Skip to main content
Erschienen in: Breast Cancer Research 1/2018

Open Access 01.12.2018 | Research article

Age-specific breast cancer risk by body mass index and familial risk: prospective family study cohort (ProF-SC)

Erschienen in: Breast Cancer Research | Ausgabe 1/2018

Abstract

Background

The association between body mass index (BMI) and risk of breast cancer depends on time of life, but it is unknown whether this association depends on a woman’s familial risk.

Methods

We conducted a prospective study of a cohort enriched for familial risk consisting of 16,035 women from 6701 families in the Breast Cancer Family Registry and the Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer followed for up to 20 years (mean 10.5 years). There were 896 incident breast cancers (mean age at diagnosis 55.7 years). We used Cox regression to model BMI risk associations as a function of menopausal status, age, and underlying familial risk based on pedigree data using the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA), all measured at baseline.

Results

The strength and direction of the BMI risk association depended on baseline menopausal status (P < 0.001); after adjusting for menopausal status, the association did not depend on age at baseline (P = 0.6). In terms of absolute risk, the negative association with BMI for premenopausal women has a much smaller influence than the positive association with BMI for postmenopausal women. Women at higher familial risk have a much larger difference in absolute risk depending on their BMI than women at lower familial risk.

Conclusions

The greater a woman’s familial risk, the greater the influence of BMI on her absolute postmenopausal breast cancer risk. Given that age-adjusted BMI is correlated across adulthood, maintaining a healthy weight throughout adult life is particularly important for women with a family history of breast cancer.
Abkürzungen
BCFR
Breast Cancer Family Registry
BMI
Body mass index
BOADICEA
Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm
kConFab
Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer
Prof-SC
Breast Cancer Prospective Family Study Cohort
SNP
Single-nucleotide polymorphism

Background

Body mass index (BMI) is an intriguing risk factor for breast cancer because its association with the disease depends on time of life. Greater BMI has been found to be associated with an increased risk for postmenopausal women [19], while for premenopausal women, young women, and even adolescent girls [2, 4, 6, 8, 1014], greater BMI has been found to be associated with a decreased risk. These findings have been consistent across different racial and ethnic subgroups [2, 14, 15] and across both case–control and cohort designs globally [14, 613], suggesting they are not a consequence of systematic biases [9].
BMI is an important risk factor because it is potentially modifiable. The fact that greater BMI appears to be protective at young ages, yet has the opposite association in later life, presents a potential problem for simple cancer control messaging; therefore, its consequences need to be quantified. A prospective study and a case-control study have found that the increased risk associated with higher BMI increases with time after menopause but is not evident until 10 years post menopause [16, 17].
A better understanding of how the BMI-associated risk varies with age and menopausal status is needed. It is interesting that, from genome-wide association studies, genetic risk scores based on single-nucleotide polymorphisms (SNPs) that predict higher BMI in childhood or adulthood are associated with lower risk of both premenopausal and postmenopausal breast cancer [18, 19]. Under the assumptions of Mendelian randomization, the authors concluded that these relationships were causal (even though those SNPs explained only a small proportion of the variation in BMI), thus lending additional support to the evidence that the effect of BMI varies by time of life.
Family history is another important risk factor for breast cancer that could not exist without there being a very strong gradient in underlying familial risk. To explain an overall average estimate of a 2-fold increased risk associated with having an affected first-degree relative, there must be at least a 20-fold inter-quartile risk ratio across the underlying familial causes [20]. This gives reason to consider family history not solely as a binary construct but rather as an underlying continuous measure that reflects this large gradient. Underlying familial risk can be predicted from family history using risk models that use pedigree information including age of onset of affected relatives. It is becoming increasingly possible to better differentiate women according to underlying genetic risk using SNP-based scores [21, 22]. Familial risk prediction is likely to improve with larger genome-wide association studies and the use of more informative statistical methods to create better SNP-based and family-history-based risk scores.
With the advent of gene panel testing for high-risk mutations in known breast cancer susceptibility genes [2325], family cancer clinics will screen increasing numbers of women with a family history of breast cancer. The vast majority of these women will, however, not be found to carry a mutation that can currently be classified as deleterious. Therefore, a key clinical issue is risk management advice for women at familial risk who are found not to carry high-risk mutations. To resolve this issue, it is essential to know if their breast cancer risk factors are the same, and if the risk associations are of the same magnitude, as they are for women in the general population.
This issue of multiplicative and additive interaction with familial risk must be considered for each risk factor. If there is no difference in strength of associations by familial risk and the study is well-powered, advice on that risk factor’s relevance can be confidently given to women across the full spectrum of familial risk. In theory, if there are no interactions between risk factors on the multiplicative scale then there will be additive interactions [26, 27]. Knowledge of the extent of disease association by familial risk will enable prevention and screening measures to be appropriately offered to women.
To address the issues of whether breast cancer risk associated with BMI depends on the age of a woman, her menopausal status, and her underlying familial risk, we conducted a prospective study of women across broad ranges of age and familial risk at baseline.

Methods

The Breast Cancer Prospective Family Study Cohort (ProF-SC) comprises baseline and follow-up data from the Breast Cancer Family Registry (BCFR) and the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab) (for full details see [28]). These prospective family cohorts are enriched for familial risk of breast cancer and have accumulated up to 20 years of follow up. The BCFR is a collaboration of six breast cancer family studies from the USA, Canada and Australia, and the protocols and data collection have previously been reported for the baseline studies [29] and the follow-up studies [28]. kConFab is an Australian and New Zealand breast cancer family study, and details of the core resource [30] and follow-up study [28, 31] have been previously reported. Ethics approval for the six sites of the BCFR and for kConFab was granted by the applicable human research ethics committees at the participating institutions. All participants in the BCFR and kConFab provided written informed consent before participation.

