Skip to main content
Erschienen in: Journal of Experimental & Clinical Cancer Research 1/2020

Open Access 01.12.2020 | Research

FadA promotes DNA damage and progression of Fusobacterium nucleatum-induced colorectal cancer through up-regulation of chk2

verfasst von: Pin Guo, Zibin Tian, Xinjuan Kong, Lin Yang, Xinzhi Shan, Bingzi Dong, Xueli Ding, Xue Jing, Chen Jiang, Na Jiang, Yanan Yu

Erschienen in: Journal of Experimental & Clinical Cancer Research | Ausgabe 1/2020

Abstract

Background

Globally, colorectal cancer (CRC) affects more than 1 million people each year. In addition to non-modifiable and other environmental risk factors, Fusobacterium nucleatum infection has been linked to CRC recently. In this study, we explored mechanisms underlying the role of Fusobacterium nucleatum infection in the progression of CRC in a mouse model.

Methods

C57BL/6 J-Adenomatous polyposis coli (APC) Min/J mice [APC (Min/+)] were treated with Fusobacterium nucleatum (109 cfu/mL, 0.2 mL/time/day, i.g., 12 weeks), saline, or FadA knockout (FadA−/−) Fusobacterium nucleatum. The number, size, and weight of CRC tumors were determined in isolated tumor masses. The human CRC cell lines HCT29 and HT116 were treated with lentiviral vectors overexpressing chk2 or silencing β-catenin. DNA damage was determined by Comet assay and γH2AX immunofluorescence assay and flow cytometry. The mRNA expression of chk2 was determined by RT-qPCR. Protein expression of FadA, E-cadherin, β-catenin, and chk2 were determined by Western blot analysis.

Results

Fusobacterium nucleatum treatment promoted DNA damage in CRC in APC (Min/+) mice. Fusobacterium nucleatum also increased the number of CRC cells that were in the S phase of the cell cycle. FadA−/− reduced tumor number, size, and burden in vivo. FadA−/− also reduced DNA damage, cell proliferation, expression of E-cadherin and chk2, and cells in the S phase. Chk2 overexpression elevated DNA damage and tumor growth in APC (Min/+) mice.

Conclusions

In conclusion, this study provided evidence that Fusobacterium nucleatum induced DNA damage and cell growth in CRC through FadA-dependent activation of the E-cadherin/β-catenin pathway, leading to up-regulation of chk2.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13046-020-01677-w.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CRC
Colorectal cancer
APC
Adenomatous polyposis coli
Chk2
Checkpoint kinase 2
PBS
Phosphate buffered saline
FBS
Fetal bovine serum
NC
Negative control
BSA
Bovine serum albumin
PCR
Reverse transcription quantitative polymerase chain reaction
s.d
Standard deviation
ANOVA
Analysis of variance
CDH1
Cadherin

Background

Colorectal cancer (CRC) is associated with somatic mutational and epigenetic events affecting tumor development and the host immune system [1]. As a disease affecting the digestive tract from the colon to the rectum, CRC typically starts with polyps in the digestive tract which gradually enlarge, attract blood vessels, and become metastatic to spread to other tissues [2]. As a major global health challenge [3], CRC is ranks 3rd for incidence but 2nd in terms of mortality on a global scale [4]. The overall cure rate of CRC has not been improved significantly in Asia in the last decade, the five-year survival rate remains at around 60%, and although the survival time has risen in recent years, the mortality rate remains high [5]. In addition to non-modifiable risk factors such as age [6, 7], personal history of inflammatory bowel disease or adenomatous polyps [8], family history of CRC [9], ingestion of food that contains carcinogenic compounds [10], lack of physical activity [11], cigarette smoking, and heavy alcohol consumption [12, 13] have been demonstrated to contribute to CRC development. These risk factors suggest that both prevention and treatment of CRC are equally important.
Fusobacterium nucleatum may be a newly discovered environmental risk factor for CRC [14]. Fusobacterium nucleatum was first reported in CRC tissue in 2011, linking this oral bacterium to this disease [15]. Later, Fusobacterium nucleatum was reported to be associated with CRC in Chinese patients [16]. Fusobacterium nucleatum has been also linked to other human diseases including periodontal diseases, pregnancy disorders, appendicitis, cardiovascular disease, rheumatoid arthritis, and respiratory tract infections [17]. Although the etiology of Fusobacterium nucleatum-induced CRC is not completely understood, many studies showed that microbial imbalance and infection are believed to be the main factors [18, 19]. Nevertheless, the molecular mechanisms that are involved in Fusobacterium nucleatum-induced CRC remain to be fully elucidated.
The E-cadherin/β-catenin complex is important to the integrity of epithelial cells [20]. This complex has been mechanistically linked to the progress of various cancers, including gastric cancer [21], glioblastoma [22], and Fusobacterium nucleatum-induced CRC [23]. FadA, a novel adhesin of the periodontal pathogen Fusobacterium nucleatum, consists of two forms, pre-FadA and mature FadA (mFadA), constituting a functional FadA complex (FadAc) [24]. Studies have suggested that Fusobacterium nucleatum may cause CRC by inducing inflammation and suppressing host immunity [25], possibly through modulating the E-cadherin/β-catenin pathway via FadA adhesion in Fusobacterium nucleatum [2628]. Checkpoint kinase 2 (Chk2) is a multifunctional enzyme that has been shown to be central to cell cycle arrest and apoptosis by DNA damage [29]. Based on these previous findings, we further investigated the involvement of the E-cadherin/β-catenin pathway and FadA adhesion in Fusobacterium nucleatum-induced CRC that involved DNA damage induced by a common mediator chk2 in a mouse model.

Materials and methods

Ethics statement

All animal experiment protocols were approved by the Institutional Animal Ethics Committee of the Affiliated Hospital of Qingdao University. Great efforts were made to minimize the numbers, suffering and pain of the included animals.

APC min/+ mouse model

C57-APC (Min/+) knockout mice were established from C57BL/6 J-Adenomatous polyposis coli (APC) Min/J mice and propagated to a total of 40 mice. Mice were kept in a specific pathogen-free (SPF) facility Animal Research Center. Three days before intragastric administration of Fusobacterium nucleatum, streptomycin (2 mg/mL) was added to drinking water to ensure consistent microflora and promote colonization of Fusobacterium nucleatum. APC (Min/+) mice (n = 20) were treated with wild-type (WT) Fusobacterium nucleatum [109 cfu/mL, 0.2 mL/time/day in sterile phosphate buffered saline (PBS), i.g., 12 weeks]. Another group of APC (Min/+) mice (n = 10) were treated with FadA-knockout Fusobacterium nucleatum US1 (FadA−/− Fusobacterium nucleatum) (109 cfu/mL, 0.2 mL/time/day in sterile PBS, i.g., 12 weeks). Mice in the complete negative control (NC) group (n = 10) received intragastric administration of sterile PBS (0.2 mL/time/day, 12 weeks). The body weight and growth of mice were observed weekly. After treatment, the mice were euthanized under anesthesia with pentobarbital sodium at 40 mg/kg, followed by recording of tumor measurements and histopathological analysis. The tumor tissues were cut longitudinally and measured. The number of tumors was calculated and the size (diameter) of the tumors was quantified as < 1 mm, 1–2 mm, 2–3 mm, or greater than 3 mm. The algorithm used for tumor burden was the sum of each tumor diameter.

