Skip to main content
Erschienen in: Orphanet Journal of Rare Diseases 1/2020

Open Access 01.12.2020 | Review

Future treatments for hereditary hemorrhagic telangiectasia

verfasst von: Florian Robert, Agnès Desroches-Castan, Sabine Bailly, Sophie Dupuis-Girod, Jean-Jacques Feige

Erschienen in: Orphanet Journal of Rare Diseases | Ausgabe 1/2020

Abstract

Hereditary Hemorrhagic Telangiectasia (HHT), also known as Rendu-Osler syndrome, is a genetic vascular disorder affecting 1 in 5000–8000 individuals worldwide. This rare disease is characterized by various vascular defects including epistaxis, blood vessel dilations (telangiectasia) and arteriovenous malformations (AVM) in several organs. About 90% of the cases are associated with heterozygous mutations of ACVRL1 or ENG genes, that respectively encode a bone morphogenetic protein receptor (activin receptor-like kinase 1, ALK1) and a co-receptor named endoglin. Less frequent mutations found in the remaining 10% of patients also affect the gene SMAD4 which is part of the transcriptional complex directly activated by this pathway. Presently, the therapeutic treatments for HHT are intended to reduce the symptoms of the disease. However, recent progress has been made using drugs that target VEGF (vascular endothelial growth factor) and the angiogenic pathway with the use of bevacizumab (anti-VEGF antibody). Furthermore, several exciting high-throughput screenings and preclinical studies have identified new molecular targets directly related to the signaling pathways affected in the disease. These include FKBP12, PI3-kinase and angiopoietin-2. This review aims at reporting these recent developments that should soon allow a better care of HHT patients.
Hinweise
Sabine Bailly, Sophie Dupuis-Girod and Jean-Jacques Feige contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
5′-UTR
5′-untranslated region
ACTRIIA/B
Activin receptor type IIA/B
ACVRL1 gene
Activin receptor-like kinase 1 gene
AKT
AKT serine/threonine protein-kinase
ANGPT2
Angiopoietin 2
AVM
Arteriovenous malformation
BMPRII
Bone morphogenetic protein receptor II
BMPx
Bone morphogenetic protein X
EMA
European Medicines Agency
ENG gene
Endoglin gene; ALKx: activin receptor-like kinase X
FDA
Food and Drug Administration
FKBP12
FK-506-binding protein-12
GDF2 gene
Growth and differentiation factor 2/bone morphogenetic protein 9 gene
GI bleeding
Gastro-intestinal bleeding
GS box
Glycine- and serine-rich box
HHT
Hereditary hemorrhagic telangiectasia
JP
Juvenile polyposis
mTOR
Mammalian target of rapamycin
PAH
Pulmonary arterial hypertension
PI3K
Phosphatidylinositol-4,5 bisphosphate 3-kinase
PTEN
Phosphatase and tensin homolog
VEGF
Vascular endothelial growth factor
VEGFR1/2
Vascular endothelial growth factor 1/2

Background

Hereditary Hemorrhagic Telangiectasia (HHT), also known as Rendu-Osler syndrome, is a genetic vascular disorder affecting 1 in 5000–8000 individuals worldwide, with regional differences and higher prevalence areas associated with founder effects [14]. This rare disease (ORPHA774; https://​www.​orpha.​net/​consor/​cgi-bin/​index.​php?​lng=​EN) is characterized by various vascular defects including epistaxis, blood vessel dilations (telangiectasia) and arteriovenous malformations (AVM) in lungs, liver and brain. Epistaxis is the most frequent clinical manifestation of HHT, affecting more than 95% of patients [5]. Pulmonary AVMs are observed in 15–45% of patients but remain frequently undiagnosed and asymptomatic. Hepatic AVMS are observed in more than 70% of patients depending on the screening technique used but only 8% of patients will develop symptomatic liver disease [6]. Gastrointestinal telangiectasias are quite frequent (70% of patients) and may lead to hemorrhages and anemia [7]. Cerebral AVMs are less frequent (10–23% of HHT patients) but their consequences may be fatal.
90% of the HHT cases are associated with heterozygous mutations of ACVRL1 or ENG genes, that respectively encode a bone morphogenetic protein receptor (activin receptor-like kinase 1, ALK1) and a co-receptor named endoglin. Less frequent mutations found in the remaining 10% of patients also affect genes that encode components of the BMP9/ALK1 signaling pathway. Presently, the therapeutic treatments for HHT are intended to reduce the symptoms of the disease. However, no mechanism-based targeted therapy is available so far. In this review, we will focus on the development of new drugs aiming at correcting the altered signaling pathways in HHT patients. These include drugs that target VEGF (vascular endothelial growth factor) and the angiogenic pathway as well as repositioned drugs identified by high throughput screening strategies.