Recruitment and follow up

Probands and their family members were recruited to the BCFR and kConFab according to site-specific protocols [2830, 32]. At a minimum, first-degree female relatives of the probands were recruited, and at some sites second-degree and more distant female relatives of the probands were also recruited. In the BCFR, most of the families were recruited from 1996 to 2000, with some sites recruiting new families after that time; all sites continued to recruit additional participants within these families on an ongoing basis as relatives decided to join or attained the minimum eligibility age of 18 years. Australian families recruited to an earlier study from 1992 to 1995 [33, 34] were also included, while the North American sites extended the recruitment of specific subgroups from 2001 to 2011 (minorities in Philadelphia, New York, Ontario, and Northern California; BRCA1 and BRCA2 mutation carriers in Utah; Ashkenazim in Ontario). For kConFab, participants were recruited continuously from 1997 onwards.
For the BCFR, systematic follow ups were conducted 10 years and 15 years after the first round of recruitment to the BCFR, while the kConFab participants have been followed up every 3 years. At follow-up, the risk factor and cancer family history questionnaires were updated and participants were asked to provide the date of death of any deceased relatives.

Baseline questionnaires

The BCFR and kConFab used the same risk factor questionnaire [28]. At baseline, questionnaires were interviewer administered, either in person or by telephone, or administered by mail. The risk factor questionnaire asked about each participant’s demographic characteristics, height, weight, history of benign breast disease, breast and ovarian surgeries, reproductive history, and lifestyle factors. The cancer family history questionnaire asked about breast and other cancers (excluding non-melanoma skin cancer) in the participants and their first-degree and second-degree relatives. Each participant’s cancer information was obtained from one or more sources and was usually self-reported or reported by a first-degree relative. Where possible, verification of cancer diagnosis was sought through pathologist review of tissue samples, pathology reports, cancer registries, medical records, or death certificates [2830].

Statistical methods

We studied women who were initially unaffected by invasive breast cancer or ductal carcinoma in situ of the breast up until 3 months following completion of their baseline questionnaires. To be eligible, women also had to be aged 18 to 79 years at baseline, have at least 2 months of follow up (either by completing a questionnaire before 30 June 2011 or having a family member update their cancer and vital status), and not have had a bilateral risk-reducing mastectomy at baseline. For these analyses, we excluded 331 women for whom we did not have complete data for BMI, 1220 women for whom we were unable to determine menopausal status, and 42 women for whom we did not have complete data for both BMI and menopausal status. From the original cohort of 17,628 women, this left 16,035 (91.0%) available for analysis.
Baseline BMI was calculated as current weight (kg) divided by squared height (m) using information captured by the baseline risk factor questionnaire. We used log-transformed BMI in analyses. Baseline menopausal status was determined from questions asking about time since last menstrual period and reason for cessation of menstruation. For each participant, the 1-year risk of invasive breast cancer and the lifetime risk (risk to age 80 years from birth) were calculated using the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) version 3 using pedigree information at baseline. This algorithm uses information on breast, ovarian, and male breast cancer and age at diagnosis for first, second, and third-degree relatives, along with date of birth, vital status, age at interview or death, and country-specific age-specific incidences [35, 36] to calculate risk. Where available, information on BRCA1 and BRCA2 mutation testing was also used to calculate risk. Mutations were protein-truncating or missense mutations classified as deleterious by the Breast Cancer Information Core [37]. Details of testing are given elsewhere [38]. Sensitivity of the mutation detection technique was assumed to equal 70% and 80% for BRCA1 and BRCA2, respectively.
Time in the study began 2 months after the age of completion of the baseline questionnaire and ended at whichever came first of the following: age last known to be alive, diagnosis of invasive or in situ breast cancer, bilateral risk-reducing mastectomy, age 80 years, or age at death. We conducted sensitivity analyses by including only invasive breast cancers and by excluding the 652 BRCA1 and 519 BRCA2 mutation carriers. We also conducted sensitivity analyses by including women with missing menopausal status and including a parameter for this group.
To investigate whether the hazard ratios (HRs) for the associations between risk of breast cancer and BMI differed by the underlying familial risk, we used Cox proportional hazard models with age as the time axis and stratified by study site and birth cohort in 10-year groups. Familial risk was defined as the log 1-year incidence of breast cancer predicted by BOADICEA adjusted for age and birth cohort. We fitted interaction terms between risk factors and familial risk.
Statistical inference was made under maximum likelihood theory, including consideration of the changes in log likelihood between nested models compared with appropriate chi-squared (χ2) distributions (likelihood ratio criterion). We considered many reproductive and other factors (e.g. ever use of hormonal contraceptives, number of live births, ever use of hormone replacement therapy, benign breast disease, ever smoked, ever consumed alcohol, race/ethnicity, and highest education level) as potential confounders and retained only those that were nominally statistically significant. Analyses were therefore adjusted for history of benign breast disease, race/ethnicity and education. Because the cohort included families with multiple members, robust estimates of confidence intervals (CI) were calculated accounting for clustering by family. Tests of the proportional hazards assumption were based on Schoenfeld residuals. From the test for proportional hazards, we found evidence for non-proportionality only for study site. We therefore stratified all analyses by study site and there was no longer any evidence of non-proportionality. Stata version 14 [39] was used for all statistical analyses.
We plotted the predicted age-specific absolute cumulative risk for women with different BMIs and different familial risks based on BOADICEA and underlying age-specific incidences from the Surveillance, Epidemiology, and End Results Program [4043]. We chose three scenarios of familial risk: 12% (population average), 20% and 30%, and four scenarios of BMI (20, 25, 30 and 35 kg/m2). All statistical tests were two sided, and P values < 0.05 were considered nominally statistically significant.