Bacterial strains

Fusobacterium nucleatum was purchased from American Type Culture Collection (ATCC, Manassas, VA, USA; #25586). WT Fusobacterium nucleatum and FadA−/− Fusobacterium nucleatum were cultured in Columbia blood agar with 5 μg/mL heme, 5% desalted sheep blood, and 1 μg/mL vitamin K1 (Sigma-Aldrich, St. Louis, MO, USA) in a 37 °C anaerobic glove box containing 85% N2, 10% H2 and 5% CO2 [30]. Escherichia coli (MG1655, ATCC, Manassas, VA, USA) was propagated in Luria Bertani medium (BD Biosciences, Franklin Lakes, NJ, USA) at 37 °C in an aerobic incubator.

Cell culture and infection

HT29 and HCT116 cells (ATCC, Manassas, VA, USA) were cultured in McCoy’s 5A media (#16600082, Thermo Fisher scientific, Waltham, MA, USA) containing 10% fetal bovine serum (FBS). Lentiviral vector pLVX-EFGL overexpressing chk2 (RuiChuBio, Shanghai, China), and lentiviral vectors (pLKO.1-puro) encoding short hairpin RNA (sh)-β-catenin and sh-negative control (NC) (Sigma-Aldrich, Darmstadt, Germany) were packaged by GenePharma (Shanghai, China). Upon achieving 80% confluence, cells were added with 5 μL lentivirus (108 TU) for infection.

Cell proliferation assay

HT29 and HCT116 cells were seeded in a 24-well plate at 1 × 104 cells/well and added with 2 mL complete medium. The cells were treated with WT Fusobacterium nucleatum, FadA−/− Fusobacterium nucleatum (multiplicity of infection [MOI] = 100 or 1000), or Escherichia coli for 2 h and also treated with Protein tyrosine kinase (PTK) inhibitor genistein (50 mM, S1628, Beyotime Biotechnology, Shanghai, China) for 1 h. Cells treated with sterile PBS were used as complete NC. Cell counts were performed at 6h, 24h and 48 h using a hemocytometer. Each experiment was repeated 3 times.

Tumor xenograft experiment

HT29 or HCT116 cells were co-cultured with WT or FadA−/− Fusobacterium nucleatum, Escherichia coli MG1655 (MOI: 1000:1) or PBS for 24 h. Then, the cells were washed three times with PBS and collected after trypsin treatment. The cell suspension was then mixed with WT or FadA−/−Fusobacterium nucleatum, Escherichia coli or PBS at a MOI of 20:1 and injected into the right flank (100 μL/mice, s.c.) of 6-week-old male nude mice (BALB/c, n = 5/group, Shanghai Academy of Sciences, Shanghai, China). After 3 h of subcutaneous injection, the mice were injected with piperacillin (150 mg/kg, i.p.) to kill the bacteria. Nude mice were raised under SPF conditions and provided with food and water normally. The tumor size was measured every 5 days, and tumor volume (Vol) was calculated as follows: Vol = 1/2 (length × width2). Nude mice were euthanized 35 days later, with tumors excised and weighed. The tissues were rapidly frozen in liquid nitrogen and stored at − 80 °C.

Immunohistochemical and immunofluorescence staining

Sections of xenograft tumor tissues or CRC tissues were dewaxed, rehydrated, and boiled in citrate buffer for antigen extraction and blocking. Tissues were then incubated with primary rabbit antibodies to Ki-67 (1:500, ab15580, Abcam, Cambridge, UK) and primary mouse antibodies to proliferating cell nuclear antigen (PCNA, 1:300, m0879, Dako, Carpinteria, CA, USA), β-catenin (1:2000, ab6302, Abcam, Cambridge, UK), and chk2 (1:200, ab47433, Abcam, Cambridge, UK). The sections were observed under a fluorescence microscope (Zeiss, Thornwood, NY, USA).
Tissue sections prepared on glass glides were washed three times with PBS (3 min/time) in the plate. Sections were fixed with 4% paraformaldehyde for 15 min and washed three times with PBS for 3 min each. Tissues were blocked by 1 × PBS containing 3 mg/mL bovine serum albumin (BSA), 100 mM glycine, and 0.25% Triton X-100 for 30 min. The tissues were then probed with primary rabbit antibodies (Abcam, Cambridge, UK) against β-catenin (1:1000, ab22656) and chk2 (1:200, ab47433) at 4 °C. Thereafter, the sections were washed with PBS (three times, 5 min each) and incubated with fluorophore-bound Alexa Fluor® 594 secondary antibody (1:1000, ab150120, Abcam, Cambridge, UK) or Alexa Fluor® 488 (1:1000, AB150077, Abcam, Cambridge, UK) at room temperature for 1 h. Nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI). The sections were then washed with PBS (three times, 5 min each), soaked in distilled water, and air-dried. These sections were then observed under a FV-1000 confocal microscope.

Comet assay (single cell gel electrophoresis)

Comet assay was performed using a Trevigen Comet Assay™ kit (Trevigen, Gaithersburg, MD, USA), according to the manufacturer’s instructions. In brief, HCT116 and HT29 cells were seeded at 1 × 105 cells/well in tissue culture plates, and serum starved with 2% FBS-reduced medium overnight (16–18 h). Cells were co-cultured with WT or FadA−/− Fusobacterium nucleatum, Escherichia coli (MOI: 1000:1 or 100:1), or PBS for 24 h. The cells were washed three times with PBS and collected after trypsin treatment. Cell concentration was adjusted to 1 × 105 cells/mL, mixed with 1% L-mannose (low melting agarose, Trevigen, Gaithersburg, MD, USA) at 37 °C, and loaded to 20-well slide provided from the Comet assay. Slides were placed in a pre-cooled lysis solution at 4 °C for 60 min and then treated with an alkaline electrophoresis solution (300 mM NaOH, 1 mM ethylene diamine tetraacetic acid [EDTA], pH > 13) at room temperature for 20 min in the dark. The slides were then transferred to pre-cooled fresh alkaline electrophoresis solution and electrophoresed at 21 V using Comet Analytical Electrophoresis System II (Trevigen, Gaithersburg, MD, USA) for 30 min and washed twice in dH2O for 5 min each and with 70% ethanol for 5 min. The slides were stained with 50 μL SYBR™ Gold nucleic acid gel (1: 10,000 in Tris-EDTA solution, S-11494, Thermo Fisher scientific, Waltham, MA, USA) for 30 min in the dark and observed under a Leica DM6000B upright microscope.