Main text

Genetic and mechanistic presentation of HHT

HHT is an autosomal dominant genetic disease that commonly results from monoallelic mutations in either ENG (HHT1, OMIM #187300) or ACVRL1 (HHT2, OMIM #600376) genes [8, 9]. ACVRL1 encodes the BMP (Bone Morphogenetic Protein) receptor ALK1 (activin receptor-like kinase 1) whose expression is grossly restricted to the vascular and lymphatic endothelia [10, 11]. Endoglin (encoded by ENG) is also an endothelial-specific receptor for BMPs which is devoid of intracellular kinase activity and acts as a co-receptor in complex with ALK1 [12, 13]. Mutations of either one of these two genes are observed in 90% of the genetically screened patients. In addition, mutations in SMAD4 (encoding the transcription factor Smad4) have been described in a subset of HHT patients which present a juvenile polyposis/HHT overlap syndrome (JP-HHT, OMIM #175050) but the frequency of these mutations does not exceed 2% of the HHT patient population [1416]. More recently, mutations in the GDF2 gene (encoding BMP9) have been described in a vascular anomaly syndrome with phenotypic overlap with HHT (HHT5, OMIM #615506), but the contribution of GDF2 mutations to HHT is estimated to be much less than 1% [17, 18].
It is exciting to observe that the products of these 4 mutated genes all belong to the same signaling pathway (Fig. 1). Homodimeric BMP9 and BMP10, as well as the recently characterized BMP9-BMP10 heterodimer, are high-affinity ligands of a receptor complex comprising ALK1, endoglin and a BMP type II receptor (BMPRII or ACTRIIA or ACTRIIB) [1921]. Under activation by BMP9/10, this receptor complex phosphorylates the transcription factors Smad1, Smad5 or Smad9. Dimers of phospho-Smad1, phospho-Smad5 or phospho-Smad9 associate in a trimeric complex with Smad4 and translocate into the endothelial cell nucleus where they bind to BMP-responsive elements on the promoters of target genes and either enhance or repress their expression [22, 23]. HHT is thus now considered as a disease of the BMP9/10 pathway rather than a disease of the TGFß pathway, as initially thought [24].
About 550 distinct pathogenic mutations of ACVRL1 and 490 pathogenic mutations of ENG have been reported in humans. They are registered in the ARUP database (http://​arup.​utah.​edu/​database/​hht/​). Mutations have been observed in all exons of both genes as well as in some intronic regions. Pathogenic mutations in the 5′-UTR (5′-untranslated region) of the ENG gene have also been reported [25]. Missense mutations and genetic deletions are the most common types of mutations observed in both ACVRL1 and ENG. Functional analysis of a series of 19 ACVRL1 mutations in HHT2, distributed in regions coding the extracellular domain, the GS box (glycine/serine-rich box) or the serine/threonine kinase domain of the receptor, revealed that almost all mutants were expressed at the cell surface but were unable to activate Smad1/5/9 phosphorylation and BMP-responsive reporter gene expression [26]. In addition, none of these mutants was able to act a dominant-negative repressor of wild-type receptor activity, indicating that HHT2 mutations trigger functional haploinsufficiency of BMP9 signaling [26]. In contrast, ENG mutations in HHT1 induce protein loss-of-function through distinct mechanisms [27]. Some endoglin mutants are unable to reach the plasma membrane during their biosynthesis and remain retained intracellularly. When retained in the endoplasmic reticulum, some mutants can dimerize with wild-type endoglin and impair its cell surface expression, acting as dominant-negative receptors, while other mutants cannot. Some mutants get normally expressed at the cell surface but are inactive such as mutants S278P and F282 V that are unable to bind BMP9 [27].
Mutations in SMAD4 are detected in 1 to 2% suspected HHT clinical cases and are also frequently observed in the syndrome of juvenile polyposis (JP) and the mixed syndrome of HHT/JP [15, 28, 29]. The SMAD4 mutations identified in JP-HHT patients are distributed throughout the gene and include nonsense, missense, frameshift, splice site mutations as well as partial or entire gene deletions, consistent with the inheritance of a loss-of-function allele [28, 29].
In 2013, the team of Pinar Bayrak-Toydemir identified GDF2 gene mutations (encoding BMP9) in 3 unrelated HHT patients who had previously been tested negative for ACVRL1, ENG or SMAD4 mutations [18]. These observations remained isolated and it is now admitted that these mutations are extremely rare in HHT.
As a summary, Fig. 1 presents the different mutations observed in HHT, that all affect components of the BMP9/BMP10 signaling pathway. All these mutations are loss-of-function mutations.
As the clinical penetrance of the disease is highly variable, even within members of the same family bearing the same mutation, and since the vascular defects preferentially concern certain vascular beds (liver, lungs, brain) and develop in localized regions of the affected organs, it has long been postulated that a second local hit might be required to initiate the pathological process. On animal models of HHT, Paul Oh has elegantly shown that a local injury (e.g. burn wounding of a mouse ear) inflicted on Alk1-deficient mice triggers an abnormal revascularization (with dilated and tortuous vessels resembling HHT arteriovenous malformations) [30]. Increased tissue perfusion provoked by a local VEGF (vascular endothelial growth factor) surge has also been reported to trigger capillary dysplasia in the brain of Alk1+/− heterozygous mice [31]. Even more interestingly, Doug Marchuk’s team has recently identified low-frequency somatic mutations in 9/19 human telangiectasias analyzed by deep sequencing and has confirmed on 7 samples that the germline and somatic mutations exist in trans configuration, resulting in a biallelic loss of either the ENG or the ACVRL1 gene [32]. This would suggest that the second hit could be a somatic genetic mutation.
In adults, BMP9 and BMP10 are mainly produced by the liver and the right cardiac atria, respectively. They are present in the blood circulation under both homodimeric and heterodimeric forms [21, 33]. All forms induce either stimulation or repression of target gene expression in a phospho-Smad-dependent manner but can also induce non-Smad signaling via p38 MAP Kinase, ERK or JNK [22]. ALK1 can also cross-talk with the VEGF, angiopoietin 2, Notch and Hippo pathways [22]. The main biological output of BMP9/10 signaling is the induction of vascular quiescence [34, 35]. Vascular endothelial cells are under constant influence of pro- and anti-angiogenic factors and the dysregulation of this balance triggers either active angiogenesis or vascular quiescence. As shown in Fig. 2, BMP9 effects on endothelial cells appear to be mediated by a combination of diverse mechanisms. On one hand, BMP9 activates the endothelial cell expression of VEGFR1, a high-affinity non-signaling receptor that serves as a decoy receptor and down-regulates the pro-angiogenic action of VEGF through its signaling receptor VEGFR2 [36, 37]. In parallel, BMP9 represses the endothelial expression of ANGPT2 (angiopoietin-2), another pro-angiogenic growth factor that acts via the tyrosine kinase receptor Tie2 [38, 39]. BMP9 down-regulates also both the expression and the phosphorylation of PTEN (Phosphatase and TENsin homolog), leading in turn to increased PTEN activity and decreased activity of PI3K (phosphatidylinositol-4,5 bisphosphate 3-kinase) and AKT, two key components of the VEGF and ANGPT2 signaling pathways [4043].

Future treatments for HHT

Although current treatments succeed pretty well at reducing recurrent epistaxis, there is still a need for « magic bullets » allowing to revert telangiectasias and AVMs into a normal vasculature and to definitely cure the disease. Two distinct drug repositioning strategies have been developed recently to achieve this goal. One is to reposition anti-angiogenic drugs used in cancer therapy (anti-VEGF antibody, tyrosine-kinase inhibitors) for counter-balancing the pro-angiogenic process activated in HHT. The other is to blindly screen drug libraries using an HHT mechanism-based cellular assay. Fig. 3 depicts the distinct sites of action of such identified drugs whereas Table 1 summarizes the recent case reports about HHT patients treated by these candidate drugs.
Table 1
New treatments in HHT, case reports and case series
Ref.
Treatment
n
(HHT Type)
Sex/ Age
Symptoms
Treatment indication
Treatment
Efficacy of treatment
[44]
Tacrolimus
1
(HHT2)
M 51
Epistaxis
GI bleeding
Epistaxis
Dose unknown
↓ Epistaxis
[45]
Pazopanib
1
(HHT2)
M 61
Epistaxis
Anemia
Epistaxis
50 mg/d during 1 month
then: 100 mg/d
↓Epistaxis
[46]
Pazopanib
7
(3 HHT1, 3 HHT2, 1 JP/HHT)
 
Anemia
Epistaxis
Anemia, OR, severe epistaxis with iron deficiency
50 mg /d during 12 weeks
↓epistaxis duration
↗ Hb
↗ SF-36
[47]
Nintedanib
1
(HHT2)
M 70
Epistaxis
Telangiectasias
Pulmonary fibrosis
300 mg/d
↓Epistaxis and telangiectasias
[48]
Sunitinib
1
(?)
M 68
Epistaxis
Multiple metastases
Oncology
37.5 mg/d
↓ epistaxis frequency and intensity
↓facial telangiectasia
[49]
Buparlisib
1
(HHT2)
F 49
Epistaxis
Oncology
100 mg/d
↓ frequency of epistaxis

Anti-angiogenic therapies using Bevacizumab

Since 2012, following two promising case reports [50, 51], anti-angiogenic treatment using Bevacizumab, a humanized monoclonal antibody that selectively binds to and neutralizes the biologic activity of human VEGF, was tested on HHT patients in several clinical trials.
In the first phase II trial, Bevacizumab was administered intravenously to HHT patients (22 HHT2, 2HHT1, 1 JP-HHT) complicated by severe liver and cardiac impairments. The trial highlighted the efficacy of this treatment, not only on the liver lesions, as shown by a decrease in the cardiac hyperflow secondary to hepatic vessel malformations, but also on nosebleeds, which were considerably reduced, thereby strongly improving the quality of life of the patients [52]. No severe adverse events related to Bevacizumab have been observed.
Since then, many case reports showing dramatic improvement of HHT bleedings (epistaxis and digestive bleedings) after bevacizumab treatment have been published [5357] and this treatment is now considered in HHT patients with refractory GI bleeding [58].
The first randomized phase III clinical trial to study bevacizumab efficiency and safety is now ongoing (NCT 03227263).

