements

We are grateful to He Wang who helped us in the medical image management and to all the colleagues who helped in the preparation of this paper. This work was also supported by grants from the Natural Science Foundation of China (81272710).
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

All authors declare that they have no competing interests.

Authors’ contributions

KY and LC collected surgical data, reviewed related literatures, and drafted the article. KY processed the data and the images. JT and XL are corresponding authors who designed the study and revised the article. LY, ZZ, CZ, XW, JT, XL, ZH and LZ were a surgical team. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Brunschwig A. Complete excision of pelvic viscera for advanced carcinoma; a one-stage abdominoperineal operation with end colostomy and bilateral ureteral implantation into the colon above the colostomy. Cancer. 1948;1:177–83.CrossRefPubMed Brunschwig A. Complete excision of pelvic viscera for advanced carcinoma; a one-stage abdominoperineal operation with end colostomy and bilateral ureteral implantation into the colon above the colostomy. Cancer. 1948;1:177–83.CrossRefPubMed
2.
Zurück zum Zitat Nielsen MB, Rasmussen PC, Lindegaard JC, Laurberg S. A 10-year experience of total pelvic exenteration for primary advanced and locally recurrent rectal cancer based on a prospective database. Colorectal Dis. 2012;14:1076–83.CrossRefPubMed Nielsen MB, Rasmussen PC, Lindegaard JC, Laurberg S. A 10-year experience of total pelvic exenteration for primary advanced and locally recurrent rectal cancer based on a prospective database. Colorectal Dis. 2012;14:1076–83.CrossRefPubMed
3.
Zurück zum Zitat Pomel C, Rouzier R, Pocard M, Thoury A, Sideris L, Morice P, et al. Laparoscopic total pelvic exenteration for cervical cancer relapse. Gynecol Oncol. 2003;91:616–8.CrossRefPubMed Pomel C, Rouzier R, Pocard M, Thoury A, Sideris L, Morice P, et al. Laparoscopic total pelvic exenteration for cervical cancer relapse. Gynecol Oncol. 2003;91:616–8.CrossRefPubMed
4.
Zurück zum Zitat Martinez A, Filleron T, Vitse L, Querleu D, Mery E, Balague G, et al. Laparoscopic pelvic exenteration for gynaecological malignancy: is there any advantage? Gynecol Oncol. 2011;120:374–9.CrossRefPubMed Martinez A, Filleron T, Vitse L, Querleu D, Mery E, Balague G, et al. Laparoscopic pelvic exenteration for gynaecological malignancy: is there any advantage? Gynecol Oncol. 2011;120:374–9.CrossRefPubMed
5.
Zurück zum Zitat Puntambekar SP, Agarwal GA, Puntambekar SS, Sathe RM, Patil AM. Stretching the limits of laparoscopy in gynecological oncology: technical feasibility of doing a laparoscopic total pelvic exenteration for palliation in advanced cervical cancer. Int J Biomed Sci. 2009;5:17–22.PubMedCentralPubMed Puntambekar SP, Agarwal GA, Puntambekar SS, Sathe RM, Patil AM. Stretching the limits of laparoscopy in gynecological oncology: technical feasibility of doing a laparoscopic total pelvic exenteration for palliation in advanced cervical cancer. Int J Biomed Sci. 2009;5:17–22.PubMedCentralPubMed
6.
Zurück zum Zitat Vermaas M, Ferenschild FT, Verhoef C, Nuyttens JJ, Marinelli AW, Wiggers T, et al. Total pelvic exenteration for primary locally advanced and locally recurrent rectal cancer. Eur J Surg Oncol. 2007;33:452–8.CrossRefPubMed Vermaas M, Ferenschild FT, Verhoef C, Nuyttens JJ, Marinelli AW, Wiggers T, et al. Total pelvic exenteration for primary locally advanced and locally recurrent rectal cancer. Eur J Surg Oncol. 2007;33:452–8.CrossRefPubMed