γH2AX formation determined by immunofluorescence assay

HCT116 and HT29 cells were seeded in an 8-well slide system at 5 × 104 cells/well and serum starved in 2% FBS-reduced medium overnight. The cells were co-cultured with WT or FadA−/−Fusobacterium nucleatum, Escherichia coli (MOI: 1000:1 or 100:1), or PBS for 24 h, washed with cold PBS and fixed in 3.7% aldehyde-free methanol (Thermo Fisher scientific, Waltham, MA, USA) for 30 min on ice. The cells were permeabilized with ice-cold methanol for 10 min, washed with PBS to remove methanol, and blocked with PBS containing 1% BSA and 5% goat serum for 1 h on ice. They were next incubated with phosphorylated H2AX histone antibodies (1:400, ab2893, Abcam, Cambridge, UK) overnight at 4 °C, washed with PBS, and incubated with Alexa Fluor 647-labeled goat anti-rabbit Immunoglobulin G (IgG) (H + L) antibody (Life Technologies, Carlsbad, CA, USA) for 45 min at room temperature. Then, the cells were washed with PBS, mounted with Vectashield mounting medium with DAPI (VectorLabs, Burlingame, CA, USA), and observed under a Leica DM6000B upright microscope.

Flow cytometry

HCT116 and HT29 cells were co-cultured with WT or FadA−/− Fusobacterium nucleatum, Escherichia coli (MOI: 1000:1 or 100:1), or PBS for 24 h (flow cytometry) or 48 h (cell cycle assay). After co-culture, the cells were collected in PBS, fixed in 1% methanol-free cold formaldehyde solution (Thermo Fisher scientific, Waltham, MA, USA) for 15 min, washed in PBS, and incubated overnight at − 20 °C in 70% ethanol. They were next washed with PBS containing 1% BSA and 0.2% Triton X-100 (BSA-T-PBS), and incubated with anti-H2AX-phosphorylated (Ser139) antibody (1:200 diluted in TPBS, BioLegend, San Diego, CA, USA) labeled with Alexa Fluor 647 at 4 °C overnight. The cells were then washed with BSA-T-PBS and incubated with propidium iodide (Life Technologies, Carlsbad, CA, USA) containing 100 μg/mL RNase (Sigma-Aldrich, Darmstadt, Germany). Each sample (at least 10,000 cells) was analyzed using a LSRFortessa flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA) and the data were processed by FCS Express 5 software (http://​www.​denovosoftware.​com).

RNA extraction and reverse transcription quantitative polymerase chain reaction (RT-qPCR)

After HT29 and HCT116 cells were treated with WT or FadA−/− Fusobacterium nucleatum at various concentrations and time periods (MOI: 1000), RNA was extracted using a Trizol kit (Invitrogen, Carlsbad, CA, USA). RNA (5 μg) was reverse transcribed to cDNA using a cDNA kit (K1622; Fermentas Inc., Ontario, CA, USA). Real-time quantitative PCR was performed using PrimeScript RT-PCR kits (TaKaRa, Shiga, Japan) and iQ5 qPCR System (Bio-Rad, Hercules, CA, USA) to quantify chk2 expression. Glyceraldehyde phosphate dehydrogenase (GAPDH) was used as an internal reference. The sequence of chk2 was: Forward (5′ → 3′): TCTCGGGAGTCGGATGTTGAG, Reverse (5′ → 3′): CCTGAGTGGACACTGTCTCTAA, and that of GAPDH was: Forward (5′ → 3′): ACGGATTTGGTCGTATTGGGCG, Reverse (5′ → 3′): CTCCTGGAAGATGGTGATGG (RiboBio Co. Ltd., Guangzhou, China). The relative mRNA expression of the target gene was calculated by the 2-ΔΔCt method. The experiment was repeated 3 times.

Production of monoclonal antibodies against FadA [31]

The mouse anti-FadA monoclonal antibody (mAb) 5G11-3G8 was produced in our laboratory. In detail, the hybridomas secreting mAb were obtained from the BALB/c mice immunized with recombinant mFadA. Antibody specific binding to FadA in enzyme-linked immunosorbent assay was performed for identification of antibodies of the desired specificity, and Western blot analysis was conducted with purified FadA proteins and Fusobacterium nucleatum. One of the hybridoma clones was designated as 5G11-3G8. The mAb from this clone was harvested from the serum-free culture, purified with a protein G column, and stored at a final concentration of 4 mg/mL.

Western blot analysis

Proteins in the cell membrane, cytoplasm, and nuclei were extracted using the Compartmental Protein Extraction Kit (Millipore, Burlington, MA, USA). Standard Western blot analysis procedures were performed. Proteins were incubated with primary rabbit antibodies (Abcam, Cambridge, UK) to E-cadherin (also as CDH1, 1:1000, ab181860), phosphorylated CDH1 (1:1000, ab76319), chk2 (1:1000, ab109413), β-catenin (1:1000, ab2365), phosphorylated β-catenin (1:1000, ab81305), LaminA (1:3000, ab8984), and GAPDH (1:2500, ab9485).

Statistical analysis

SPSS 21.0 statistical software (IBM-SPSS Statistics, Chicago, IL, USA) was used for statistical analysis. Data were expressed as mean ± standard deviation (s.d.). Data from two groups were compared using the unpaired t test. Data from multiple groups were compared using one-way analysis of variance (ANOVA) and Tukey’s post hoc test. Comparison of data from tumors at different time points was performed using repeated measures ANOVA and the number of cells at different time points was compared using two-way ANOVA, followed by Bonferroni post hoc test. Non-parametric Mann-Whitney U test was used for comparing two-group data that were not normally distributed. Difference were considered significant when p < 0.05.

Results

WT Fusobacterium nucleatum induces CRC in mice

We injected HT29 cells and HCT116 cells co-cultured for 24 h with WT Fusobacterium nucleatum subcutaneously into BALB/c nude mice. WT Fusobacterium nucleatum significantly increased tumor volume induced by HT29 and HCT116 cells when compared to PBS or Escherichia coli treatment (Fig. 1a). Similarly, WT Fusobacterium nucleatum treatment also increased tumor weight in nude mice (Fig. 1b). The cell proliferation marker Ki-67 in the xenograft tissues was increased by Fusobacterium nucleatum treatment as compared with PBS or Escherichia coli treatment (Fig. 1c). Put together, these results suggested that WT Fusobacterium nucleatum played a carcinogenic role in CRC.
Mice carrying adenomatous polyposis coli gene mutations, APC (Min/+), are susceptible to a variety of intestinal tumors. WT Fusobacterium nucleatum significantly increased the number of colorectal tumors, tumor size (> 3 mm) and tumor burden in APC (Min/+) mice when compared with control mice (Fig. 1d). The cell proliferation marker PCNA and DNA double-strand breaks marker γH2AX were significantly higher in CRC tissues from WT Fusobacterium nucleatum-treated mice (Fig. 1e), suggesting that WT Fusobacterium nucleatum could effectively promote the proliferation and DNA damage in colorectal epithelial cells. Altogether, these results indicated that WT Fusobacterium nucleatum promoted CRC growth.