Anti-angiogenic therapies using tyrosine-kinase inhibitors

Among tyrosine kinase inhibitors are some anti-angiogenic molecules which could also target the VEGF signaling pathway, in a similar way to Bevacizumab. These chemical compounds are available orally and could therefore overcome the constraints of intravenous injections of Bevacizumab.
Several of them have been tested on isolated HHT patients as summarized in Table 1.
The potential therapeutic effects of four anti-angiogenic tyrosine-kinase inhibitors in the development of adult-onset AVMs in a murine model of HHT was evaluated [59]. The conclusion was that Sorafenib and a Pazopanib analogue (GW771806) significantly improved hemoglobin level and gastro-intestinal bleeding whereas they were not effective in preventing wound-induced skin AVMs.
The tyrosine kinase inhibitor Nintedanib, which targets the platelet-derived growth factor, fibroblast growth factor and vascular endothelial growth factor receptors, has been used in one HHT2 patient following the diagnosis of Interstitial Pulmonary Fibrosis [47] with encouraging results. His Epistaxis Severity Score significantly decreased.In France, we are implementing a multicenter, randomized, drug versus placebo study to evaluate efficacy of Nintedanib treatment per os on epistaxis duration in HHT patients with moderate to severe epistaxis (NCT03954782).
Pazopanib, another tyrosine kinase inhibitor, has been tested at a dose of 50 mg/day in 3 HHT1, 3 HHT2 and 1 JP-HHT patients by Faughnan et al. [46] and showed promising results in treatment of HHT-related bleeding (NCT02204371). Unfortunately, this industry-driven study was stopped. However, two other studies are planned in North America using this drug (NCT03850730 and NCT03850964).

Anti-ANGPT2 antibodies and PI3 kinase inhibitors

It is hypothesized that neutralization of angiogenic factors (VEGF and others) re-equilibrates the balance between pro- and anti-angiogenic factors that is altered by the inactivation of the pro-quiescence BMP9 pathway (Fig. 3). As angiopoietin-2 (ANGPT2) is a potent angiogenic factor acting through the tyrosine-kinase receptor Tie2, anti-ANGPT2 antibodies have been tested in preclinical models of HHT consisting of Smad4-KO mice [38]. They were shown to alleviate AVM formation and to normalize blood vessel diameter. Similarly, as activation of PI3-Kinase is downstream of both VEGF and ANGPT2, PI3-Kinase inhibitors have been tested and have proven efficacy in preclinical HHT models such as Alk1+/− mice or mice treated with neutralizing anti-BMP9/BMP10 antibodies [40, 42]. They are interesting candidates which remain to be tested in clinical trials on HHT patients. Interestingly, an older case report had reported that treatment of one HHT2 patient with Buparlisib (a PI3-Kinase inhibitor) reduced the frequency of his epistaxes [49]. However, there might be major safety and tolerability challenges for their chronic use due to the reported adverse effects of the first generation of PI3 Kinase inhibitors [60].

Tacrolimus

Now that the genetic studies have pointed to a precise signaling pathway, one can envision to develop targeted therapies or to reposition existing drugs that would target the BMP9/ALK1/ENG/SMAD pathway. Since the disease occurs in heterozygous patients and results from haploinsuffficiency, a rather simplistic strategy would consist in reactivating this pathway in endothelial cells in order to recover the signaling level of homozygous cells. In other terms, if a drug could double the rate of Smad 1/5/9 phosphorylation by wild type ALK1, then the endothelial cells of HHT patients bearing 50% of wild type ALK1 receptors should behave as normal biallelic cells and the disease might reverse.
Finding the best readout to screen molecules potentiating the BMP9 pathway is a complex task since the signaling pathway is quite direct, with BMP9 receptors phosphorylating the Smad1/5/9 transcription factors that will, in turn, translocate to the nucleus and trigger the transcriptional response. In order to detect drugs that can act on most numerous steps, the best method appears to measure the transcriptional activation of a BMP9-responsive gene. For the sake of easiness and efficacy, the most commonly used reporter gene encodes firefly luciferase driven by an artificial promoter comprising tandem repeats of the BMP-response element of the Id1 (Inhibitor of differentiation-1) gene promoter [61].
Zilberberg et al. have generated a C2C12 myoblastic cell line stably expressing this construct (C2C12BRA) which provides a highly sensitive assay to measure BMP activities [62]. This cell line has been used by two groups to reposition FDA-approved drugs for pulmonary arterial hypertension (PAH) and HHT. Spiekerkoetter et al. and Ruiz et al. respectively screened 3756 FDA-approved drugs (NIH-CC, LOPAC, Biomol ICCB KnownBioactives, Microsource spectrum, Biomol FDA-approved drug libraries) and 700 FDA-approved drugs (NIH Clinical, NCCS) on C2C12BRA cells [63, 64]. The group of Spiekerkoetter screened for agents able to stimulate luciferase expression and activity in the absence or the presence of low concentrations of exogenous ligand (250pM BMP4 = EC20). The best three hits were immunosuppressant agents: FK506 (Tacrolimus), ascomycin and rapamycin (Sirolimus). The group of Ruiz performed a similar screen in C2C12BRA cells in the presence of BMP9 (0.5 ng/ml = EC50). Interestingly, the most potent activating drug that they found was again Tacrolimus. Together, these two high-throughput screens clearly identified Tacrolimus as a potent activator of the BMP9-ALK1-BMPR2-Smad1/5/9 signaling cascade. How Tacrolimus activates this pathway is still not completely understood. Tacrolimus (FK506) can bind to FKBP12 (FK-506-binding protein-12), a protein known to interact with the TGF-ß/BMP family type I receptors on their glycine-serine-rich phosphorylation domains and to repress the receptors’ kinase activity in the absence of their ligands. Tacrolimus was shown indeed to displace FKBP12 from ALK1, ALK2 as well as ALK3 and to stimulate their kinase activity, explaining how it potentiates both the BMP9 response (through ALK1) and the BMP4 response (through ALK3) [64]. Alternatively, Tacrolimus was also reported to stimulate endoglin and ALK-1 expression by endothelial cells [65]. Tacrolimus has been tested in several mouse models for HHT. It was found to decrease the number of retinal arteriovenous malformations induced by BMP9/10-immunodepletion in mice (HHT model) [63]. These preclinical works support that Tacrolimus repurposing has therapeutic potential in HHT.
Interestingly, a case report of a patient suffering from both HHT2 and PAH was recently published that showed that treatment with oral low-dose tacrolimus improved his HHT-associated epistaxis but did not attenuate PAH progression [44].
All these observations prompted us to set up a recent clinical trial to evaluate nasal topical administration of tacrolimus in HHT patients. This phase II multicenter, randomized study (NCT03152019) was carried out in double blind in order to evaluate the efficacy of this nasal ointment. This ointment is administered for 6 weeks to patients with HHT complicated by nosebleeds and the final readout is the duration of nosebleeds 6 weeks after the end of the treatment. Results are encouraging (presented at the 13th HHT International Conference, Rio Grande, Puerto Rico, USA, 2019) and are under current analysis.