Results

For the 16,035 women from 6701 families (mean 2.4 participants per family; standard deviation (SD) = 2.4; median = 2; range = 1–75), the mean age at enrollment was 47.3 years (SD = 15.4; median = 46.6; range = 18.0–79.8) and the mean duration of follow up was 10.5 years (SD = 4.7). There were 896 reported incident breast cancers (mean age at diagnosis 55.7 years, SD = 12.6). Details of the participants from the seven study sites are given in Table 1.
Table 1
Baseline characteristics of study cohort and unadjusted hazard ratios (HRs) and 95% confidence intervals (CIs) from Cox proportional hazards analysis
 
Unaffected
Affected
HR
95% CI
P
Number
Percentage
Number
Percentage
Age at baseline, years
 18–29
2407
15.9
49
5.5
1.00
(referent)
 
 30–39
3087
20.4
182
20.3
1.34
0.81, 2.20
0.3
 40–49
3189
21.1
231
25.8
1.18
0.65, 2.14
0.6
 50–59
2869
19.0
232
25.9
1.20
0.60, 2.40
0.6
 60–69
2179
14.4
166
18.5
0.98
0.46, 2.11
1.0
 70–79
1408
9.3
36
4.0
0.53
0.20, 1.38
0.2
1-year BOADICEA, %
 Q1: 0–0.13
4010
26.5
84
9.4
1.00
(referent)
 
 Q2: 0.14–0.34
3167
23.9
188
21.0
2.14
1.51, 3.04
< 0.001
 Q3: 0.35–0.53
3672
24.3
241
26.9
3.41
2.38, 4.89
< 0.001
 Q4: 0.54–7.94
3840
25.4
383
42.8
5.20
3.65, 7.42
< 0.001
Body mass index, kg/m2
 Q1: 14.69–21.86
3811
25.2
194
21.7
1.00
(referent)
 
 Q2: 21.87–24.60
3766
24.9
227
25.3
1.07
0.89, 1.30
0.5
 Q3: 24.61–28.56
3771
24.9
252
28.1
1.17
0.96, 1.41
0.1
 Q4: 28.57–58.86
3791
25.0
223
24.9
1.05
0.87, 1.28
0.6
History of benign breast disease
 No
10,953
72.4
551
61.5
1.00
(referent)
 
 Yes
3878
25.6
323
36.1
1.33
1.15, 1.54
< 0.001
Menopausal status
 Premenopausal
8669
57.3
467
52.1
1.00
(referent)
 
 Postmenopausal
6470
42.7
429
47.9
1.02
0.81, 1.29
0.8
Race/ethnicity
 Non-Hispanic white
11,969
79.1
750
83.7
1.00
(referent)
 
 Black
726
4.8
29
3.2
0.60
0.40, 0.89
0.01
 Hispanic
1310
8.7
52
5.8
0.74
0.53, 1.04
0.08
 Asian
574
3.8
39
4.4
0.87
0.60, 1.26
0.5
 Other
417
2.8
17
1.9
0.72
0.45, 1.15
0.2
 Missing
143
0.9
9
1.0
   
Education, highest completed
 High school or general education development
5031
33.2
260
29.0
1.00
(referent)
 
 Vocational, technical, or some college or university
5709
37.7
319
35.6
1.15
0.97, 1.37
0.1
 Bachelor or graduate degree
4341
28.7
313
34.9
1.42
1.18, 1.70
< 0.001
 Missing
58
0.4
4
0.5
   
HRs are unadjusted but stratified by birth cohort (10-year groups) and study site; to account for clustering by family, robust 95% CIs are reported
Q1–Q4 quartiles 1–4
Figure 1 shows the distribution of predicted lifetime breast cancer risk based on BOADICEA. The second peak starting at 60% lifetime risk is almost entirely due to identified BRCA1 and BRCA2 mutation carriers.
Figure 2 shows that the HR estimates for the association between greater BMI and breast cancer risk change from all being negative to all being positive when moving from age at baseline < 40 years to age > 60 years. The same changes in risk occur in moving from pre- to postmenopausal status.
The results from multivariable Cox models are shown in Tables 2 and 3. In Table 2, we show that the strength and direction of the BMI risk association depended on age at baseline (model II, HR = 1.05, P = 0.002) and on menopausal status (model III, HR = 3.68, P < 0.001) at baseline. When we modeled both together, the most important factor was baseline menopausal status because once this had been taken into account (HR = 2.91, P = 0.07), the BMI risk association with age at baseline (HR = 1.01, P = 0.6) was no longer significant. Comparison of log likelihoods from model IV versus model III shows that there was no evidence for an interaction between age at baseline and menopausal status (χ12 = 0.01). A subsequent analysis found that there was also no evidence for an association with age at baseline for postmenopausal women (HR = 1.00, P = 1.0). Therefore, the best-fitting model for the BMI association included an interaction term between BMI and menopausal status only (model III).
Table 2
Adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) from Cox proportional hazards modeling of body mass index, menopausal status and age at baseline
Model
 
HRb
95% CI
P
ΔLLc
I
Log body mass indexa (per 5 kg/m2)
1.28
0.91, 1.81
0.2
2.38
Age at baseline, years
0.98
0.96, 1.00
0.1
Menopause, no/yes
1.12
0.88, 1.43
0.4
II
Log body mass indexa (per 5 kg/m2)
0.13
0.03, 0.56
0.006
7.36
Age at baseline, years
0.98
0.96, 1.00
0.1
Menopause, no/yes
1.12
0.88, 1.44
0.4
Log body mass index (per 5 kg/m2) × Age at baseline, years
1.05
1.02, 1.08
0.002
III
Log body mass indexa (per 5 kg/m2)
0.68
0.41, 1.01
0.1
9.14
Age at baseline, years
0.98
0.96, 1.00
0.1
Menopause, no/yes
1.12
0.87, 1.44
0.4
Log body mass index (per 5 kg/m2) × Menopause, no/yes
3.68
1.86, 7.28
< 0.001
IV
Log body mass indexa (per 5 kg/m2)
0.40
0.06, 2.89
0.4
9.32
Age at baseline, years
0.98
0.96, 1.00
0.1
Menopause, no/yes
1.12
0.88, 1.44
0.4
Log body mass index (per 5 kg/m2) × Age at baseline, years
1.01
0.97, 1.06
0.6
Log body mass index (per 5 kg/m2) × Menopause, no/yes
2.91
0.91, 9.31
0.07
To account for clustering by family, robust 95% CIs are reported
LL log likelihood
aAdjusted for log baseline age as a quadratic
bAdjusted for history of benign breast disease, race/ethnicity, and education; stratified by year of birth (10-year groups) and study site
cChange in LL from the base model that includes benign breast disease, race/ethnicity, and education
Table 3
Adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) from Cox proportional hazards modelling of body mass index, menopausal status, age, and BOADICEA 1-year risk of breast cancer at baseline
Model
 