7.
Zurück zum Zitat Saito N, Koda K, Takiguchi N, Oda K, Ono M, Sugito M, et al. Curative surgery for local pelvic recurrence of rectal cancer. Dig Surg. 2003;20:192–9. 200.CrossRefPubMed Saito N, Koda K, Takiguchi N, Oda K, Ono M, Sugito M, et al. Curative surgery for local pelvic recurrence of rectal cancer. Dig Surg. 2003;20:192–9. 200.CrossRefPubMed
8.
Zurück zum Zitat Law WL, Chu KW, Choi HK. Total pelvic exenteration for locally advanced rectal cancer. J Am Coll Surg. 2000;190:78–83.CrossRefPubMed Law WL, Chu KW, Choi HK. Total pelvic exenteration for locally advanced rectal cancer. J Am Coll Surg. 2000;190:78–83.CrossRefPubMed
9.
Zurück zum Zitat Yamada K, Ishizawa T, Niwa K, Chuman Y, Aikou T. Pelvic exenteration and sacral resection for locally advanced primary and recurrent rectal cancer. Dis Colon Rectum. 2002;45:1078–84.CrossRefPubMed Yamada K, Ishizawa T, Niwa K, Chuman Y, Aikou T. Pelvic exenteration and sacral resection for locally advanced primary and recurrent rectal cancer. Dis Colon Rectum. 2002;45:1078–84.CrossRefPubMed
10.
Zurück zum Zitat Lindsey WF, Wood DK, Briele HA, Greager JA, Walker MJ, Bork J, et al. Pelvic exenteration. J Surg Oncol. 1985;30:231–4.CrossRefPubMed Lindsey WF, Wood DK, Briele HA, Greager JA, Walker MJ, Bork J, et al. Pelvic exenteration. J Surg Oncol. 1985;30:231–4.CrossRefPubMed
11.
Zurück zum Zitat Lopez MJ, Standiford SB, Skibba JL. Total pelvic exenteration. A 50-year experience at the Ellis Fischel Cancer Center. Arch Surg. 1994;129:390–5. 395–6.CrossRefPubMed Lopez MJ, Standiford SB, Skibba JL. Total pelvic exenteration. A 50-year experience at the Ellis Fischel Cancer Center. Arch Surg. 1994;129:390–5. 395–6.CrossRefPubMed
13.
Zurück zum Zitat Falk RE, Moffat FL, Makowka L, Konn G, Bulbul MA, Rotstein LE, et al. Pelvic exenteration for advanced primary and recurrent adenocarcinoma. Can J Surg. 1985;28:539–41.PubMed Falk RE, Moffat FL, Makowka L, Konn G, Bulbul MA, Rotstein LE, et al. Pelvic exenteration for advanced primary and recurrent adenocarcinoma. Can J Surg. 1985;28:539–41.PubMed
14.
Zurück zum Zitat Shirouzu K, Isomoto H, Morodomi T, Ogata Y, Akagi Y, Kakegawa T. Total pelvic exenteration for locally advanced colorectal carcinoma—postoperative complications. Kurume Med J. 1995;42:33–7.CrossRefPubMed Shirouzu K, Isomoto H, Morodomi T, Ogata Y, Akagi Y, Kakegawa T. Total pelvic exenteration for locally advanced colorectal carcinoma—postoperative complications. Kurume Med J. 1995;42:33–7.CrossRefPubMed
15.
16.
Zurück zum Zitat Lopez MJ, Monafo WW. Role of extended resection in the initial treatment of locally advanced colorectal carcinoma. Surgery. 1993;113:365–72.PubMed Lopez MJ, Monafo WW. Role of extended resection in the initial treatment of locally advanced colorectal carcinoma. Surgery. 1993;113:365–72.PubMed
17.
Zurück zum Zitat Liu SY, Wang YN, Zhu WQ, Gu WL, Fu H. Total pelvic exenteration for locally advanced rectal carcinoma. Dis Colon Rectum. 1994;37:172–4.CrossRefPubMed Liu SY, Wang YN, Zhu WQ, Gu WL, Fu H. Total pelvic exenteration for locally advanced rectal carcinoma. Dis Colon Rectum. 1994;37:172–4.CrossRefPubMed
18.