WT Fusobacterium nucleatum increases DNA damage in CRC cells

In order to explore the mechanism of induction of CRC by Fusobacterium nucleatum, cells were co-cultured with WT Fusobacterium nucleatum, Escherichia coli (MOI: 1000 or 100:1) or PBS for 24 h. WT Fusobacterium nucleatum significantly promoted the growth of HT29 and HCT116 cells when compared to PBS or Escherichia coli (Fig. 2a). Moreover, the Comet assay showed that WT Fusobacterium nucleatum significantly enhanced DNA damage in HT29 and HCT116 cells as compared with PBS or Escherichia coli treatment (Fig. 2b). Similarly, the formation of γH2AX, a marker for DNA damage, was significantly increased in Fusobacterium nucleatum-treated cells when compared to PBS- or Escherichia coli-treated cells, as determined by the immunofluorescence assay (Fig. 2c) or flow cytometry (Fig. 2d). Fusobacterium nucleatum also arrested more cells in the S phase when compared to PBS and Escherichia coli (Fig. 2 e). These results suggested that Fusobacterium nucleatum induced DNA damage in CRC cells.

Fusobacterium nucleatum elevates DNA damage in CRC cells via FadA

With an aim to investigate whether the mechanism of DNA damage induced by Fusobacterium nucleatum was related to FadA, we constructed FadA−/− Fusobacterium nucleatum. We treated HT29 and HCT116 cells with WT Fusobacterium nucleatum and FadA−/− Fusobacterium nucleatum (MOI = 1000). Cell growth in FadA−/− Fusobacterium nucleatum-treated cells was reduced as compared to WT Fusobacterium nucleatum (Fig. 3a). DNA damage, as determined by Comet assay, was reduced in FadA−/− Fusobacterium nucleatum-treated cells when compared to WT Fusobacterium nucleatum (Fig. 3b). FadA−/− also significantly reduced γH2AX formation, as determined by the immunofluorescence assay (Fig. 3c) or flow cytometry (Fig. 3d). FadA−/− Fusobacterium nucleatum treatment significantly reduced the number of cells in S phase when compared to treatment with WT Fusobacterium nucleatum (Fig. 3e). These results suggested that DNA damage in CRC cells caused by Fusobacterium nucleatum occurred through modulation of FadA.

FadA−/− reduces the activation of E-cadherin/β-catenin and chk2 in CRC cells

Elucidating the relationship between FadA and chk2, we found that expression of chk2 was decreased by FadA−/− Fusobacterium nucleatum when compared to WT Fusobacterium nucleatum in CRC cells (Fig. 4a). It has been previously reported that FadA-regulated E-cadherin/β-catenin promoted cell growth in CRC [26]. Therefore, we determined the expression of E-cadherin (CDH1) and β-catenin. FadA−/− decreased phosphorylation and internalization of E-cadherin (CDH1) on the cell membrane (Fig. 4b). FadA−/− also decreased internalization of β-catenin, leading to reduced chk2 expression. Then, we studied the role of protein tyrosine kinase by using its inhibitor genistein. Genistein treatment not only prevented the phosphorylation and internalization of E-cadherin, but also prevented FadA from binding to the cell membrane and internalizing, leading to decreased expression of β-catenin and chk2 (Fig. 4c). Besides, β-catenin knockdown did not affect the binding of FadA on E-cadherin on the cell membrane, the phosphorylation and internalization of E-cadherin, but reduced chk2 expression (Fig. 4d). Furthermore, using confocal microscopy, we showed Fusobacterium nucleatum promoted the entry of β-catenin to the nucleus and increased chk2 expression, both of which were reduced by β-catenin knockdown (Fig. 4e).

FadA upregulates E-cadherin/β-catenin activation and chk2 to induce DNA damage of CRC cells

First of all, in order to prove that the up-regulation of chk2 could aggravate DNA damage in CRC cells, we overexpressed chk2 in CRC cells. The results demonstrated that chk2 overexpression caused DNA damage in CRC cells (Supplementary Fig. 1A, B), as shown by the Comet assay and immunofluorescence assay. These cells were injected to nude mice. We found that chk2 overexpression increased tumor volume (Fig. 5a) and weight (Fig. 5b) in vivo. In addition, nude mice treated with FadA−/− Fusobacterium nucleatum had reduced number, size, and load of tumors in the colon when compared to mice treated with WT Fusobacterium nucleatum (Fig. 6a). In CRC tissue taken from FadA−/− Fusobacterium nucleatum-treated mice, FadA expression was absent, phosphorylation of E-cadherin and expression of chk2 were decreased, while phosphorylation of β-catenin increased (Fig. 6b). In addition, FadA−/− decreased the expression of β-catenin in the nucleus (Fig. 6c). As shown in immunohistochemical staining, FadA−/− also reduced the expression of β-catenin, chk2 protein, and γH2AX in CRC tissues (Fig. 6d). These results showed that FadA was involved in up-regulation of chk2 and increased DNA damage in CRC by activating the E-cadherin/β-catenin pathway.

Discussion

Fusobacterium nucleatum has been implicated in CRC, but the underlying molecular mechanisms remain to be understood [26]. In this study, we found that Fusobacterium nucleatum promoted the progression of CRC in a mouse model and was related to DNA damage in CRC cells. Secondly, FadA knockout normalized the effects of Fusobacterium nucleatum on CRC. Thirdly, chk2 overexpression increased DNA damage and the growth of CRC, and lastly, FadA knockout reduced E-cadherin pathway and the expression of chk2. Based on these results, we proposed that FadA in Fusobacterium nucleatum bound to and activated the E-cadherin/β-catenin pathway, leading to increased chk2 expression, DNA damage, and progression of CRC (Fig. 7).
Our initial experiments showed that Fusobacterium nucleatum caused CRC progression in APC (Min/+) mice, results that were similar to other studies [3234]. Fusobacterium nucleatum infection in the colon has been implicated as another environmental risk factor for CRC [3537], in addition to many other environmental and non-modifiable risk factors reported previously [6, 911]. Moreover, using this validated APC (Min/+) model, we further demonstrated that FadA in Fusobacterium nucleatum was critical for DNA damage and CRC progression. FadA, a novel adhesin unique to oral Fusobacteria, is required for Fusobacterium nucleatum to bind to and invade epithelial cells, and may therefore, assume a critical role in Fusobacteria colonization of a host [38]. Our results were also aligned with those of previous studies showing the involvement of FadA in Fusobacterium nucleatum-related CRC [26, 27]. These studies also support our results showing FadA may work through the activation of E-cadherin/β-catenin pathway to facilitate CRC progression.
Our subsequent results confirmed and verified the involvement of FadA-activated E-cadherin/β-catenin pathway in the development of CRC. A previous study showed that FadA bound to E-cadherin in CRC cells [26]. The activation, as well as the inhibition, of the E-cadherin/β-catenin pathway has been shown to be involved in multiple cancers including renal and liver cancers [3941]. The E-cadherin/β-catenin pathway, therefore, has been proposed to be a potential target for cancer therapy because of its role in regulating genes or mediators involved in cancer development and progression [4244]. In a related finding, Zhao et al. demonstrated the involvement of the E-cadherin/β-catenin pathway activation in CRC development [45]. As an interpretation, these results suggest that an inhibitor of the E-cadherin/β-catenin pathway may be used to potentially treat Fusobacterium nucleatum-related CRC.
We also found that FadA enhanced E-cadherin/β-catenin activation to upregulate chk2 in turn, thereby inducing DNA damage in CRC cells. Chk2 has been implicated in other cancers as well, such as breast cancer [46]. In CRC, the involvement of chk2 is also well-documented [4750]. Therefore, results from this study added to the knowledge suggesting chk2 involvement in the specific Fusobacterium nucleatum-related form of CRC. In particular, chk2 was responsible for increased DNA damage in CRC cells and increased tumor growth in vivo. Previous studies also demonstrated that chk2-mediated DNA damage is important in the progression of CRC [51, 52]. Furthermore, our study also demonstrated that DNA damage in CRC cells may be due to delayed cell cycle process, similar results having been noted previously showing chk2-mediated DNA damage in CRC [53]. Collectively, these data implying the involvement of chk2 suggest potential therapeutic targets for the treatment of CRC in different stages [54, 55]. When activated, chk2 is known to inhibit CDC25C phosphatase, preventing entry into mitosis, and stabilizing the tumor suppressor protein p53, leading to cell cycle arrest in G1 [56]. In addition, it has also been reported that chk2 interacts with phosphorylated BRCA1, allowing BRCA1 to restore survival after DNA damage [57]. These findings can trigger an exploration of the activated downstream mediators of chk2 in the future.