HRb
95% CI
P
ΔLLc
V
Log body mass indexa (per 5 kg/m2)
0.75
0.46, 1.22
0.2
158.03
Log 1-year BOADICEAa (%)
2.05
1.89, 2.23
< 0.001
Age at baseline, years
0.98
0.96, 1.00
0.1
Menopause, no/yes
1.04
0.81, 1.32
0.8
Log body mass index (per 5 kg/m2) × Menopause, no/yes
3.36
1.71, 6.62
< 0.001
VI
Log body mass indexa (per 5 kg/m2)
0.75
0.46, 1.22
0.2
158.03
Log 1-year BOADICEAa (%)
2.05
1.86, 2.26
< 0.001
Age at baseline, years
0.98
0.96, 1.00
0.1
Menopause, no/yes
1.03
0.80, 1.34
0.8
Log body mass index (per 5 kg/m2) × Menopause, no/yes
3.36
1.71, 6.63
< 0.001
Menopause, no/yes × Log 1-year BOADICEAa (%)
1.00
0.85, 1.19
1.0
VII
Log body mass indexa (per 5 kg/m2)
0.70
0.41, 1.18
0.2
158.24
Log 1-year BOADICEAa (%)
2.06
0.89, 2.24
< 0.001
Age at baseline, years
0.98
0.96, 1.00
0.1
Menopause, no/yes
1.04
0.81, 1.32
0.8
Log body mass index (per 5 kg/m2) × Menopause, no/yes
3.46
1.75, 6.84
< 0.001
Log body mass indexa (per 5 kg/m2) × log 1-year BOADICEAa (%)
1.13
0.79, 1.62
0.5
VIII
Log body mass indexa (per 5 kg/m2)
0.66
0.38, 1.14
0.1
158.54
Log 1-year BOADICEAa (%)
2.07
1.90, 2.25
< 0.001
Age at baseline, years
0.98
0.96, 1.00
0.1
Menopause, no/yes
1.04
0.82, 1.32
0.8
Log body mass index (per 5 kg/m2) × Menopause, no/yes
3.92
1.86, 8.28
< 0.001
Log body mass indexa (per 5 kg/m2) × Log 1-year BOADICEAa (%)
1.27
0.81, 2.00
0.3
Menopause, no/yes × Log body mass indexa (per 5 kg/m2) × Log 1-year BOADICEAa (%)
0.73
0.34, 1.57
0.4
To account for clustering by family, robust 95% CIs are reported
LL log likelihood, BOADICEA Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm
aAdjusted for log baseline age as a quadratic
bAdjusted for history of benign breast disease, race/ethnicity, and education; stratified by year of birth (10-year groups) and study site
cChange in LL from the base model that includes history of benign breast disease, race/ethnicity, and education
Table 3 shows the model fits after taking familial risk into account. The most parsimonious best fitting model was model V, which shows that after the BMI association was fitted as a function of menopausal status (HR = 3.36, P < 0.001), there was evidence of an association with familial risk (as represented by the log 1-year BOADICEA estimate in model V; HR = 2.05, P < 0.001). The other models show that there was no evidence for an interaction of 1-year BOADICEA score with menopausal status (model VI, HR = 1.00, P = 1.0), with BMI (model VII, HR = 1.13, P = 0.5), or with the interaction of BMI and menopausal status (model VIII, HR = 0.73, P = 0.4). That is, there was no evidence that the multiplicative interaction between BMI and menopausal status differed by familial risk irrespective of how we modeled the BMI association We also re-analyzed the data by including women with missing menopausal status and putting them in a category of their own. This made no difference to our general findings of no evidence for gene–environment interactions on the multiplicative scale.
Figure 3 shows the overall implications of the study estimates on the predicted age-specific cumulative risk for women with different baseline BMI and familial risk and age 50 years at menopause. In terms of absolute risk, the risk difference for premenopausal women is small when comparing those in the lowest BMI category with those in the highest BMI category. In contrast, the corresponding risk difference for postmenopausal women is much larger and in the opposite direction. The latter difference in absolute risk is even more so for women with a greater familial risk (e.g. for cumulative risk to age 80 years, 8% for women with high familial risk versus 4% for population risk).

