Skip to main content
Erschienen in: Radiation Oncology 1/2015

Open Access 01.12.2015 | Short report

Perilesional edema in radiation necrosis reflects axonal degeneration

verfasst von: Carlos J Perez-Torres, Liya Yuan, Robert E Schmidt, Keith M Rich, Joseph JH Ackerman, Joel R Garbow

Erschienen in: Radiation Oncology | Ausgabe 1/2015

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

Recently, we characterized a Gamma Knife® radiation necrosis mouse model with various magnetic resonance imaging (MRI) protocols to identify biomarkers useful in differentiation from tumors. Though the irradiation was focal to one hemisphere, a contralateral injury was observed that appeared to be localized in the white matter only. Interestingly, this injury was identifiable in T2-weighted images, apparent diffusion coefficient (ADC), and magnetization transfer ratio (MTR) maps, but not on post-contrast T1-weighted images. This observation of edema independent of vascular changes is akin to the perilesional edema seen in clinical radiation necrosis.

Findings

The pathology underlying the observed white-matter MRI changes was explored by performing immunohistochemistry for healthy axons and myelin. The presence of both healthy axons and myelin was reduced in the contralateral white-matter lesion.

Conclusions

Based on our immunohistochemical findings, the contralateral white-matter injury is most likely due to axonal degeneration.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

CJPT designed, performed, and analyzed experiments and wrote the manuscript. LY performed experiments. RES analyzed experiments and helped with the manuscript. KMR, JJA, and JRG supervised and helped revise the manuscript. All authors read and approved the final manuscript.
Abkürzungen
MRI
Magnetic resonance imaging
ADC
Apparent diffusion coefficient
MTR
Magnetization transfer ratio
PIR
Post-irradiation
WM
White matter
IHC
Immunohistochemistry

Findings

Introduction

Delayed radiation injury, also known as radiation necrosis, is a serious complication of radiation therapy, seen in up to 23% of patients [1], that can occur months-to-years after radiation. We have recently developed and described a mouse model of radiation necrosis generated via stereotactic radiosurgery with the Leksell Gamma Knife® Perfexion™ [Elekta AB (Publ), Stockholm, Sweden] [2-4]. In this model, post-contrast T1-weighted MRI identifies the necrotic lesion as confined to the ipsilateral hemisphere and centered on the foci of irradiation [4]. Gross analysis of hematoxylin and eosin sections is consistent with the lesion being confined to the ipsilateral hemisphere [4]. However, as shown in Figure 1 and expanded in our prior work [4], other MRI imaging contrasts, including T2-weighted, magnetization transfer, and diffusion, identify an additional contralateral lesion at later time points (approximately eight weeks, or later, post-irradiation (PIR)) that appears to be confined to the white matter. Given its MRI characteristics, this contralateral lesion is akin to the perilesional edema seen in clinical cases of radiation necrosis [5-7].
To our knowledge, this is the first report of a preclinical model of radiation necrosis presenting a lesion resembling perilesional edema. We sought to identify the underlying injury to the white matter (WM) structure at the contralateral injury site identified by MRI. Similar to our model, most other rodent models of radiation necrosis in the brain identify a lesion at the irradiation foci having typical clinical pathology (e.g., gliosis, vascular changes, cell loss) [8-10]. Hematoxylin and eosin (H&E) staining is commonly performed and reveals pathology only in the ipsilateral hemisphere. In our mice, the changes in the white matter are subtle and are not readily observed by H&E. However, immunohistochemical (IHC) staining is able to identify alterations in both healthy axons and myelin.