Conclusion

In conclusion, this study provides evidence that chk2 may be a newly discovered mediator in DNA damage and progression of Fusobacterium nucleatum-induced, E-cadherin/β-catenin pathway-related CRC. Chk2 and the checkpoint response may warrant further study as therapeutic targets relevant to different stages of CRC. However, the animal model used in this study has not been fully characterized and therefore may not mimic all aspects of human Fusobacterium nucleatum-related CRC. Secondly, although our results demonstrated that chk2 expression was decreased by FadA−/− and chk2 overexpression increased DNA damage and CRC progression, there was no true causal relationship between FadA and chk2 established in this study. And lastly, the effect of FadA overexpression was not studied in this study due to the lack of suitable research tools.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13046-020-01677-w.

Acknowledgements

We express our sincere gratitude to the reviewers for their valuable suggestions.

Ethics approval

All animal experiments were approved by Institutional Animal Ethics Committee of the Affiliated Hospital of Qingdao University. Great efforts have been made to minimize the suffering and pain of the animals.
Not applicable.

Competing interests

The author declares no competing interest exists.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Newton PT. New insights into niclosamide action: autophagy activation in colorectal cancer. Biochem J. 2019;476:779–81.PubMedCrossRef Newton PT. New insights into niclosamide action: autophagy activation in colorectal cancer. Biochem J. 2019;476:779–81.PubMedCrossRef
3.
Zurück zum Zitat Antoni S, Soerjomataram I, Moller B, Bray F, Ferlay J. An assessment of GLOBOCAN methods for deriving national estimates of cancer incidence. Bull World Health Organ. 2016;94:174–84.PubMedPubMedCentralCrossRef Antoni S, Soerjomataram I, Moller B, Bray F, Ferlay J. An assessment of GLOBOCAN methods for deriving national estimates of cancer incidence. Bull World Health Organ. 2016;94:174–84.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.PubMedCrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.PubMedCrossRef
5.
6.
Zurück zum Zitat Fairley TL, Cardinez CJ, Martin J, Alley L, Friedman C, Edwards B, et al. Colorectal cancer in U.S. adults younger than 50 years of age, 1998–2001. Cancer. 2006;107:1153–61.PubMedCrossRef Fairley TL, Cardinez CJ, Martin J, Alley L, Friedman C, Edwards B, et al. Colorectal cancer in U.S. adults younger than 50 years of age, 1998–2001. Cancer. 2006;107:1153–61.PubMedCrossRef
7.
Zurück zum Zitat O'Connell JB, Maggard MA, Liu JH, Etzioni DA, Livingston EH, Ko CY. Rates of colon and rectal cancers are increasing in young adults. Am Surg. 2003;69:866–72.PubMed O'Connell JB, Maggard MA, Liu JH, Etzioni DA, Livingston EH, Ko CY. Rates of colon and rectal cancers are increasing in young adults. Am Surg. 2003;69:866–72.PubMed
8.
Zurück zum Zitat de Jong AE, Morreau H, Nagengast FM, Mathus-Vliegen EM, Kleibeuker JH, Griffioen G, et al. Prevalence of adenomas among young individuals at average risk for colorectal cancer. Am J Gastroenterol. 2005;100:139–43.PubMedCrossRef de Jong AE, Morreau H, Nagengast FM, Mathus-Vliegen EM, Kleibeuker JH, Griffioen G, et al. Prevalence of adenomas among young individuals at average risk for colorectal cancer. Am J Gastroenterol. 2005;100:139–43.PubMedCrossRef
9.
Zurück zum Zitat Boardman LA, Morlan BW, Rabe KG, Petersen GM, Lindor NM, Nigon SK, et al. Colorectal cancer risks in relatives of young-onset cases: is risk the same across all first-degree relatives? Clin Gastroenterol Hepatol. 2007;5:1195–8.PubMedPubMedCentralCrossRef Boardman LA, Morlan BW, Rabe KG, Petersen GM, Lindor NM, Nigon SK, et al. Colorectal cancer risks in relatives of young-onset cases: is risk the same across all first-degree relatives? Clin Gastroenterol Hepatol. 2007;5:1195–8.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Santarelli RL, Pierre F, Corpet DE. Processed meat and colorectal cancer: a review of epidemiologic and experimental evidence. Nutr Cancer. 2008;60:131–44.PubMedPubMedCentralCrossRef Santarelli RL, Pierre F, Corpet DE. Processed meat and colorectal cancer: a review of epidemiologic and experimental evidence. Nutr Cancer. 2008;60:131–44.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Lee KJ, Inoue M, Otani T, Iwasaki M, Sasazuki S, Tsugane S, et al. Physical activity and risk of colorectal cancer in Japanese men and women: the Japan public health center-based prospective study. Cancer Causes Control. 2007;18:199–209.PubMedCrossRef Lee KJ, Inoue M, Otani T, Iwasaki M, Sasazuki S, Tsugane S, et al. Physical activity and risk of colorectal cancer in Japanese men and women: the Japan public health center-based prospective study. Cancer Causes Control. 2007;18:199–209.PubMedCrossRef
12.
Zurück zum Zitat Zisman AL, Nickolov A, Brand RE, Gorchow A, Roy HK. Associations between the age at diagnosis and location of colorectal cancer and the use of alcohol and tobacco: implications for screening. Arch Intern Med. 2006;166:629–34.PubMedCrossRef Zisman AL, Nickolov A, Brand RE, Gorchow A, Roy HK. Associations between the age at diagnosis and location of colorectal cancer and the use of alcohol and tobacco: implications for screening. Arch Intern Med. 2006;166:629–34.PubMedCrossRef
13.