Discussion

Using a large international prospective cohort enriched for women with a family history of breast cancer [28] we have found that the absolute breast cancer risk gradient with BMI increases with age after menopause, and with underlying familial risk. There are three key findings of clinical and biological significance and they are illustrated in Fig. 3.
First, we found that greater BMI at a young adult age is associated with a decreased risk of breast cancer, as have others [44]. We have shown that this negative association with BMI does not translate into a substantial influence on absolute risk of breast cancer.
Second, our modeling confirms that BMI is associated with an increase in risk once a woman becomes postmenopausal. In terms of differences in absolute risk, it is not until a woman is in her mid to late 50s that the risk manifests; the influence on absolute risk then increases with age.
Third, our modeling predicts that the greater a woman’s familial risk, the greater the influence of BMI on her absolute postmenopausal breast cancer risk. We base this on our finding that, in terms of multiplicative risk, the association of breast cancer with BMI did not differ for women at different underlying familial risk (Table 3). Unlike most other cohorts, our enriched cohort has adequate statistical power to examine interactions with underlying familial risk [28, 45, 46]. We also created a continuous measure of familial risk using multi-generational pedigree information and the BOADICEA model to estimate 1-year and lifetime (from birth) risk of breast cancer [35, 36, 43].
As illustrated in Fig. 1, about one third of our cohort has a lifetime risk above the clinically relevant cutoff of 20% [47, 48]. Figure 3 shows that our observed lack of multiplicative interaction means that the difference in absolute risk between women at higher compared with lower BMI is greater for those women who are at higher underlying familial risk. Our finding of a lack of multiplicative interaction between BMI and 1-year BOADICEA score is consistent with the lack of multiplicative interactions with BMI and more than 100 genetic variants found by a large pooled case–control analysis of almost 60,000 women [49].
One potential limitation is that a change in the BMI association with baseline menopausal status could be due to unmeasured confounders. For this to happen, such confounders would have to have a similar menopausal-dependent risk association. As most risk factors related to BMI (e.g., physical activity) do not have clear differences in association by menopausal status, unmeasured confounding is not likely. Other limitations include limited power to address issues specific to mutation carriers and hormone receptor status of tumors. The evidence of whether the protective association of BMI in early life applies solely to estrogen receptor negative disease is less consistent, with contradictory findings from two meta-analyses [50, 51] and a recent study based on a pooled study [52].
Although the negative breast cancer risk association with childhood and adolescent BMI is small in terms of absolute risk, understanding this in the light of the genome-wide association studies results [18, 19], which also support a negative association of BMI with breast cancer risk at a young age, could aid in understanding the role of breast development in breast cancer susceptibility. While increased glucose and other nutrients might alter the ability of BRCA1 to function as a tumor suppressor [53], pre-pubertal estrogen exposure could increase the ability of major breast cancer susceptibility genes to prevent breast cancer through cellular differentiation [54].
An explanation of the negative association with childhood and adolescent BMI might be found in the growth of mammographically dense tissue and changes to the architecture surrounding the mammographically dense tissue, which develops and grows rapidly in adolescence [55]. Importantly, as we show here, although higher BMI is associated with reduced breast cancer risk before menopause, the direction of the association is reversed post-menopause and is of far more consequence in terms of absolute risk.
Laboratory studies have given insights into the mechanisms that might explain why weight gain and metabolically rich environments increase postmenopausal breast cancer risk, with implications for prevention [56]. These mechanisms include conversion of androgens to estrogens in adipose tissue [57], but could also include inflammation and metabolic processes related to cancer risk [58, 59] and changes to epigenetically regulated genes such as BRCA1 [53].

Conclusions

In summary, the negative association with BMI in premenopausal women has a much smaller influence on absolute risk than the positive association with BMI in postmenopausal women. Women at higher familial risk have a much larger difference in absolute risk depending on their BMI than women at lower familial risk.
Our modeling predicted that, for young and premenopausal women, the decrease in breast cancer risk associated with increasing BMI does not have a substantial influence on absolute risk in those periods of life. Our modeling also predicted that the absolute breast cancer risk gradient with BMI increases with age post menopause, and with underlying familial risk. We argue, therefore, that there is no discrepancy between the conclusions of the Mendelian randomization studies [18, 19] and the epidemiological literature (see “Background”). The genetically driven protective role of BMI on breast cancer risk in early adulthood appears to be of little consequence in terms of absolute risk and is overtaken by an environmentally driven deleterious role of greater adult BMI in later life that is even more important for women at increased genetic risk. Given that age-adjusted BMI is correlated between early and mid-adulthood [60], maintaining a healthy weight throughout adult life is of clinical significance for all women, and especially those with a family history of breast cancer.

Acknowledgements

We thank Heather Thorne, Eveline Niedermayr, Lucy Stanhope, Yasmin Rady, Sandra Picken, all the BCFR and kConFab research nurses and staff, the heads and staff of the Family Cancer Clinics, and the many families who contribute to the BCFR and kConFab for their contributions to this resource.

Funding

This work was supported by the National Institute of Health USA. (grant number 1RO1CA159868). The ABCFR was supported in Australia by the National Health and Medical Research Council, the New South Wales Cancer Council, the Victorian Health Promotion Foundation, the Victorian Breast Cancer Research Consortium, Cancer Australia, and the National Breast Cancer Foundation. The six sites of the Breast Cancer Family Registry (BCFR) were supported by grant UM1 CA164920 from the USA National Cancer Institute. The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the BCFR, nor does mention of trade names, commercial products, or organizations imply endorsement by the USA Government or the BCFR.
This work was supported by grants to kConFab and the kConFab follow-up study from Cancer Australia (grant number 809195), the Australian National Breast Cancer Foundation (grant number IF 17 kConFab), the National Health and Medical Research Council (grant numbers 454508, 288704, 145684), the National Institute of Health USA (grant number 1RO1CA159868), the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia (grant numbers not applicable). KAP is a National Breast Cancer Foundation (Australia) Practitioner Fellow (grant number PRAC-17-004). ACA is supported by Cancer Research (UK grant C12292/A20861).