Methods

Full details on the irradiation and MRI protocols can be found in our prior publication [4]. Briefly, 7–8 week old female BALB/cN mice received a single 50 Gy (50% isodose) radiation dose from the Gamma Knife. The radiation isocenter was focused on the left cortex at ~3 mm behind bregma. The ipsilateral hemisphere develops a progressive injury starting at ~3-4 weeks PIR. The contralateral hemisphere received less than 25 Gy. In this mouse model, single hemispheric 30 Gy irradiation (i.e., radiation isocenter focused on the left cortex at ~3 mm behind bregma) led to no apparent ipsilateral lesion on T1 or T2 weighted imaging at up to 20 weeks PIR (Figure 2).
Magnetization Transfer Contrast (MTC), Diffusion Weighted Imaging (DWI), and anatomical post-contrast T1- and T2-weighted MRI datasets were acquired as the radiation lesion progressed. For MTC analysis, proton-density-weighted images were acquired with and without the application of a 10 ms, 500° saturation pulse applied at a frequency offset +10 ppm from the water resonance. The magnetization transfer ratio (MTR) was calculated as the percent signal lost due to the saturation pulse: MTR = (Off - On) / Off. For DWI analysis, the isotropic apparent diffusion coefficient (ADC) was calculated as the average of three separate diffusion datasets, acquired with diffusion encoding along 3 orthogonal directions, with a b-value of 1000 s/mm2, plus a reference dataset with a b-value of 0.
We utilized immunohistochemical (IHC) staining for myelin and uninjured axons to determine which, if any, of the two major components of WM was affected. The following three possible scenarios were the most likely: 1) edema with no WM damage, 2) edema due to demyelination as a consequence of the enhanced radiosensitivity of oligodendrocytes [11] but with intact axons, and 3) edema due to axonal degeneration (injury to axons with or without myelin injury). IHC was performed on mice from our previous study [4] with a confirmed contralateral WM lesion at 12 weeks PIR. A representative mouse at one week PIR, in which no injury is observed by MRI, served as a “control”.
IHC was performed on paraffin embedded sections with mouse anti-phosphorylated neurofilament antibody (SMI-31; 1:1000, Covance, NJ, USA) to stain non-injured axons, or with rabbit anti-myelin basic protein antibody (MBP, 1:1000, Sigma-Aldrich, MO, USA) to stain the myelin sheath. Secondary antibodies conjugated to horseradish peroxidase (HRP) were utilized in combination with diaminobenzidine (DAB) per standard protocols.

Results

We performed SMI-31 and MBP staining at one and 12 weeks PIR representing cases of no injury versus injury. As can be seen in Figure 3, both markers were abnormal at 12 weeks PIR compared to one week PIR. Specifically, there was fewer healthy axons and less total myelin, though not a complete elimination of either marker. The experimental scenario is insufficient to completely dismiss the possibility of a delayed primary injury or a bystander effect from low dose irradiation [12]; however, the fact that single hemispheric 30 Gy irradiation led to no apparent ipsilateral lesion on T1- or T2-weighted imaging at up to 20 weeks PIR makes this very unlikely. Since both axons and myelin are affected, axonal degeneration is the most likely explanation. Because there are crossing fibers in this region of WM that connect the two hemispheres, this contralateral injury would then be the consequence of the ipsilateral injury of crossing axons. However, based on the data shown in Figures 1 and 3, it is not possible to ascertain if the degeneration is occurring retrograde or anterograde.

Conclusions

Given the small amount of WM in the mouse brain, identifying a lesion resembling perilesional edema in our mouse model was unexpected. Recent clinical studies have focused on perilesional edema as a biomarker capable of distinguishing recurrent tumor from radiation necrosis [7], though others have found that perilesional edema, though sensitive, may not be specific for discriminating tumor and radiation necrosis [6]. Clinically, this perilesional edema seems to be confined, predominantly, to the white matter. Our prior study [4] showed a similarly confined contralateral injury in our radiation necrosis model that was not present in tumor models. Our immunohistochemical findings support the idea that perilesional edema is likely an outward-radiating injury secondary to the primary necrotic lesion identified in post-contrast T1-weighted MRI. Tumors, in contrast, are more likely to displace the surrounding axons than destroy them. Based on our IHC results, we speculate that elimination of the primary necrotic lesion should lead to a natural resolution of the secondary perilesional edema through neuroregeneration of the damaged axons. This is consistent with the observation that perilesional edema improves after surgical resection of the necrotic core [13].
A limitation of this report is that the contralateral injury is evaluated with IHC at only one late time point. Further investigation of the contralateral white matter in this mouse model of radiation injury should be performed to properly identify the mechanism of the pathology, and to quantitatively relate the edema identified by MRI to the extent of axon/myelin injury. Another interesting future direction is in evaluating the impact of treatment for preventing or resolving this edema. Targeting the vascular endothelial growth factor (VEGF) with antibodies like Bevacizumab (Avastin) is among the newest approaches for the treatment of radiation necrosis [14]. We have previously shown that anti-VEGF antibodies, given at the first radiological sign of injury, can mitigate radiation necrosis in this mouse model [2]. While not the focus of that manuscript, re-examination of the T2-weighted images of the treated animals suggests that early treatment prevented the contralateral lesion from appearing. However, we have no data on whether treatment can reverse the contralateral injury once it is already present.