Sirolimus

Very recently, Ruiz et al. reported that the combination of Sirolimus (rapamycin) and Nintedanib reversed retinal AVMs in BMP9/BMP10-immunoblocked mice and prevented gastrointestinal bleeding and anemia in adult Alk1-inducible KO mice [66]. Sirolimus binds FKBP12 and inhibits mTOR (mammalian Target Of Rapamycin), which is downstream of PI3K and AKT, and this could be another mechanism by which this drug targets this pathway. Indeed, the beneficial effects observed in these preclinical models were associated with a correction of the overactivation of both VEGFR2 and mTOR.
When Sirolimus was given following liver transplantation to a patient with HHT who had multiple arteriovenous malformations, internal and external telangiectasia, epistaxis, and anemia disappeared, suggesting that the mechanism of action of sirolimus involved partial correction of endoglin and ALK1 haploinsufficiency [67]. Interestingly, it was also observed that, in HHT2 patients with hepatic AVMs and high-output cardiac failure that undergo a liver transplantation and receive immunosuppressive treatments with tacrolimus or sirolimus, their epistaxes improved dramatically [68] and their mucosal bleedings stopped. Their hemoglobin levels normalized and cutaneous and gastrointestinal telangiectases disappeared.
More recently, Sirolimus was reported to be efficient and safe for the treatment of blue rubber bleb nevus syndrome, a rare multifocal venous malformation syndrome involving predominantly the skin and gastrointestinal tract [69], as well as for other venous and lymphaticovenous malformations [70].

Other drug screening approach

Another ongoing approach uses phenotypic screening of siRNA-silenced endothelial cells. The company Recursion Pharmaceuticals is currently using ALK1-silenced endothelial cells in order to identify drugs that reverse the ALK1 siRNA-induced phenotype (Gibson CC. Oral presentation at the 13th HHT international conference. Rio Grande, Puerto Rico, USA, unpublished). They have already validated a similar strategy for the treatment of cerebral cavernous malformations [71].

Conclusion

Since the discovery some 25 years ago that ENG or ACVRL1 gene mutations cause HHT [8, 9], significant progress has been made in the comprehension of the biological mechanisms of this pathology.
It is puzzling however, that no etiological therapeutic treatment targeting the mutated components of the BMP9/10-ALK1-Smad1/5/9 signaling pathway has been developed so far. This review focuses on the possible repositioning of existing drugs that either correct the angiogenic defects of HHT patients (Bevacizumab, tyrosine kinase inhibitors, PI3 Kinase inhibitors) or reactivate the altered BMP9/10 signaling pathway (Tacrolimus, Sirolimus). It is now reasonably predictable that these mechanism-driven drugs will soon enter clinical assays and enlarge the therapeutic arsenal available for the treatment of HHT patients.