Availability of data and materials

The datasets analyzed during the current study are available from the corresponding authors on reasonable request.
All participants in the BCFR and kConFab provided written informed consent before participation. Ethics approval for the six sites of the BCFR and for kConFab was granted by human research ethics committees at the participating institutions:
  • Northern California – Cancer Prevention Institute of California, Institutional Review Board (2001–033)
  • New York – Columbia University Medical Center, Institutional Review Board (AAA7794)
  • Philadelphia – Fox Chase Cancer Center, Institutional Review Board (95–009)
  • Utah – Huntsman Cancer Institute, University of Utah, Institutional Review Board (00004965)
  • Ontario – Mount Sinai Hospital Research Ethics Board (#02–0076-U) and University Health Network Research Ethics Board (#96-U107-CE)
  • Australia – University of Melbourne, Human Ethics Sub-Committee (1441420.1)
  • kConFab – Peter MacCallum Cancer Centre, the Peter Mac Ethics Committee (97/27)
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Baer HJ, Tworoger SS, Hankinson SE, Willett WC. Body fatness at young ages and risk of breast cancer throughout life. Am J Epidemiol. 2010;171(11):1183–94.CrossRef Baer HJ, Tworoger SS, Hankinson SE, Willett WC. Body fatness at young ages and risk of breast cancer throughout life. Am J Epidemiol. 2010;171(11):1183–94.CrossRef
2.
Zurück zum Zitat Bandera EV, Chandran U, Zirpoli G, Ciupak G, Bovbjerg DH, Jandorf L, et al. Body size in early life and breast cancer risk in African American and European American women. Cancer Causes Control. 2013;24(12):2231–43.CrossRef Bandera EV, Chandran U, Zirpoli G, Ciupak G, Bovbjerg DH, Jandorf L, et al. Body size in early life and breast cancer risk in African American and European American women. Cancer Causes Control. 2013;24(12):2231–43.CrossRef
3.
Zurück zum Zitat Bardia A, Vachon CM, Olson JE, Vierkant RA, Wang AH, Hartmann LC, et al. Relative weight at age 12 and risk of postmenopausal breast cancer. Cancer Epidemiol Biomark Prev. 2008;17(2):374–8.CrossRef Bardia A, Vachon CM, Olson JE, Vierkant RA, Wang AH, Hartmann LC, et al. Relative weight at age 12 and risk of postmenopausal breast cancer. Cancer Epidemiol Biomark Prev. 2008;17(2):374–8.CrossRef
4.
Zurück zum Zitat Berkey CS, Frazier AL, Gardner JD, Colditz GA. Adolescence and breast carcinoma risk. Cancer. 1999;85(11):2400–9.CrossRef Berkey CS, Frazier AL, Gardner JD, Colditz GA. Adolescence and breast carcinoma risk. Cancer. 1999;85(11):2400–9.CrossRef
5.
Zurück zum Zitat Bodicoat DH, Schoemaker MJ, Jones ME, McFadden E, Griffin J, Ashworth A, et al. Timing of pubertal stages and breast cancer risk: the Breakthrough Generations Study. Breast Cancer Res. 2014;16(1):R18.CrossRef Bodicoat DH, Schoemaker MJ, Jones ME, McFadden E, Griffin J, Ashworth A, et al. Timing of pubertal stages and breast cancer risk: the Breakthrough Generations Study. Breast Cancer Res. 2014;16(1):R18.CrossRef
6.
Zurück zum Zitat Robinson WR, Tse CK, Olshan AF, Troester MA. Body size across the life course and risk of premenopausal and postmenopausal breast cancer in Black women, the Carolina Breast Cancer Study, 1993-2001. Cancer Causes Control. 2014;25(9):1101–17.CrossRef Robinson WR, Tse CK, Olshan AF, Troester MA. Body size across the life course and risk of premenopausal and postmenopausal breast cancer in Black women, the Carolina Breast Cancer Study, 1993-2001. Cancer Causes Control. 2014;25(9):1101–17.CrossRef
7.
Zurück zum Zitat Rosner B, Eliassen AH, Toriola AT, Chen WY, Hankinson SE, Willett WC, et al. Weight and weight changes in early adulthood and later breast cancer risk. Int J Cancer. 2017;140(9):2003–14.CrossRef Rosner B, Eliassen AH, Toriola AT, Chen WY, Hankinson SE, Willett WC, et al. Weight and weight changes in early adulthood and later breast cancer risk. Int J Cancer. 2017;140(9):2003–14.CrossRef
8.
Zurück zum Zitat Shawon SR, Eriksson M, Li J. Body size in early life and risk of breast cancer. Breast Cancer Res. 2017;19(1):84.CrossRef Shawon SR, Eriksson M, Li J. Body size in early life and risk of breast cancer. Breast Cancer Res. 2017;19(1):84.CrossRef
9.
10.
Zurück zum Zitat Baer HJ, Colditz GA, Rosner B, Michels KB, Rich-Edwards JW, Hunter DJ, et al. Body fatness during childhood and adolescence and incidence of breast cancer in premenopausal women: a prospective cohort study. Breast Cancer Res. 2005;7(3):R314–25.CrossRef Baer HJ, Colditz GA, Rosner B, Michels KB, Rich-Edwards JW, Hunter DJ, et al. Body fatness during childhood and adolescence and incidence of breast cancer in premenopausal women: a prospective cohort study. Breast Cancer Res. 2005;7(3):R314–25.CrossRef
11.
Zurück zum Zitat Coates RJ, Uhler RJ, Hall HI, Potischman N, Brinton LA, Ballard-Barbash R, et al. Risk of breast cancer in young women in relation to body size and weight gain in adolescence and early adulthood. Br J Cancer. 1999;81(1):167–74.CrossRef Coates RJ, Uhler RJ, Hall HI, Potischman N, Brinton LA, Ballard-Barbash R, et al. Risk of breast cancer in young women in relation to body size and weight gain in adolescence and early adulthood. Br J Cancer. 1999;81(1):167–74.CrossRef