Acknowledgements

We wish to thank Messrs. John Engelbach and Jeremy Cates, and Dr. Robert Drzymala for their assistance in generating the radiation necrosis mouse model. We also wish to thank Dr. Sheng-Kwei Song for discussions regarding white-matter pathology in the mouse brain. This project has been supported by NIH grant R01 CA155365 (JRG), and funding from the Alvin J. Siteman Comprehensive Cancer Center (P30 CA091842), the Barnes-Jewish Hospital Foundation Cancer Frontier Fund, Mallinckrodt Institute of Radiology, and Elekta Instruments AB (Stockholm, Sweden).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

CJPT designed, performed, and analyzed experiments and wrote the manuscript. LY performed experiments. RES analyzed experiments and helped with the manuscript. KMR, JJA, and JRG supervised and helped revise the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Kumar AJ, Leeds NE, Fuller GN, Tassel PV, Maor MH, Sawaya RE, et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology. 2000;217:377–84.CrossRefPubMed Kumar AJ, Leeds NE, Fuller GN, Tassel PV, Maor MH, Sawaya RE, et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology. 2000;217:377–84.CrossRefPubMed
2.
Zurück zum Zitat Jiang X, Engelbach J, Yuan L, Cates J, Gao F, Drzymala RE, Hallahan DE, Rich KM, Schmidt RE, Ackerman JH, Garbow JR: Anti-VEGF antibodies mitigate the development of radiation necrosis in mouse brain. Clin Cancer Res 2014:clincanres.1941.2013. Jiang X, Engelbach J, Yuan L, Cates J, Gao F, Drzymala RE, Hallahan DE, Rich KM, Schmidt RE, Ackerman JH, Garbow JR: Anti-VEGF antibodies mitigate the development of radiation necrosis in mouse brain. Clin Cancer Res 2014:clincanres.1941.2013.
3.
Zurück zum Zitat Jiang X, Perez-Torres CJ, Thotala D, Engelbach JA, Yuan L, Cates J, et al. A GSK-3β inhibitor protects against radiation necrosis in mouse brain. Int J Radiat Oncol. 2014;89:714–21.CrossRef Jiang X, Perez-Torres CJ, Thotala D, Engelbach JA, Yuan L, Cates J, et al. A GSK-3β inhibitor protects against radiation necrosis in mouse brain. Int J Radiat Oncol. 2014;89:714–21.CrossRef
4.
Zurück zum Zitat Perez-Torres CJ, Engelbach JA, Cates J, Thotala D, Yuan L, Schmidt RE, et al. Toward distinguishing recurrent tumor from radiation necrosis: DWI and MTC in a gamma knife–irradiated mouse glioma model. Int J Radiat Oncol. 2014;90:446–53.CrossRef Perez-Torres CJ, Engelbach JA, Cates J, Thotala D, Yuan L, Schmidt RE, et al. Toward distinguishing recurrent tumor from radiation necrosis: DWI and MTC in a gamma knife–irradiated mouse glioma model. Int J Radiat Oncol. 2014;90:446–53.CrossRef
5.
Zurück zum Zitat Chao ST, Ahluwalia MS, Barnett GH, Stevens GHJ, Murphy ES, Stockham AL, et al. Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol. 2013;87:449–57.CrossRef Chao ST, Ahluwalia MS, Barnett GH, Stevens GHJ, Murphy ES, Stockham AL, et al. Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol. 2013;87:449–57.CrossRef
6.
Zurück zum Zitat Dequesada IM, Quisling RG, Yachnis A, Friedman WA. Can standard magnetic resonance imaging reliably distinguish recurrent tumor from radiation necrosis after radiosurgery for brain metastases? A radiographic-pathological study. Neurosurgery. 2008;63:898–903.CrossRefPubMed Dequesada IM, Quisling RG, Yachnis A, Friedman WA. Can standard magnetic resonance imaging reliably distinguish recurrent tumor from radiation necrosis after radiosurgery for brain metastases? A radiographic-pathological study. Neurosurgery. 2008;63:898–903.CrossRefPubMed
7.
Zurück zum Zitat Leeman JE, Clump DA, Flickinger JC, Mintz AH, Burton SA, Heron DE. Extent of perilesional edema differentiates radionecrosis from tumor recurrence following stereotactic radiosurgery for brain metastases. Neuro-Oncol. 2013;15:1732–8.CrossRefPubMedCentralPubMed Leeman JE, Clump DA, Flickinger JC, Mintz AH, Burton SA, Heron DE. Extent of perilesional edema differentiates radionecrosis from tumor recurrence following stereotactic radiosurgery for brain metastases. Neuro-Oncol. 2013;15:1732–8.CrossRefPubMedCentralPubMed