Zurück zum Zitat Tsong WH, Koh WP, Yuan JM, Wang R, Sun CL, Yu MC. Cigarettes and alcohol in relation to colorectal cancer: the Singapore Chinese health study. Br J Cancer. 2007;96:821–7.PubMedPubMedCentralCrossRef Tsong WH, Koh WP, Yuan JM, Wang R, Sun CL, Yu MC. Cigarettes and alcohol in relation to colorectal cancer: the Singapore Chinese health study. Br J Cancer. 2007;96:821–7.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Idrissi Janati A, Karp I, Sabri H, Emami E. Is a fusobacterium nucleatum infection in the colon a risk factor for colorectal cancer?: a systematic review and meta-analysis protocol. Syst Rev. 2019;8:114.PubMedPubMedCentralCrossRef Idrissi Janati A, Karp I, Sabri H, Emami E. Is a fusobacterium nucleatum infection in the colon a risk factor for colorectal cancer?: a systematic review and meta-analysis protocol. Syst Rev. 2019;8:114.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Ray K. Colorectal cancer: Fusobacterium nucleatum found in colon cancer tissue--could an infection cause colorectal cancer? Nat Rev Gastroenterol Hepatol. 2011;8:662.PubMedCrossRef Ray K. Colorectal cancer: Fusobacterium nucleatum found in colon cancer tissue--could an infection cause colorectal cancer? Nat Rev Gastroenterol Hepatol. 2011;8:662.PubMedCrossRef
16.
Zurück zum Zitat Li YY, Ge QX, Cao J, Zhou YJ, Du YL, Shen B, et al. Association of Fusobacterium nucleatum infection with colorectal cancer in Chinese patients. World J Gastroenterol. 2016;22:3227–33.PubMedPubMedCentralCrossRef Li YY, Ge QX, Cao J, Zhou YJ, Du YL, Shen B, et al. Association of Fusobacterium nucleatum infection with colorectal cancer in Chinese patients. World J Gastroenterol. 2016;22:3227–33.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Liu H, Liu Y, Liu W, Zhang W, Xu J. EZH2-mediated loss of miR-622 determines CXCR4 activation in hepatocellular carcinoma. Nat Commun. 2015;6:8494.PubMedCrossRef Liu H, Liu Y, Liu W, Zhang W, Xu J. EZH2-mediated loss of miR-622 determines CXCR4 activation in hepatocellular carcinoma. Nat Commun. 2015;6:8494.PubMedCrossRef
18.
Zurück zum Zitat Leung A, Tsoi H, Yu J. Fusobacterium and Escherichia: models of colorectal cancer driven by microbiota and the utility of microbiota in colorectal cancer screening. Expert Rev Gastroenterol Hepatol. 2015;9:651–7.PubMedCrossRef Leung A, Tsoi H, Yu J. Fusobacterium and Escherichia: models of colorectal cancer driven by microbiota and the utility of microbiota in colorectal cancer screening. Expert Rev Gastroenterol Hepatol. 2015;9:651–7.PubMedCrossRef
19.
Zurück zum Zitat Chen T, Li Q, Zhang X, Long R, Wu Y, Wu J, et al. TOX expression decreases with progression of colorectal cancers and is associated with CD4 T-cell density and Fusobacterium nucleatum infection. Hum Pathol. 2018;79:93–101.PubMedCrossRef Chen T, Li Q, Zhang X, Long R, Wu Y, Wu J, et al. TOX expression decreases with progression of colorectal cancers and is associated with CD4 T-cell density and Fusobacterium nucleatum infection. Hum Pathol. 2018;79:93–101.PubMedCrossRef
20.
Zurück zum Zitat Tian X, Liu Z, Niu B, Zhang J, Tan TK, Lee SR, et al. E-cadherin/beta-catenin complex and the epithelial barrier. J Biomed Biotechnol. 2011;2011:567305.PubMedPubMedCentral Tian X, Liu Z, Niu B, Zhang J, Tan TK, Lee SR, et al. E-cadherin/beta-catenin complex and the epithelial barrier. J Biomed Biotechnol. 2011;2011:567305.PubMedPubMedCentral
21.
Zurück zum Zitat Bure IV, Nemtsova MV, Zaletaev DV. Roles of E-cadherin and noncoding RNAs in the epithelial-mesenchymal transition and progression in gastric Cancer. Int J Mol Sci. 2019;20:2870. Bure IV, Nemtsova MV, Zaletaev DV. Roles of E-cadherin and noncoding RNAs in the epithelial-mesenchymal transition and progression in gastric Cancer. Int J Mol Sci. 2019;20:2870.
22.
Zurück zum Zitat Colella B, Faienza F, Di Bartolomeo S. EMT Regulation by Autophagy: A new perspective in glioblastoma biology. Cancers (Basel). 2019;11:312. Colella B, Faienza F, Di Bartolomeo S. EMT Regulation by Autophagy: A new perspective in glioblastoma biology. Cancers (Basel). 2019;11:312.
24.
Zurück zum Zitat Temoin S, Wu KL, Wu V, Shoham M, Han YW. Signal peptide of FadA adhesin from Fusobacterium nucleatum plays a novel structural role by modulating the filament's length and width. FEBS Lett. 2012;586:1–6.PubMedCrossRef Temoin S, Wu KL, Wu V, Shoham M, Han YW. Signal peptide of FadA adhesin from Fusobacterium nucleatum plays a novel structural role by modulating the filament's length and width. FEBS Lett. 2012;586:1–6.PubMedCrossRef
25.
Zurück zum Zitat Wu J, Li Q, Fu X. Fusobacterium nucleatum contributes to the carcinogenesis of colorectal Cancer by inducing inflammation and suppressing host immunity. Transl Oncol. 2019;12:846–51.PubMedPubMedCentralCrossRef Wu J, Li Q, Fu X. Fusobacterium nucleatum contributes to the carcinogenesis of colorectal Cancer by inducing inflammation and suppressing host immunity. Transl Oncol. 2019;12:846–51.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206.PubMedPubMedCentralCrossRef Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Gholizadeh P, Eslami H, Kafil HS. Carcinogenesis mechanisms of Fusobacterium nucleatum. Biomed Pharmacother. 2017;89:918–25.PubMedCrossRef Gholizadeh P, Eslami H, Kafil HS. Carcinogenesis mechanisms of Fusobacterium nucleatum. Biomed Pharmacother. 2017;89:918–25.PubMedCrossRef
28.
Zurück zum Zitat Ma CT, Luo HS, Gao F, Tang QC, Chen W. Fusobacterium nucleatum promotes the progression of colorectal cancer by interacting with E-cadherin. Oncol Lett. 2018;16:2606–12.PubMedPubMedCentral Ma CT, Luo HS, Gao F, Tang QC, Chen W. Fusobacterium nucleatum promotes the progression of colorectal cancer by interacting with E-cadherin. Oncol Lett. 2018;16:2606–12.PubMedPubMedCentral
29.
Zurück zum Zitat Ahn J, Urist M, Prives C. The Chk2 protein kinase. DNA Repair (Amst). 2004;3:1039–47.CrossRef Ahn J, Urist M, Prives C. The Chk2 protein kinase. DNA Repair (Amst). 2004;3:1039–47.CrossRef
30.
Zurück zum Zitat Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, et al. Fusobacterium nucleatum increases proliferation of colorectal Cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-kappaB, and up-regulating expression of MicroRNA-21. Gastroenterology. 2017;152:851–66 e24.PubMedCrossRef Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, et al. Fusobacterium nucleatum increases proliferation of colorectal Cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-kappaB, and up-regulating expression of MicroRNA-21. Gastroenterology. 2017;152:851–66 e24.PubMedCrossRef