12.
Zurück zum Zitat Michels KB, Terry KL, Willett WC. Longitudinal study on the role of body size in premenopausal breast cancer. Arch Intern Med. 2006;166(21):2395–402.CrossRef Michels KB, Terry KL, Willett WC. Longitudinal study on the role of body size in premenopausal breast cancer. Arch Intern Med. 2006;166(21):2395–402.CrossRef
13.
Zurück zum Zitat Weiderpass E, Braaten T, Magnusson C, Kumle M, Vainio H, Lund E, et al. A prospective study of body size in different periods of life and risk of premenopausal breast cancer. Cancer Epidemiol Biomark Prev. 2004;13(7):1121–7. Weiderpass E, Braaten T, Magnusson C, Kumle M, Vainio H, Lund E, et al. A prospective study of body size in different periods of life and risk of premenopausal breast cancer. Cancer Epidemiol Biomark Prev. 2004;13(7):1121–7.
14.
Zurück zum Zitat John EM, Sangaramoorthy M, Hines LM, Stern MC, Baumgartner KB, Giuliano AR, et al. Body size throughout adult life influences postmenopausal breast cancer risk among hispanic women: the breast cancer health disparities study. Cancer Epidemiol Biomark Prev. 2015;24(1):128–37.CrossRef John EM, Sangaramoorthy M, Hines LM, Stern MC, Baumgartner KB, Giuliano AR, et al. Body size throughout adult life influences postmenopausal breast cancer risk among hispanic women: the breast cancer health disparities study. Cancer Epidemiol Biomark Prev. 2015;24(1):128–37.CrossRef
15.
Zurück zum Zitat Bandera EV, Maskarinec G, Romieu I, John EM. Racial and ethnic disparities in the impact of obesity on breast cancer risk and survival: a global perspective. Adv Nutr. 2015;6(6):803–19.CrossRef Bandera EV, Maskarinec G, Romieu I, John EM. Racial and ethnic disparities in the impact of obesity on breast cancer risk and survival: a global perspective. Adv Nutr. 2015;6(6):803–19.CrossRef
16.
Zurück zum Zitat MacInnis RJ, English DR, Gertig DM, Hopper JL, Giles GG. Body size and composition and risk of postmenopausal breast cancer. Cancer Epidemiol Biomark Prev. 2004;13(12):2117–25. MacInnis RJ, English DR, Gertig DM, Hopper JL, Giles GG. Body size and composition and risk of postmenopausal breast cancer. Cancer Epidemiol Biomark Prev. 2004;13(12):2117–25.
17.
Zurück zum Zitat John EM, Phipps AI, Sangaramoorthy M. Body size, modifying factors, and postmenopausal breast cancer risk in a multiethnic population: the San Francisco Bay Area Breast Cancer Study. Springerplus. 2013;24(1):239.CrossRef John EM, Phipps AI, Sangaramoorthy M. Body size, modifying factors, and postmenopausal breast cancer risk in a multiethnic population: the San Francisco Bay Area Breast Cancer Study. Springerplus. 2013;24(1):239.CrossRef
18.
Zurück zum Zitat Gao C, Patel CJ, Michailidou K, Peters U, Gong J, Schildkraut J, et al. Mendelian randomization study of adiposity-related traits and risk of breast, ovarian, prostate, lung and colorectal cancer. Int J Epidemiol. 2016;45(3):896–908.CrossRef Gao C, Patel CJ, Michailidou K, Peters U, Gong J, Schildkraut J, et al. Mendelian randomization study of adiposity-related traits and risk of breast, ovarian, prostate, lung and colorectal cancer. Int J Epidemiol. 2016;45(3):896–908.CrossRef
19.
Zurück zum Zitat Guo Y, Warren Andersen S, Shu XO, Michailidou K, Bolla MK, Wang Q, et al. Genetically predicted body mass index and breast cancer risk: Mendelian randomization analyses of data from 145,000 women of European descent. PLoS Med. 2016;13(8):e1002105.CrossRef Guo Y, Warren Andersen S, Shu XO, Michailidou K, Bolla MK, Wang Q, et al. Genetically predicted body mass index and breast cancer risk: Mendelian randomization analyses of data from 145,000 women of European descent. PLoS Med. 2016;13(8):e1002105.CrossRef
20.
Zurück zum Zitat Hopper JL, Carlin JB. Familial aggregation of a disease consequent upon correlation between relatives in a risk factor measured on a continuous scale. Am J Epidemiol. 1992;136(9):1138–47.CrossRef Hopper JL, Carlin JB. Familial aggregation of a disease consequent upon correlation between relatives in a risk factor measured on a continuous scale. Am J Epidemiol. 1992;136(9):1138–47.CrossRef
21.
Zurück zum Zitat Mavaddat N, Pharoah PD, Michailidou K, Tyrer J, Brook MN, Bolla MK, et al. Prediction of breast cancer risk based on profiling with common genetic variants. J Natl Cancer Inst. 2015;107(5):djv036.CrossRef Mavaddat N, Pharoah PD, Michailidou K, Tyrer J, Brook MN, Bolla MK, et al. Prediction of breast cancer risk based on profiling with common genetic variants. J Natl Cancer Inst. 2015;107(5):djv036.CrossRef
22.
Zurück zum Zitat Dite GS, Macinnis RJ, Bickerstaffe A, Dowty JG, Allman R, Apicella C, et al. Breast cancer risk prediction using clinical models and 77 independent risk-associated SNPs for women aged under 50 years: Australian Breast Cancer Family Registry. Cancer Epidemiol Biomark Prev. 2016;25(2):359–65.CrossRef Dite GS, Macinnis RJ, Bickerstaffe A, Dowty JG, Allman R, Apicella C, et al. Breast cancer risk prediction using clinical models and 77 independent risk-associated SNPs for women aged under 50 years: Australian Breast Cancer Family Registry. Cancer Epidemiol Biomark Prev. 2016;25(2):359–65.CrossRef
23.