8.
Zurück zum Zitat Münter MW, Karger CP, Reith W, Schneider HM, Peschke P, Debus J. Delayed vascular injury after single high-dose irradiation in the Rat brain: histologic, immunohistochemical, and angiographic studies. Radiology. 1999;212:475–82.CrossRefPubMed Münter MW, Karger CP, Reith W, Schneider HM, Peschke P, Debus J. Delayed vascular injury after single high-dose irradiation in the Rat brain: histologic, immunohistochemical, and angiographic studies. Radiology. 1999;212:475–82.CrossRefPubMed
9.
Zurück zum Zitat Kim JH, Chung YG, Kim CY, Kim HK, Lee HK. Upregulation of VEGF and FGF2 in normal Rat brain after experimental intraoperative radiation therapy. J Korean Med Sci. 2004;19:879.CrossRefPubMedCentralPubMed Kim JH, Chung YG, Kim CY, Kim HK, Lee HK. Upregulation of VEGF and FGF2 in normal Rat brain after experimental intraoperative radiation therapy. J Korean Med Sci. 2004;19:879.CrossRefPubMedCentralPubMed
10.
Zurück zum Zitat Hideghéty K, Plangár I, Mán I, Fekete G, Nagy Z, Volford G, et al. Development of a small-animal focal brain irradiation model to study radiation injury and radiation-injury modifiers. Int J Radiat Biol. 2013;89:645–55.CrossRefPubMed Hideghéty K, Plangár I, Mán I, Fekete G, Nagy Z, Volford G, et al. Development of a small-animal focal brain irradiation model to study radiation injury and radiation-injury modifiers. Int J Radiat Biol. 2013;89:645–55.CrossRefPubMed
11.
Zurück zum Zitat Nagayama K, Kurita H, Nakamura M, Kusuda J, Tonari A, Takayama M, et al. Radiation-induced apoptosis of oligodendrocytes in the adult rat optic chiasm. Neurol Res. 2005;27:346–50.CrossRefPubMed Nagayama K, Kurita H, Nakamura M, Kusuda J, Tonari A, Takayama M, et al. Radiation-induced apoptosis of oligodendrocytes in the adult rat optic chiasm. Neurol Res. 2005;27:346–50.CrossRefPubMed
12.
Zurück zum Zitat Azzam EI, Little JB. The radiation-induced bystander effect: evidence and significance. Hum Exp Toxicol. 2004;23:61–5.CrossRefPubMed Azzam EI, Little JB. The radiation-induced bystander effect: evidence and significance. Hum Exp Toxicol. 2004;23:61–5.CrossRefPubMed
13.
Zurück zum Zitat Foroughi M, Kemeny AA, Lehecka M, Wons J, Kajdi L, Hatfield R, et al. Operative intervention for delayed symptomatic radionecrotic masses developing following stereotactic radiosurgery for cerebral arteriovenous malformations—case analysis and literature review. Acta Neurochir (Wien). 2010;152:803–15.CrossRefPubMed Foroughi M, Kemeny AA, Lehecka M, Wons J, Kajdi L, Hatfield R, et al. Operative intervention for delayed symptomatic radionecrotic masses developing following stereotactic radiosurgery for cerebral arteriovenous malformations—case analysis and literature review. Acta Neurochir (Wien). 2010;152:803–15.CrossRefPubMed
14.
Zurück zum Zitat Tye K, Engelhard HH, Slavin KV, Nicholas MK, Chmura SJ, Kwok Y, et al. An analysis of radiation necrosis of the central nervous system treated with bevacizumab. J Neurooncol. 2014;117:321–7.CrossRefPubMed Tye K, Engelhard HH, Slavin KV, Nicholas MK, Chmura SJ, Kwok Y, et al. An analysis of radiation necrosis of the central nervous system treated with bevacizumab. J Neurooncol. 2014;117:321–7.CrossRefPubMed
Metadaten
Titel
Perilesional edema in radiation necrosis reflects axonal degeneration
verfasst von
Carlos J Perez-Torres
Liya Yuan
Robert E Schmidt
Keith M Rich
Joseph JH Ackerman
Joel R Garbow
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Radiation Oncology / Ausgabe 1/2015
Elektronische ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-015-0335-6

Weitere Artikel der Ausgabe 1/2015

Radiation Oncology 1/2015 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.