31.
Zurück zum Zitat Xu M, Yamada M, Li M, Liu H, Chen SG, Han YW. FadA from Fusobacterium nucleatum utilizes both secreted and nonsecreted forms for functional oligomerization for attachment and invasion of host cells. J Biol Chem. 2007;282:25000–9.PubMedCrossRef Xu M, Yamada M, Li M, Liu H, Chen SG, Han YW. FadA from Fusobacterium nucleatum utilizes both secreted and nonsecreted forms for functional oligomerization for attachment and invasion of host cells. J Biol Chem. 2007;282:25000–9.PubMedCrossRef
32.
Zurück zum Zitat Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207–15.PubMedPubMedCentralCrossRef Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207–15.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Tomkovich S, Yang Y, Winglee K, Gauthier J, Muhlbauer M, Sun X, et al. Locoregional effects of microbiota in a preclinical model of Colon carcinogenesis. Cancer Res. 2017;77:2620–32.PubMedPubMedCentralCrossRef Tomkovich S, Yang Y, Winglee K, Gauthier J, Muhlbauer M, Sun X, et al. Locoregional effects of microbiota in a preclinical model of Colon carcinogenesis. Cancer Res. 2017;77:2620–32.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017;358:1443–8.PubMedPubMedCentralCrossRef Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017;358:1443–8.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Lee SA, Liu F, Riordan SM, Lee CS, Zhang L. Global investigations of Fusobacterium nucleatum in human colorectal Cancer. Front Oncol. 2019;9:566.PubMedPubMedCentralCrossRef Lee SA, Liu F, Riordan SM, Lee CS, Zhang L. Global investigations of Fusobacterium nucleatum in human colorectal Cancer. Front Oncol. 2019;9:566.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Zhang S, Cai S, Ma Y. Association between Fusobacterium nucleatum and colorectal cancer: Progress and future directions. J Cancer. 2018;9:1652–9.PubMedPubMedCentralCrossRef Zhang S, Cai S, Ma Y. Association between Fusobacterium nucleatum and colorectal cancer: Progress and future directions. J Cancer. 2018;9:1652–9.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Liu P, Liu Y, Wang J, Guo Y, Zhang Y, Xiao S. Detection of fusobacterium nucleatum and fadA adhesin gene in patients with orthodontic gingivitis and non-orthodontic periodontal inflammation. PLoS One. 2014;9:e85280.PubMedPubMedCentralCrossRef Liu P, Liu Y, Wang J, Guo Y, Zhang Y, Xiao S. Detection of fusobacterium nucleatum and fadA adhesin gene in patients with orthodontic gingivitis and non-orthodontic periodontal inflammation. PLoS One. 2014;9:e85280.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Zhang X, Yang M, Shi H, Hu J, Wang Y, Sun Z, et al. Reduced E-cadherin facilitates renal cell carcinoma progression by WNT/beta-catenin signaling activation. Oncotarget. 2017;8:19566–76.PubMedPubMedCentralCrossRef Zhang X, Yang M, Shi H, Hu J, Wang Y, Sun Z, et al. Reduced E-cadherin facilitates renal cell carcinoma progression by WNT/beta-catenin signaling activation. Oncotarget. 2017;8:19566–76.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Gai JQ, Sheng X, Qin JM, Sun K, Zhao W, Ni L. The effect and mechanism of bufalin on regulating hepatocellular carcinoma cell invasion and metastasis via Wnt/beta-catenin signaling pathway. Int J Oncol. 2016;48:338–48.PubMedCrossRef Gai JQ, Sheng X, Qin JM, Sun K, Zhao W, Ni L. The effect and mechanism of bufalin on regulating hepatocellular carcinoma cell invasion and metastasis via Wnt/beta-catenin signaling pathway. Int J Oncol. 2016;48:338–48.PubMedCrossRef
41.
Zurück zum Zitat Rosso M, Lapyckyj L, Amiano N, Besso MJ, Sanchez M, Chuluyan E, et al. Secretory leukocyte protease inhibitor (SLPI) expression downregulates E-cadherin, induces beta-catenin re-localisation and triggers apoptosis-related events in breast cancer cells. Biol Cell. 2014;106:308–22.PubMedCrossRef Rosso M, Lapyckyj L, Amiano N, Besso MJ, Sanchez M, Chuluyan E, et al. Secretory leukocyte protease inhibitor (SLPI) expression downregulates E-cadherin, induces beta-catenin re-localisation and triggers apoptosis-related events in breast cancer cells. Biol Cell. 2014;106:308–22.PubMedCrossRef
42.
Zurück zum Zitat Gu J, Cui CF, Yang L, Wang L, Jiang XH. Emodin inhibits Colon Cancer cell invasion and migration by suppressing epithelial-Mesenchymal transition via the Wnt/beta-catenin pathway. Oncol Res. 2019;27:193–202.PubMedCrossRefPubMedCentral Gu J, Cui CF, Yang L, Wang L, Jiang XH. Emodin inhibits Colon Cancer cell invasion and migration by suppressing epithelial-Mesenchymal transition via the Wnt/beta-catenin pathway. Oncol Res. 2019;27:193–202.PubMedCrossRefPubMedCentral
43.
Zurück zum Zitat Tafrihi M, Nakhaei Sistani R. E-cadherin/beta-catenin complex: a target for anticancer and Antimetastasis plants/plant-derived compounds. Nutr Cancer. 2017;69:702–22.PubMedCrossRef Tafrihi M, Nakhaei Sistani R. E-cadherin/beta-catenin complex: a target for anticancer and Antimetastasis plants/plant-derived compounds. Nutr Cancer. 2017;69:702–22.PubMedCrossRef
44.
Zurück zum Zitat Zhang LN, Zhao L, Yan XL, Huang YH. Loss of G3BP1 suppresses proliferation, migration, and invasion of esophageal cancer cells via Wnt/beta-catenin and PI3K/AKT signaling pathways. J Cell Physiol. 2019;234:20469–84.PubMedCrossRef Zhang LN, Zhao L, Yan XL, Huang YH. Loss of G3BP1 suppresses proliferation, migration, and invasion of esophageal cancer cells via Wnt/beta-catenin and PI3K/AKT signaling pathways. J Cell Physiol. 2019;234:20469–84.PubMedCrossRef
45.