Acknowledgements

The authors thank the members of their respective teams for their contribution to this scientific field and for enriching discussions.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interest.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Guttmacher AE, Marchuk DA, White RI Jr. Hereditary hemorrhagic telangiectasia. N Engl J Med. 1995;333:918–24.PubMedCrossRef Guttmacher AE, Marchuk DA, White RI Jr. Hereditary hemorrhagic telangiectasia. N Engl J Med. 1995;333:918–24.PubMedCrossRef
3.
Zurück zum Zitat Lesca G, Genin E, Blachier C, Olivieri C, Coulet F, Brunet G, et al. Hereditary hemorrhagic telangiectasia: evidence for regional founder effects of ACVRL1 mutations in French and Italian patients. Eur J Hum Genet. 2008;16:742–9.PubMedCrossRef Lesca G, Genin E, Blachier C, Olivieri C, Coulet F, Brunet G, et al. Hereditary hemorrhagic telangiectasia: evidence for regional founder effects of ACVRL1 mutations in French and Italian patients. Eur J Hum Genet. 2008;16:742–9.PubMedCrossRef
4.
Zurück zum Zitat Plauchu H, de Chadarevian JP, Bideau A, Robert JM. Age-related clinical profile of hereditary hemorrhagic telangiectasia in an epidemiologically recruited population. Am J Med Genet. 1989;32:291–7.PubMedCrossRef Plauchu H, de Chadarevian JP, Bideau A, Robert JM. Age-related clinical profile of hereditary hemorrhagic telangiectasia in an epidemiologically recruited population. Am J Med Genet. 1989;32:291–7.PubMedCrossRef
5.
Zurück zum Zitat Dupuis-Girod S, Bailly S, Plauchu H. Hereditary hemorrhagic telangiectasia: from molecular biology to patient care. J Thromb Haemost. 2010;8:1447–56.PubMedCrossRef Dupuis-Girod S, Bailly S, Plauchu H. Hereditary hemorrhagic telangiectasia: from molecular biology to patient care. J Thromb Haemost. 2010;8:1447–56.PubMedCrossRef
6.
Zurück zum Zitat Buscarini E, Plauchu H, Garcia Tsao G, White RI Jr, Sabba C, Miller F, et al. Liver involvement in hereditary hemorrhagic telangiectasia: consensus recommendations. Liver Int. 2006;26:1040–6.PubMedCrossRef Buscarini E, Plauchu H, Garcia Tsao G, White RI Jr, Sabba C, Miller F, et al. Liver involvement in hereditary hemorrhagic telangiectasia: consensus recommendations. Liver Int. 2006;26:1040–6.PubMedCrossRef
7.
Zurück zum Zitat Kjeldsen AD, Kjeldsen J. Gastrointestinal bleeding in patients with hereditary hemorrhagic telangiectasia. Am J Gastroenterol. 2000;95:415–8.PubMedCrossRef Kjeldsen AD, Kjeldsen J. Gastrointestinal bleeding in patients with hereditary hemorrhagic telangiectasia. Am J Gastroenterol. 2000;95:415–8.PubMedCrossRef
8.
Zurück zum Zitat Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996;13:189–95.PubMedCrossRef Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996;13:189–95.PubMedCrossRef
9.
Zurück zum Zitat McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, et al. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet. 1994;8:345–51.PubMedCrossRef McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, et al. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet. 1994;8:345–51.PubMedCrossRef
10.
11.
Zurück zum Zitat Seki T, Yun J, Oh SP. Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling. Circ Res. 2003;93:682–9.PubMedCrossRef Seki T, Yun J, Oh SP. Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling. Circ Res. 2003;93:682–9.PubMedCrossRef
12.
Zurück zum Zitat Gougos A, Letarte M. Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem. 1990;265:8361–4.PubMed Gougos A, Letarte M. Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem. 1990;265:8361–4.PubMed
13.
Zurück zum Zitat Saito T, Bokhove M, Croci R, Zamora-Caballero S, Han L, Letarte M, et al. Structural basis of the human Endoglin-BMP9 interaction: insights into BMP signaling and HHT1. Cell Rep. 2017;19:1917–28.PubMedPubMedCentralCrossRef Saito T, Bokhove M, Croci R, Zamora-Caballero S, Han L, Letarte M, et al. Structural basis of the human Endoglin-BMP9 interaction: insights into BMP signaling and HHT1. Cell Rep. 2017;19:1917–28.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Gallione CJ, Repetto GM, Legius E, Rustgi AK, Schelley SL, Tejpar S, et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet. 2004;363:852–9.PubMedCrossRef Gallione CJ, Repetto GM, Legius E, Rustgi AK, Schelley SL, Tejpar S, et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet. 2004;363:852–9.PubMedCrossRef
15.
Zurück zum Zitat Gallione CJ, Richards JA, Letteboer TG, Rushlow D, Prigoda NL, Leedom TP, et al. SMAD4 mutations found in unselected HHT patients. J Med Genet. 2006;43:793–7.PubMedPubMedCentralCrossRef Gallione CJ, Richards JA, Letteboer TG, Rushlow D, Prigoda NL, Leedom TP, et al. SMAD4 mutations found in unselected HHT patients. J Med Genet. 2006;43:793–7.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Lesca G, Burnichon N, Raux G, Tosi M, Pinson S, Marion MJ, et al. Distribution of ENG and ACVRL1 (ALK1) mutations in French HHT patients. Hum Mutat. 2006;27:598.PubMedCrossRef Lesca G, Burnichon N, Raux G, Tosi M, Pinson S, Marion MJ, et al. Distribution of ENG and ACVRL1 (ALK1) mutations in French HHT patients. Hum Mutat. 2006;27:598.PubMedCrossRef
17.
Zurück zum Zitat Hernandez F, Huether R, Carter L, Johnston T, Thompson J, Gossage JR, et al. Mutations in RASA1 and GDF2 identified in patients with clinical features of hereditary hemorrhagic telangiectasia. Hum Genome Var. 2015;2:15040.PubMedPubMedCentralCrossRef Hernandez F, Huether R, Carter L, Johnston T, Thompson J, Gossage JR, et al. Mutations in RASA1 and GDF2 identified in patients with clinical features of hereditary hemorrhagic telangiectasia. Hum Genome Var. 2015;2:15040.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Wooderchak-Donahue WL, McDonald J, O'Fallon B, Upton PD, Li W, Roman BL, et al. BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am J Hum Genet. 2013;93:530–7.PubMedPubMedCentralCrossRef Wooderchak-Donahue WL, McDonald J, O'Fallon B, Upton PD, Li W, Roman BL, et al. BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am J Hum Genet. 2013;93:530–7.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood. 2007;109:1953–61.PubMedCrossRef David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood. 2007;109:1953–61.PubMedCrossRef
20.
Zurück zum Zitat Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L, et al. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci. 2007;120:964–72.PubMedCrossRef Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L, et al. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci. 2007;120:964–72.PubMedCrossRef
21.
Zurück zum Zitat Tillet E, Ouarne M, Desroches-Castan A, Mallet C, Subileau M, Didier R, et al. A heterodimer formed by bone morphogenetic protein 9 (BMP9) and BMP10 provides most BMP biological activity in plasma. J Biol Chem. 2018;293:10963–74.PubMedPubMedCentralCrossRef Tillet E, Ouarne M, Desroches-Castan A, Mallet C, Subileau M, Didier R, et al. A heterodimer formed by bone morphogenetic protein 9 (BMP9) and BMP10 provides most BMP biological activity in plasma. J Biol Chem. 2018;293:10963–74.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Garcia de Vinuesa A, Abdelilah-Seyfried S, Knaus P, Zwijsen A, Bailly S. BMP signaling in vascular biology and dysfunction. Cytokine Growth Factor Rev. 2016;27:65–79.PubMedCrossRef Garcia de Vinuesa A, Abdelilah-Seyfried S, Knaus P, Zwijsen A, Bailly S. BMP signaling in vascular biology and dysfunction. Cytokine Growth Factor Rev. 2016;27:65–79.PubMedCrossRef