Zurück zum Zitat Lacy AM, Garcia-Valdecasas JC, Delgado S, Castells A, Taura P, Pique JM, et al. Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. Lancet. 2002;359:2224–9.CrossRefPubMed Lacy AM, Garcia-Valdecasas JC, Delgado S, Castells A, Taura P, Pique JM, et al. Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. Lancet. 2002;359:2224–9.CrossRefPubMed
19.
Zurück zum Zitat A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med. 2004;350:2050–9. A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med. 2004;350:2050–9.
20.
Zurück zum Zitat Di B, Li Y, Wei K, Xiao X, Shi J, Zhang Y, et al. Laparoscopic versus open surgery for colon cancer: a meta-analysis of 5-year follow-up outcomes. Surg Oncol. 2013;22:e39–43.CrossRefPubMed Di B, Li Y, Wei K, Xiao X, Shi J, Zhang Y, et al. Laparoscopic versus open surgery for colon cancer: a meta-analysis of 5-year follow-up outcomes. Surg Oncol. 2013;22:e39–43.CrossRefPubMed
21.
Zurück zum Zitat Liang Y, Li G, Chen P, Yu J. Laparoscopic versus open colorectal resection for cancer: a meta-analysis of results of randomized controlled trials on recurrence. Eur J Surg Oncol. 2008;34:1217–24.CrossRefPubMed Liang Y, Li G, Chen P, Yu J. Laparoscopic versus open colorectal resection for cancer: a meta-analysis of results of randomized controlled trials on recurrence. Eur J Surg Oncol. 2008;34:1217–24.CrossRefPubMed
22.
Zurück zum Zitat Van der Pas MH, Haglind E, Cuesta MA, Furst A, Lacy AM, Hop WC, et al. Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial. Lancet Oncol. 2013;14:210–8.CrossRefPubMed Van der Pas MH, Haglind E, Cuesta MA, Furst A, Lacy AM, Hop WC, et al. Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial. Lancet Oncol. 2013;14:210–8.CrossRefPubMed
23.
Zurück zum Zitat Lin MY, Fan EW, Chiu AW, Tian YF, Wu MP, Liao AC. Laparoscopy-assisted transvaginal total exenteration for locally advanced cervical cancer with bladder invasion after radiotherapy. J Endourol. 2004;18:867–70.CrossRefPubMed Lin MY, Fan EW, Chiu AW, Tian YF, Wu MP, Liao AC. Laparoscopy-assisted transvaginal total exenteration for locally advanced cervical cancer with bladder invasion after radiotherapy. J Endourol. 2004;18:867–70.CrossRefPubMed
24.
Zurück zum Zitat Uzan C, Rouzier R, Castaigne D, Pomel C. Laparoscopic pelvic exenteration for cervical cancer relapse: preliminary study. J Gynecol Obstet Biol Reprod (Paris). 2006;35:136–45.CrossRef Uzan C, Rouzier R, Castaigne D, Pomel C. Laparoscopic pelvic exenteration for cervical cancer relapse: preliminary study. J Gynecol Obstet Biol Reprod (Paris). 2006;35:136–45.CrossRef
25.
Zurück zum Zitat Puntambekar S, Kudchadkar RJ, Gurjar AM, Sathe RM, Chaudhari YC, Agarwal GA, et al. Laparoscopic pelvic exenteration for advanced pelvic cancers: a review of 16 cases. Gynecol Oncol. 2006;102:513–6.CrossRefPubMed Puntambekar S, Kudchadkar RJ, Gurjar AM, Sathe RM, Chaudhari YC, Agarwal GA, et al. Laparoscopic pelvic exenteration for advanced pelvic cancers: a review of 16 cases. Gynecol Oncol. 2006;102:513–6.CrossRefPubMed
26.
Zurück zum Zitat Bartos P, Skrovina M, Trhlik M. Videopresentation of laparoscopic technique of anterior, posterior and total exenteration for recurrent cervical cancer. Int J Gynecol Obstet. 2009;107S2:S397–8.CrossRef Bartos P, Skrovina M, Trhlik M. Videopresentation of laparoscopic technique of anterior, posterior and total exenteration for recurrent cervical cancer. Int J Gynecol Obstet. 2009;107S2:S397–8.CrossRef
27.