Zurück zum Zitat Zhao Y, Yu T, Zhang N, Chen J, Zhang P, Li S, et al. Nuclear E-cadherin acetylation promotes colorectal tumorigenesis via enhancing beta-catenin activity. Mol Cancer Res. 2019;17:655–65.PubMedCrossRef Zhao Y, Yu T, Zhang N, Chen J, Zhang P, Li S, et al. Nuclear E-cadherin acetylation promotes colorectal tumorigenesis via enhancing beta-catenin activity. Mol Cancer Res. 2019;17:655–65.PubMedCrossRef
46.
Zurück zum Zitat Ingvarsson S, Sigbjornsdottir BI, Huiping C, Hafsteinsdottir SH, Ragnarsson G, Barkardottir RB, et al. Mutation analysis of the CHK2 gene in breast carcinoma and other cancers. Breast Cancer Res. 2002;4:R4.PubMedPubMedCentralCrossRef Ingvarsson S, Sigbjornsdottir BI, Huiping C, Hafsteinsdottir SH, Ragnarsson G, Barkardottir RB, et al. Mutation analysis of the CHK2 gene in breast carcinoma and other cancers. Breast Cancer Res. 2002;4:R4.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Lipton L, Fleischmann C, Sieber OM, Thomas HJ, Hodgson SV, Tomlinson IP, et al. Contribution of the CHEK2 1100delC variant to risk of multiple colorectal adenoma and carcinoma. Cancer Lett. 2003;200:149–52.PubMedCrossRef Lipton L, Fleischmann C, Sieber OM, Thomas HJ, Hodgson SV, Tomlinson IP, et al. Contribution of the CHEK2 1100delC variant to risk of multiple colorectal adenoma and carcinoma. Cancer Lett. 2003;200:149–52.PubMedCrossRef
48.
Zurück zum Zitat Stawinska M, Cygankiewicz A, Trzcinski R, Mik M, Dziki A, Krajewska WM. Alterations of Chk1 and Chk2 expression in colon cancer. Int J Color Dis. 2008;23:1243–9.CrossRef Stawinska M, Cygankiewicz A, Trzcinski R, Mik M, Dziki A, Krajewska WM. Alterations of Chk1 and Chk2 expression in colon cancer. Int J Color Dis. 2008;23:1243–9.CrossRef
49.
Zurück zum Zitat Pires IM, Ward TH, Dive C. Oxaliplatin responses in colorectal cancer cells are modulated by CHK2 kinase inhibitors. Br J Pharmacol. 2010;159:1326–38.PubMedPubMedCentralCrossRef Pires IM, Ward TH, Dive C. Oxaliplatin responses in colorectal cancer cells are modulated by CHK2 kinase inhibitors. Br J Pharmacol. 2010;159:1326–38.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Yao J, Huang A, Zheng X, Liu T, Lin Z, Zhang S, et al. 53BP1 loss induces chemoresistance of colorectal cancer cells to 5-fluorouracil by inhibiting the ATM-CHK2-P53 pathway. J Cancer Res Clin Oncol. 2017;143:419–31.PubMedCrossRef Yao J, Huang A, Zheng X, Liu T, Lin Z, Zhang S, et al. 53BP1 loss induces chemoresistance of colorectal cancer cells to 5-fluorouracil by inhibiting the ATM-CHK2-P53 pathway. J Cancer Res Clin Oncol. 2017;143:419–31.PubMedCrossRef
51.
Zurück zum Zitat Takemura H, Rao VA, Sordet O, Furuta T, Miao ZH, Meng L, et al. Defective Mre11-dependent activation of Chk2 by ataxia telangiectasia mutated in colorectal carcinoma cells in response to replication-dependent DNA double strand breaks. J Biol Chem. 2006;281:30814–23.PubMedCrossRef Takemura H, Rao VA, Sordet O, Furuta T, Miao ZH, Meng L, et al. Defective Mre11-dependent activation of Chk2 by ataxia telangiectasia mutated in colorectal carcinoma cells in response to replication-dependent DNA double strand breaks. J Biol Chem. 2006;281:30814–23.PubMedCrossRef
52.
Zurück zum Zitat Oka K, Tanaka T, Enoki T, Yoshimura K, Ohshima M, Kubo M, et al. DNA damage signaling is activated during cancer progression in human colorectal carcinoma. Cancer Biol Ther. 2010;9:246–52.PubMedCrossRef Oka K, Tanaka T, Enoki T, Yoshimura K, Ohshima M, Kubo M, et al. DNA damage signaling is activated during cancer progression in human colorectal carcinoma. Cancer Biol Ther. 2010;9:246–52.PubMedCrossRef
53.
Zurück zum Zitat Varmark H, Kwak S, Theurkauf WE. A role for Chk2 in DNA damage induced mitotic delays in human colorectal cancer cells. Cell Cycle. 2010;9:312–20.PubMedCrossRef Varmark H, Kwak S, Theurkauf WE. A role for Chk2 in DNA damage induced mitotic delays in human colorectal cancer cells. Cell Cycle. 2010;9:312–20.PubMedCrossRef
54.
Zurück zum Zitat Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003;3:421–9.PubMedCrossRef Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003;3:421–9.PubMedCrossRef
55.
Zurück zum Zitat Freiberg RA, Hammond EM, Dorie MJ, Welford SM, Giaccia AJ. DNA damage during reoxygenation elicits a Chk2-dependent checkpoint response. Mol Cell Biol. 2006;26:1598–609.PubMedPubMedCentralCrossRef Freiberg RA, Hammond EM, Dorie MJ, Welford SM, Giaccia AJ. DNA damage during reoxygenation elicits a Chk2-dependent checkpoint response. Mol Cell Biol. 2006;26:1598–609.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Magni M, Ruscica V, Buscemi G, Kim JE, Nachimuthu BT, Fontanella E, et al. Chk2 and REGgamma-dependent DBC1 regulation in DNA damage induced apoptosis. Nucleic Acids Res. 2014;42:13150–60.PubMedPubMedCentralCrossRef Magni M, Ruscica V, Buscemi G, Kim JE, Nachimuthu BT, Fontanella E, et al. Chk2 and REGgamma-dependent DBC1 regulation in DNA damage induced apoptosis. Nucleic Acids Res. 2014;42:13150–60.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Stolz A, Ertych N, Bastians H. Loss of the tumour-suppressor genes CHK2 and BRCA1 results in chromosomal instability. Biochem Soc Trans. 2010;38:1704–8.PubMedCrossRef Stolz A, Ertych N, Bastians H. Loss of the tumour-suppressor genes CHK2 and BRCA1 results in chromosomal instability. Biochem Soc Trans. 2010;38:1704–8.PubMedCrossRef
Metadaten
Titel
FadA promotes DNA damage and progression of Fusobacterium nucleatum-induced colorectal cancer through up-regulation of chk2
verfasst von
Pin Guo
Zibin Tian
Xinjuan Kong
Lin Yang
Xinzhi Shan
Bingzi Dong
Xueli Ding
Xue Jing
Chen Jiang
Na Jiang
Yanan Yu
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Journal of Experimental & Clinical Cancer Research / Ausgabe 1/2020
Elektronische ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-020-01677-w

Weitere Artikel der Ausgabe 1/2020

Journal of Experimental & Clinical Cancer Research 1/2020 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.