23.
Zurück zum Zitat Goumans MJ, Zwijsen A, Ten Dijke P, Bailly S. Bone morphogenetic proteins in vascular homeostasis and disease. Cold Spring Harb Perspect Biol. 2017;10:a031989.CrossRef Goumans MJ, Zwijsen A, Ten Dijke P, Bailly S. Bone morphogenetic proteins in vascular homeostasis and disease. Cold Spring Harb Perspect Biol. 2017;10:a031989.CrossRef
24.
Zurück zum Zitat Tillet E, Bailly S. Emerging roles of BMP9 and BMP10 in hereditary hemorrhagic telangiectasia. Front Genet. 2014;5:456.PubMed Tillet E, Bailly S. Emerging roles of BMP9 and BMP10 in hereditary hemorrhagic telangiectasia. Front Genet. 2014;5:456.PubMed
25.
Zurück zum Zitat Damjanovich K, Langa C, Blanco FJ, McDonald J, Botella LM, Bernabeu C, et al. 5'UTR mutations of ENG cause hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis. 2011;6:85.PubMedPubMedCentralCrossRef Damjanovich K, Langa C, Blanco FJ, McDonald J, Botella LM, Bernabeu C, et al. 5'UTR mutations of ENG cause hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis. 2011;6:85.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Ricard N, Bidart M, Mallet C, Lesca G, Giraud S, Prudent R, et al. Functional analysis of the BMP9 response of ALK1 mutants from HHT2 patients: a diagnostic tool for novel ACVRL1 mutations. Blood. 2010;116:1604–12.PubMedCrossRef Ricard N, Bidart M, Mallet C, Lesca G, Giraud S, Prudent R, et al. Functional analysis of the BMP9 response of ALK1 mutants from HHT2 patients: a diagnostic tool for novel ACVRL1 mutations. Blood. 2010;116:1604–12.PubMedCrossRef
27.
Zurück zum Zitat Mallet C, Lamribet K, Giraud S, Dupuis-Girod S, Feige JJ, Bailly S, et al. Functional analysis of endoglin mutations from hereditary hemorrhagic telangiectasia type 1 patients reveals different mechanisms for endoglin loss of function. Hum Mol Genet. 2015;24:1142–54.PubMedCrossRef Mallet C, Lamribet K, Giraud S, Dupuis-Girod S, Feige JJ, Bailly S, et al. Functional analysis of endoglin mutations from hereditary hemorrhagic telangiectasia type 1 patients reveals different mechanisms for endoglin loss of function. Hum Mol Genet. 2015;24:1142–54.PubMedCrossRef
28.
Zurück zum Zitat Gallione C, Aylsworth AS, Beis J, Berk T, Bernhardt B, Clark RD, et al. Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP-HHT syndrome. Am J Med Genet A. 2010;152A:333–9.PubMedCrossRef Gallione C, Aylsworth AS, Beis J, Berk T, Bernhardt B, Clark RD, et al. Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP-HHT syndrome. Am J Med Genet A. 2010;152A:333–9.PubMedCrossRef
29.
Zurück zum Zitat McDonald J, Wooderchak-Donahue W, VanSant WC, Whitehead K, Stevenson DA, Bayrak-Toydemir P. Hereditary hemorrhagic telangiectasia: genetics and molecular diagnostics in a new era. Front Genet. 2015;6:1.PubMedPubMedCentralCrossRef McDonald J, Wooderchak-Donahue W, VanSant WC, Whitehead K, Stevenson DA, Bayrak-Toydemir P. Hereditary hemorrhagic telangiectasia: genetics and molecular diagnostics in a new era. Front Genet. 2015;6:1.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Park SO, Wankhede M, Lee YJ, Choi EJ, Fliess N, Choe SW, et al. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest. 2009;119:3487–96.PubMedPubMedCentral Park SO, Wankhede M, Lee YJ, Choi EJ, Fliess N, Choe SW, et al. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest. 2009;119:3487–96.PubMedPubMedCentral
31.
Zurück zum Zitat Hao Q, Su H, Marchuk DA, Rola R, Wang Y, Liu W, et al. Increased tissue perfusion promotes capillary dysplasia in the ALK1-deficient mouse brain following VEGF stimulation. Am J Physiol Heart Circ Physiol. 2008;295:H2250–6.PubMedPubMedCentralCrossRef Hao Q, Su H, Marchuk DA, Rola R, Wang Y, Liu W, et al. Increased tissue perfusion promotes capillary dysplasia in the ALK1-deficient mouse brain following VEGF stimulation. Am J Physiol Heart Circ Physiol. 2008;295:H2250–6.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Snellings D, Gallione C, Clark D, Vozoris N, Faughnan M, Marchuk D. Somatic mutations in vascular malformations of hereditary hemorrhagic telangiectasia results in biallelic loss of ENG or ACVRL1. Am J Hum Genet. 2019;105:894–906. Snellings D, Gallione C, Clark D, Vozoris N, Faughnan M, Marchuk D. Somatic mutations in vascular malformations of hereditary hemorrhagic telangiectasia results in biallelic loss of ENG or ACVRL1. Am J Hum Genet. 2019;105:894–906.
33.
Zurück zum Zitat Bidart M, Ricard N, Levet S, Samson M, Mallet C, David L, et al. BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain. Cell Mol Life Sci. 2012;69:313–24.PubMedCrossRef Bidart M, Ricard N, Levet S, Samson M, Mallet C, David L, et al. BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain. Cell Mol Life Sci. 2012;69:313–24.PubMedCrossRef
34.
Zurück zum Zitat David L, Mallet C, Keramidas M, Lamande N, Gasc JM, Dupuis-Girod S, et al. Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res. 2008;102:914–22.PubMedPubMedCentralCrossRef David L, Mallet C, Keramidas M, Lamande N, Gasc JM, Dupuis-Girod S, et al. Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res. 2008;102:914–22.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Wood JH, Guo J, Morrell NW, Li W. Advances in the molecular regulation of endothelial BMP9 signalling complexes and implications for cardiovascular disease. Biochem Soc Trans. 2019;47:779–91.PubMedCrossRef Wood JH, Guo J, Morrell NW, Li W. Advances in the molecular regulation of endothelial BMP9 signalling complexes and implications for cardiovascular disease. Biochem Soc Trans. 2019;47:779–91.PubMedCrossRef
36.
Zurück zum Zitat Larrivee B, Prahst C, Gordon E, del Toro R, Mathivet T, Duarte A, et al. ALK1 signaling inhibits angiogenesis by cooperating with the notch pathway. Dev Cell. 2012;22:489–500.PubMedPubMedCentralCrossRef Larrivee B, Prahst C, Gordon E, del Toro R, Mathivet T, Duarte A, et al. ALK1 signaling inhibits angiogenesis by cooperating with the notch pathway. Dev Cell. 2012;22:489–500.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Thalgott JH, Dos-Santos-Luis D, Hosman AE, Martin S, Lamande N, Bracquart D, et al. Decreased expression of vascular endothelial growth factor receptor 1 contributes to the pathogenesis of hereditary hemorrhagic telangiectasia type 2. Circulation. 2018;138:2698–712.PubMedCrossRef Thalgott JH, Dos-Santos-Luis D, Hosman AE, Martin S, Lamande N, Bracquart D, et al. Decreased expression of vascular endothelial growth factor receptor 1 contributes to the pathogenesis of hereditary hemorrhagic telangiectasia type 2. Circulation. 2018;138:2698–712.PubMedCrossRef
38.
Zurück zum Zitat Crist AM, Zhou X, Garai J, Lee AR, Thoele J, Ullmer C, et al. Angiopoietin-2 inhibition rescues Arteriovenous malformation in a Smad4 hereditary hemorrhagic telangiectasia mouse model. Circulation. 2019;139:2049–63.PubMedCrossRefPubMedCentral Crist AM, Zhou X, Garai J, Lee AR, Thoele J, Ullmer C, et al. Angiopoietin-2 inhibition rescues Arteriovenous malformation in a Smad4 hereditary hemorrhagic telangiectasia mouse model. Circulation. 2019;139:2049–63.PubMedCrossRefPubMedCentral
39.