Zurück zum Zitat Patel H, Joseph JV, Amodeo A, Kothari K. Laparoscopic salvage total pelvic exenteration: is it possible post-chemo-radiotherapy? J Minim Access Surg. 2009;5:111–4.PubMedCentralCrossRefPubMed Patel H, Joseph JV, Amodeo A, Kothari K. Laparoscopic salvage total pelvic exenteration: is it possible post-chemo-radiotherapy? J Minim Access Surg. 2009;5:111–4.PubMedCentralCrossRefPubMed
28.
Zurück zum Zitat Lim PC. Robotic assisted total pelvic exenteration: a case report. Gynecol Oncol. 2009;115:310–1.CrossRefPubMed Lim PC. Robotic assisted total pelvic exenteration: a case report. Gynecol Oncol. 2009;115:310–1.CrossRefPubMed
29.
Zurück zum Zitat Figueiredo JA, Carvalho GM, Mota RT, Castro VM. Meyer MMMDE, Barragat AZ. Laparoscopic total pelvic exenteration and perineal amputation with wet colostomy. A case report. J Coloproctol. 2011;32(2):175–9.CrossRef Figueiredo JA, Carvalho GM, Mota RT, Castro VM. Meyer MMMDE, Barragat AZ. Laparoscopic total pelvic exenteration and perineal amputation with wet colostomy. A case report. J Coloproctol. 2011;32(2):175–9.CrossRef
30.
Zurück zum Zitat Vasilescu C, Tudor S, Popa M, Aldea B, Gluck G. Entirely robotic total pelvic exenteration. Surg Laparosc Endosc Percutan Tech. 2011;4:e200–2.CrossRef Vasilescu C, Tudor S, Popa M, Aldea B, Gluck G. Entirely robotic total pelvic exenteration. Surg Laparosc Endosc Percutan Tech. 2011;4:e200–2.CrossRef
31.
Zurück zum Zitat Mukai T, Akiyoshi T, Ueno M, Fukunaga Y, Nagayama S, Fujimoto Y, et al. Laparoscopic total pelvic exenteration with en bloc lateral lymph node dissection after neoadjuvant chemoradiotherapy for advanced primary rectal cancer. Asian J Endosc Surg. 2013;6:314–7.CrossRefPubMed Mukai T, Akiyoshi T, Ueno M, Fukunaga Y, Nagayama S, Fujimoto Y, et al. Laparoscopic total pelvic exenteration with en bloc lateral lymph node dissection after neoadjuvant chemoradiotherapy for advanced primary rectal cancer. Asian J Endosc Surg. 2013;6:314–7.CrossRefPubMed
32.
Zurück zum Zitat Maggioni A, Roviglione G, Landoni F, Zanagnolo V, Peiretti M, Colombo N, et al. Pelvic exenteration: ten-year experience at the European Institute of Oncology in Milan. Gynecol Oncol. 2009;114:64–8.CrossRefPubMed Maggioni A, Roviglione G, Landoni F, Zanagnolo V, Peiretti M, Colombo N, et al. Pelvic exenteration: ten-year experience at the European Institute of Oncology in Milan. Gynecol Oncol. 2009;114:64–8.CrossRefPubMed
33.
Zurück zum Zitat Diver EJ, Rauh-Hain JA, Del CM. Total pelvic exenteration for gynecologic malignancies. Int J Surg Oncol. 2012;2012:693535.PubMedCentralPubMed Diver EJ, Rauh-Hain JA, Del CM. Total pelvic exenteration for gynecologic malignancies. Int J Surg Oncol. 2012;2012:693535.PubMedCentralPubMed
34.
Zurück zum Zitat Houvenaeghel G, Moutardier V, Karsenty G, Bladou F, Lelong B, Buttarelli M, et al. Major complications of urinary diversion after pelvic exenteration for gynecologic malignancies: a 23-year mono-institutional experience in 124 patients. Gynecol Oncol. 2004;92:680–3.CrossRefPubMed Houvenaeghel G, Moutardier V, Karsenty G, Bladou F, Lelong B, Buttarelli M, et al. Major complications of urinary diversion after pelvic exenteration for gynecologic malignancies: a 23-year mono-institutional experience in 124 patients. Gynecol Oncol. 2004;92:680–3.CrossRefPubMed
35.