Zurück zum Zitat Ruiz S, Zhao H, Chandakkar P, Chatterjee PK, Papoin J, Blanc L, et al. A mouse model of hereditary hemorrhagic telangiectasia generated by transmammary-delivered immunoblocking of BMP9 and BMP10. Sci Rep. 2016;5:37366.PubMedPubMedCentralCrossRef Ruiz S, Zhao H, Chandakkar P, Chatterjee PK, Papoin J, Blanc L, et al. A mouse model of hereditary hemorrhagic telangiectasia generated by transmammary-delivered immunoblocking of BMP9 and BMP10. Sci Rep. 2016;5:37366.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Alsina-Sanchis E, Garcia-Ibanez Y, Figueiredo AM, Riera-Domingo C, Figueras A, Matias-Guiu X, et al. ALK1 loss results in vascular hyperplasia in mice and humans through PI3K activation. Arterioscler Thromb Vasc Biol. 2018;38:1216–29.PubMedCrossRef Alsina-Sanchis E, Garcia-Ibanez Y, Figueiredo AM, Riera-Domingo C, Figueras A, Matias-Guiu X, et al. ALK1 loss results in vascular hyperplasia in mice and humans through PI3K activation. Arterioscler Thromb Vasc Biol. 2018;38:1216–29.PubMedCrossRef
41.
Zurück zum Zitat Iriarte A, Figueras A, Cerda P, Mora JM, Jucgla A, Penin R, et al. PI3K (phosphatidylinositol 3-kinase) activation and endothelial cell proliferation in patients with hemorrhagic hereditary telangiectasia type 1. Cells. 2019;8:971.PubMedCentralCrossRef Iriarte A, Figueras A, Cerda P, Mora JM, Jucgla A, Penin R, et al. PI3K (phosphatidylinositol 3-kinase) activation and endothelial cell proliferation in patients with hemorrhagic hereditary telangiectasia type 1. Cells. 2019;8:971.PubMedCentralCrossRef
42.
Zurück zum Zitat Ola R, Dubrac A, Han J, Zhang F, Fang JS, Larrivee B, et al. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia. Nat Commun. 2016;7:13650.PubMedPubMedCentralCrossRef Ola R, Dubrac A, Han J, Zhang F, Fang JS, Larrivee B, et al. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia. Nat Commun. 2016;7:13650.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Ola R, Kunzel SH, Zhang F, Genet G, Chakraborty R, Pibouin-Fragner L, et al. SMAD4 prevents flow induced Arteriovenous malformations by inhibiting casein kinase 2. Circulation. 2018;138:2379–94.PubMedPubMedCentralCrossRef Ola R, Kunzel SH, Zhang F, Genet G, Chakraborty R, Pibouin-Fragner L, et al. SMAD4 prevents flow induced Arteriovenous malformations by inhibiting casein kinase 2. Circulation. 2018;138:2379–94.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Sommer N, Droege F, Gamen KE, Geisthoff U, Gall H, Tello K, et al. Treatment with low-dose tacrolimus inhibits bleeding complications in a patient with hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. Pulm Circ. 2019;9:2045894018805406.PubMedCrossRef Sommer N, Droege F, Gamen KE, Geisthoff U, Gall H, Tello K, et al. Treatment with low-dose tacrolimus inhibits bleeding complications in a patient with hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. Pulm Circ. 2019;9:2045894018805406.PubMedCrossRef
45.
Zurück zum Zitat Parambil JG, Woodard TD, Koc ON. Pazopanib effective for bevacizumab-unresponsive epistaxis in hereditary hemorrhagic telangiectasia. Laryngoscope. 2018;128:2234–6.PubMedCrossRef Parambil JG, Woodard TD, Koc ON. Pazopanib effective for bevacizumab-unresponsive epistaxis in hereditary hemorrhagic telangiectasia. Laryngoscope. 2018;128:2234–6.PubMedCrossRef
46.
Zurück zum Zitat Faughnan ME, Gossage JR, Chakinala MM, Oh SP, Kasthuri R, Hughes CCW, et al. Pazopanib may reduce bleeding in hereditary hemorrhagic telangiectasia. Angiogenesis. 2019;22:145–55.PubMedCrossRef Faughnan ME, Gossage JR, Chakinala MM, Oh SP, Kasthuri R, Hughes CCW, et al. Pazopanib may reduce bleeding in hereditary hemorrhagic telangiectasia. Angiogenesis. 2019;22:145–55.PubMedCrossRef
47.
Zurück zum Zitat Kovacs-Sipos E, Holzmann D, Scherer T, Soyka MB. Nintedanib as a novel treatment option in hereditary haemorrhagic telangiectasia. BMJ Case Rep. 2017;2017:219393. Kovacs-Sipos E, Holzmann D, Scherer T, Soyka MB. Nintedanib as a novel treatment option in hereditary haemorrhagic telangiectasia. BMJ Case Rep. 2017;2017:219393.
48.
Zurück zum Zitat Droege F, Thangavelu K, Lang S, Geisthoff U. Improvement in hereditary hemorrhagic telangiectasia after treatment with the multi-kinase inhibitor Sunitinib. Ann Hematol. 2016;95:2077–8.PubMedCrossRef Droege F, Thangavelu K, Lang S, Geisthoff U. Improvement in hereditary hemorrhagic telangiectasia after treatment with the multi-kinase inhibitor Sunitinib. Ann Hematol. 2016;95:2077–8.PubMedCrossRef
49.
Zurück zum Zitat Geisthoff UW, Nguyen HL, Hess D. Improvement in hereditary hemorrhagic telangiectasia after treatment with the phosphoinositide 3-kinase inhibitor BKM120. Ann Hematol. 2014;93:703–4.PubMedCrossRef Geisthoff UW, Nguyen HL, Hess D. Improvement in hereditary hemorrhagic telangiectasia after treatment with the phosphoinositide 3-kinase inhibitor BKM120. Ann Hematol. 2014;93:703–4.PubMedCrossRef
50.
Zurück zum Zitat Flieger D, Hainke S, Fischbach W. Dramatic improvement in hereditary hemorrhagic telangiectasia after treatment with the vascular endothelial growth factor (VEGF) antagonist bevacizumab. Ann Hematol. 2006;85:631–2.PubMedCrossRef Flieger D, Hainke S, Fischbach W. Dramatic improvement in hereditary hemorrhagic telangiectasia after treatment with the vascular endothelial growth factor (VEGF) antagonist bevacizumab. Ann Hematol. 2006;85:631–2.PubMedCrossRef
51.
Zurück zum Zitat Mitchell A, Adams LA, MacQuillan G, Tibballs J, vanden Driesen R, Delriviere L. Bevacizumab reverses need for liver transplantation in hereditary hemorrhagic telangiectasia. Liver Transpl. 2008;14:210–3.PubMedCrossRef Mitchell A, Adams LA, MacQuillan G, Tibballs J, vanden Driesen R, Delriviere L. Bevacizumab reverses need for liver transplantation in hereditary hemorrhagic telangiectasia. Liver Transpl. 2008;14:210–3.PubMedCrossRef
52.
Zurück zum Zitat Dupuis-Girod S, Ginon I, Saurin JC, Marion D, Guillot E, Decullier E, et al. Bevacizumab in patients with hereditary hemorrhagic telangiectasia and severe hepatic vascular malformations and high cardiac output. JAMA. 2012;307:948–55.PubMedCrossRef Dupuis-Girod S, Ginon I, Saurin JC, Marion D, Guillot E, Decullier E, et al. Bevacizumab in patients with hereditary hemorrhagic telangiectasia and severe hepatic vascular malformations and high cardiac output. JAMA. 2012;307:948–55.PubMedCrossRef
53.
Zurück zum Zitat Buscarini E, Botella LM, Geisthoff U, Kjeldsen AD, Mager HJ, Pagella F, et al. Safety of thalidomide and bevacizumab in patients with hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis. 2019;14:28.PubMedPubMedCentralCrossRef Buscarini E, Botella LM, Geisthoff U, Kjeldsen AD, Mager HJ, Pagella F, et al. Safety of thalidomide and bevacizumab in patients with hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis. 2019;14:28.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Fleagle JM, Bobba RK, Kardinal CG, Freter CE. Iron deficiency anemia related to hereditary hemorrhagic telangiectasia: response to treatment with bevacizumab. Am J Med Sci. 2012;343:249–51.PubMedCrossRef Fleagle JM, Bobba RK, Kardinal CG, Freter CE. Iron deficiency anemia related to hereditary hemorrhagic telangiectasia: response to treatment with bevacizumab. Am J Med Sci. 2012;343:249–51.PubMedCrossRef
56.
Zurück zum Zitat Follner S, Ibe M, Schreiber J. Bevacizumab treatment in hereditary hemorrhagic teleangiectasia. Eur J Clin Pharmacol. 2012;68:1685–6.PubMedCrossRef Follner S, Ibe M, Schreiber J. Bevacizumab treatment in hereditary hemorrhagic teleangiectasia. Eur J Clin Pharmacol. 2012;68:1685–6.PubMedCrossRef
57.
Zurück zum Zitat Lupu A, Stefanescu C, Treton X, Attar A, Corcos O, Bouhnik Y. Bevacizumab as rescue treatment for severe recurrent gastrointestinal bleeding in hereditary hemorrhagic telangiectasia. J Clin Gastroenterol. 2013;47:256–7.PubMedCrossRef Lupu A, Stefanescu C, Treton X, Attar A, Corcos O, Bouhnik Y. Bevacizumab as rescue treatment for severe recurrent gastrointestinal bleeding in hereditary hemorrhagic telangiectasia. J Clin Gastroenterol. 2013;47:256–7.PubMedCrossRef
58.
Zurück zum Zitat Iyer VN, Apala DR, Pannu BS, Kotecha A, Brinjikji W, Leise MD, et al. Intravenous Bevacizumab for refractory hereditary hemorrhagic telangiectasia-related epistaxis and gastrointestinal bleeding. Mayo Clin Proc. 2018;93:155–66.PubMedCrossRef Iyer VN, Apala DR, Pannu BS, Kotecha A, Brinjikji W, Leise MD, et al. Intravenous Bevacizumab for refractory hereditary hemorrhagic telangiectasia-related epistaxis and gastrointestinal bleeding. Mayo Clin Proc. 2018;93:155–66.PubMedCrossRef
59.
Zurück zum Zitat Kim YH, Kim MJ, Choe SW, Sprecher D, Lee YJ, S PO. Selective effects of oral antiangiogenic tyrosine kinase inhibitors on an animal model of hereditary hemorrhagic telangiectasia. J Thromb Haemost. 2017;15:1095–102.PubMedPubMedCentralCrossRef Kim YH, Kim MJ, Choe SW, Sprecher D, Lee YJ, S PO. Selective effects of oral antiangiogenic tyrosine kinase inhibitors on an animal model of hereditary hemorrhagic telangiectasia. J Thromb Haemost. 2017;15:1095–102.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Esposito A, Viale G, Curigliano G. Safety, tolerability, and Management of Toxic Effects of phosphatidylinositol 3-kinase inhibitor treatment in patients with Cancer: a review. JAMA Oncol. 2019;5:1347–54.CrossRefPubMed Esposito A, Viale G, Curigliano G. Safety, tolerability, and Management of Toxic Effects of phosphatidylinositol 3-kinase inhibitor treatment in patients with Cancer: a review. JAMA Oncol. 2019;5:1347–54.CrossRefPubMed
61.
Zurück zum Zitat Korchynskyi O, ten Dijke P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem. 2002;277:4883–91.PubMedCrossRef Korchynskyi O, ten Dijke P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem. 2002;277:4883–91.PubMedCrossRef
62.
Zurück zum Zitat Zilberberg L, ten Dijke P, Sakai LY, Rifkin DB. A rapid and sensitive bioassay to measure bone morphogenetic protein activity. BMC Cell Biol. 2007;8:41.PubMedPubMedCentralCrossRef Zilberberg L, ten Dijke P, Sakai LY, Rifkin DB. A rapid and sensitive bioassay to measure bone morphogenetic protein activity. BMC Cell Biol. 2007;8:41.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Ruiz S, Chandakkar P, Zhao H, Papoin J, Chatterjee PK, Christen E, et al. Tacrolimus rescues the signaling and gene expression signature of endothelial ALK1 loss-of-function and improves HHT vascular pathology. Hum Mol Genet. 2017;26:4786–98.PubMedPubMedCentralCrossRef Ruiz S, Chandakkar P, Zhao H, Papoin J, Chatterjee PK, Christen E, et al. Tacrolimus rescues the signaling and gene expression signature of endothelial ALK1 loss-of-function and improves HHT vascular pathology. Hum Mol Genet. 2017;26:4786–98.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Spiekerkoetter E, Tian X, Cai J, Hopper RK, Sudheendra D, Li CG, et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J Clin Invest. 2013;123:3600–13.PubMedPubMedCentralCrossRef Spiekerkoetter E, Tian X, Cai J, Hopper RK, Sudheendra D, Li CG, et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J Clin Invest. 2013;123:3600–13.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Albinana V, Sanz-Rodriguez F, Recio-Poveda L, Bernabeu C, Botella LM. Immunosuppressor FK506 increases endoglin and activin receptor-like kinase 1 expression and modulates transforming growth factor-beta1 signaling in endothelial cells. Mol Pharmacol. 2011;79:833–43.PubMedCrossRef Albinana V, Sanz-Rodriguez F, Recio-Poveda L, Bernabeu C, Botella LM. Immunosuppressor FK506 increases endoglin and activin receptor-like kinase 1 expression and modulates transforming growth factor-beta1 signaling in endothelial cells. Mol Pharmacol. 2011;79:833–43.PubMedCrossRef
66.
Zurück zum Zitat Ruiz S, Zhao H, Chandakkar P, Papoin J, Choi H, Nomura-Kitabayashi A, et al. Correcting Smad1/5/8, mTOR, and VEGFR2 treats pathology in hereditary hemorrhagic telangiectasia models. J Clin Invest. 2019; https://doi.org/10.1172/JCI127425. Ruiz S, Zhao H, Chandakkar P, Papoin J, Choi H, Nomura-Kitabayashi A, et al. Correcting Smad1/5/8, mTOR, and VEGFR2 treats pathology in hereditary hemorrhagic telangiectasia models. J Clin Invest. 2019; https://​doi.​org/​10.​1172/​JCI127425.
67.
Zurück zum Zitat Skaro AI, Marotta PJ, McAlister VC. Regression of cutaneous and gastrointestinal telangiectasia with sirolimus and aspirin in a patient with hereditary hemorrhagic telangiectasia. Ann Intern Med. 2006;144:226–7.PubMedCrossRef Skaro AI, Marotta PJ, McAlister VC. Regression of cutaneous and gastrointestinal telangiectasia with sirolimus and aspirin in a patient with hereditary hemorrhagic telangiectasia. Ann Intern Med. 2006;144:226–7.PubMedCrossRef
68.
Zurück zum Zitat Dupuis-Girod S, Chesnais AL, Ginon I, Dumortier J, Saurin JC, Finet G, et al. Long-term outcome of patients with hereditary hemorrhagic telangiectasia and severe hepatic involvement after orthotopic liver transplantation: a single-center study. Liver Transpl. 2010;16:340–7.PubMed Dupuis-Girod S, Chesnais AL, Ginon I, Dumortier J, Saurin JC, Finet G, et al. Long-term outcome of patients with hereditary hemorrhagic telangiectasia and severe hepatic involvement after orthotopic liver transplantation: a single-center study. Liver Transpl. 2010;16:340–7.PubMed
69.
Zurück zum Zitat Salloum R, Fox CE, Alvarez-Allende CR, Hammill AM, Dasgupta R, Dickie BH, et al. Response of blue rubber bleb nevus syndrome to Sirolimus treatment. Pediatr Blood Cancer. 2016;63:1911–4.PubMedCrossRef Salloum R, Fox CE, Alvarez-Allende CR, Hammill AM, Dasgupta R, Dickie BH, et al. Response of blue rubber bleb nevus syndrome to Sirolimus treatment. Pediatr Blood Cancer. 2016;63:1911–4.PubMedCrossRef
70.
Zurück zum Zitat Yesil S, Tanyildiz HG, Bozkurt C, Cakmakci E, Sahin G. Single-center experience with sirolimus therapy for vascular malformations. Pediatr Hematol Oncol. 2016;33:219–25.PubMedCrossRef Yesil S, Tanyildiz HG, Bozkurt C, Cakmakci E, Sahin G. Single-center experience with sirolimus therapy for vascular malformations. Pediatr Hematol Oncol. 2016;33:219–25.PubMedCrossRef
71.
Zurück zum Zitat Gibson CC, Zhu W, Davis CT, Bowman-Kirigin JA, Chan AC, Ling J, et al. Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation. 2015;131:289–99.PubMedCrossRef Gibson CC, Zhu W, Davis CT, Bowman-Kirigin JA, Chan AC, Ling J, et al. Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation. 2015;131:289–99.PubMedCrossRef
Metadaten
Titel
Future treatments for hereditary hemorrhagic telangiectasia
verfasst von
Florian Robert
Agnès Desroches-Castan
Sabine Bailly
Sophie Dupuis-Girod
Jean-Jacques Feige
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Orphanet Journal of Rare Diseases / Ausgabe 1/2020
Elektronische ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-019-1281-4

Weitere Artikel der Ausgabe 1/2020

Orphanet Journal of Rare Diseases 1/2020 Zur Ausgabe