Zurück zum Zitat Bricker EM. Bladder substitution after pelvic evisceration. Surg Clin North Am. 1950;5:1511–21. Bricker EM. Bladder substitution after pelvic evisceration. Surg Clin North Am. 1950;5:1511–21.
36.
Zurück zum Zitat Brunschwig A, Pierce VK. Partial and complete pelvic exenteration; a progress report based upon the first 100 operations. Cancer. 1950;6:972–4.CrossRef Brunschwig A, Pierce VK. Partial and complete pelvic exenteration; a progress report based upon the first 100 operations. Cancer. 1950;6:972–4.CrossRef
37.
Zurück zum Zitat Carter MF, Dalton DP, Garnett JE. Simultaneous diversion of the urinary and fecal streams utilizing a single abdominal stoma: the double-barreled wet colostomy. J Urol. 1989;5:1189–91. Carter MF, Dalton DP, Garnett JE. Simultaneous diversion of the urinary and fecal streams utilizing a single abdominal stoma: the double-barreled wet colostomy. J Urol. 1989;5:1189–91.
38.
Zurück zum Zitat Golda T, Biondo S, Kreisler E, Frago R, Fraccalvieri D, Millan M. Follow-up of double-barreled wet colostomy after pelvic exenteration at a single institution. Dis Colon Rectum. 2010;5:822–9.CrossRef Golda T, Biondo S, Kreisler E, Frago R, Fraccalvieri D, Millan M. Follow-up of double-barreled wet colostomy after pelvic exenteration at a single institution. Dis Colon Rectum. 2010;5:822–9.CrossRef
39.
Zurück zum Zitat Chokshi RJ, Kuhrt MP, Schmidt C, Arrese D, Routt M, Parks L, et al. Single institution experience comparing double-barreled wet colostomy to ileal conduit for urinary and fecal diversion. Urology. 2011;78:856–62.CrossRefPubMed Chokshi RJ, Kuhrt MP, Schmidt C, Arrese D, Routt M, Parks L, et al. Single institution experience comparing double-barreled wet colostomy to ileal conduit for urinary and fecal diversion. Urology. 2011;78:856–62.CrossRefPubMed
40.
Zurück zum Zitat Rodriguez AR, Lockhart A, King J, Wiegand L, Carrion R, Ordorica R, et al. Cutaneous ureterostomy technique for adults and effects of ureteral stenting: an alternative to the ileal conduit. J Urol. 2011;186:1939–43.CrossRefPubMed Rodriguez AR, Lockhart A, King J, Wiegand L, Carrion R, Ordorica R, et al. Cutaneous ureterostomy technique for adults and effects of ureteral stenting: an alternative to the ileal conduit. J Urol. 2011;186:1939–43.CrossRefPubMed
Metadaten
Titel
Laparoscopic total pelvic exenteration for pelvic malignancies: the technique and short-time outcome of 11 cases
verfasst von
Kunlin Yang
Lin Cai
Lin Yao
Zheng Zhang
Cuijian Zhang
Xin Wang
Jianqiang Tang
Xuesong Li
Zhisong He
Liqun Zhou
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2015
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-015-0715-2

Weitere Artikel der Ausgabe 1/2015

World Journal of Surgical Oncology 1/2015 Zur Ausgabe

Wie erfolgreich ist eine Re-Ablation nach Rezidiv?

23.04.2024 Ablationstherapie Nachrichten

Nach der Katheterablation von Vorhofflimmern kommt es bei etwa einem Drittel der Patienten zu Rezidiven, meist binnen eines Jahres. Wie sich spätere Rückfälle auf die Erfolgschancen einer erneuten Ablation auswirken, haben Schweizer Kardiologen erforscht.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 EAU 2024 Kongressbericht

Die Ureterstriktur ist eine relativ seltene Komplikation, trotzdem bedarf sie einer differenzierten Versorgung. In komplexen Fällen wird dies durch die roboterassistierte OP-Technik gewährleistet. Erste Resultate ermutigen.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.