Zurück zum Zitat Easton DF, Pharoah PD, Antoniou AC, Tischkowitz M, Tavtigian SV, Nathanson KL, et al. Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med. 2015;372(23):2243–57.CrossRef Easton DF, Pharoah PD, Antoniou AC, Tischkowitz M, Tavtigian SV, Nathanson KL, et al. Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med. 2015;372(23):2243–57.CrossRef
24.
Zurück zum Zitat Nguyen-Dumont T, Teo ZL, Pope BJ, Hammet F, Mahmoodi M, Tsimiklis H, et al. Hi-Plex for high-throughput mutation screening: application to the breast cancer susceptibility gene PALB2. BMC Med Genet. 2013;6:48. Nguyen-Dumont T, Teo ZL, Pope BJ, Hammet F, Mahmoodi M, Tsimiklis H, et al. Hi-Plex for high-throughput mutation screening: application to the breast cancer susceptibility gene PALB2. BMC Med Genet. 2013;6:48.
25.
Zurück zum Zitat Nguyen-Dumont T, Mahmoodi M, Hammet F, Tran T, Tsimiklis H, Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer, et al. Hi-Plex targeted sequencing is effective using DNA derived from archival dried blood spots. Anal Biochem. 2015;470:48–51.CrossRef Nguyen-Dumont T, Mahmoodi M, Hammet F, Tran T, Tsimiklis H, Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer, et al. Hi-Plex targeted sequencing is effective using DNA derived from archival dried blood spots. Anal Biochem. 2015;470:48–51.CrossRef
26.
Zurück zum Zitat Hopper JL. Genetics for population and public health. Int J Epidemiol. 2017;46(1):8–11.CrossRef Hopper JL. Genetics for population and public health. Int J Epidemiol. 2017;46(1):8–11.CrossRef
27.
Zurück zum Zitat Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Winkins; 2013. Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Winkins; 2013.
28.
Zurück zum Zitat Terry MB, Phillips KA, Daly MB, John EM, Andrulis IL, Buys SS, et al. Cohort profile: The Breast Cancer Prospective Family Study Cohort (ProF-SC). Int J Epidemiol. 2016;45(3):683–92.CrossRef Terry MB, Phillips KA, Daly MB, John EM, Andrulis IL, Buys SS, et al. Cohort profile: The Breast Cancer Prospective Family Study Cohort (ProF-SC). Int J Epidemiol. 2016;45(3):683–92.CrossRef
29.
Zurück zum Zitat John EM, Hopper JL, Beck JC, Knight JA, Neuhausen SL, Senie RT, et al. The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer. Breast Cancer Res. 2004;6(4):R375–89.CrossRef John EM, Hopper JL, Beck JC, Knight JA, Neuhausen SL, Senie RT, et al. The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer. Breast Cancer Res. 2004;6(4):R375–89.CrossRef
30.
Zurück zum Zitat Mann GJ, Thorne H, Balleine RL, Butow PN, Clarke CL, Edkins E, et al. Analysis of cancer risk and BRCA1 and BRCA2 mutation prevalence in the kConFab familial breast cancer resource. Breast Cancer Res. 2006;8(1):R12.CrossRef Mann GJ, Thorne H, Balleine RL, Butow PN, Clarke CL, Edkins E, et al. Analysis of cancer risk and BRCA1 and BRCA2 mutation prevalence in the kConFab familial breast cancer resource. Breast Cancer Res. 2006;8(1):R12.CrossRef
31.
Zurück zum Zitat Phillips KA, Butow PN, Stewart AE, Chang JH, Weideman PC, Price MA, et al. Predictors of participation in clinical and psychosocial follow-up of the kConFab breast cancer family cohort. Familial Cancer. 2005;4(2):105–13.CrossRef Phillips KA, Butow PN, Stewart AE, Chang JH, Weideman PC, Price MA, et al. Predictors of participation in clinical and psychosocial follow-up of the kConFab breast cancer family cohort. Familial Cancer. 2005;4(2):105–13.CrossRef
32.
Zurück zum Zitat Neuhausen SL, Ozcelik H, Southey MC, John EM, Godwin AK, Chung W, et al. BRCA1 and BRCA2 mutation carriers in the Breast Cancer Family Registry: an open resource for collaborative research. Breast Cancer Res Treat. 2009;116(2):379–86.CrossRef Neuhausen SL, Ozcelik H, Southey MC, John EM, Godwin AK, Chung W, et al. BRCA1 and BRCA2 mutation carriers in the Breast Cancer Family Registry: an open resource for collaborative research. Breast Cancer Res Treat. 2009;116(2):379–86.CrossRef
33.
Zurück zum Zitat McCredie MR, Dite GS, Giles GG, Hopper JL. Breast cancer in Australian women under the age of 40. Cancer Causes Control. 1998;9(2):189–98.CrossRef McCredie MR, Dite GS, Giles GG, Hopper JL. Breast cancer in Australian women under the age of 40. Cancer Causes Control. 1998;9(2):189–98.CrossRef
34.
Zurück zum Zitat Hopper JL, Giles GG, McCredie MRE, Boyle P. Background, rationale and protocol for a case-control-family study of breast cancer. Breast. 1994;3(2):79–86.CrossRef Hopper JL, Giles GG, McCredie MRE, Boyle P. Background, rationale and protocol for a case-control-family study of breast cancer. Breast. 1994;3(2):79–86.CrossRef
35.
Zurück zum Zitat Antoniou AC, Cunningham AP, Peto J, Evans DG, Lalloo F, Narod SA, et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer. 2008;98(8):1457–66.CrossRef Antoniou AC, Cunningham AP, Peto J, Evans DG, Lalloo F, Narod SA, et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer. 2008;98(8):1457–66.CrossRef
36.
Zurück zum Zitat Antoniou AC, Pharoah PP, Smith P, Easton DF. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer. 2004;91(8):1580–90.CrossRef Antoniou AC, Pharoah PP, Smith P, Easton DF. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer. 2004;91(8):1580–90.CrossRef
38.
Zurück zum Zitat Dite GS, Whittemore AS, Knight JA, John EM, Milne RL, Andrulis IL, et al. Increased cancer risks for relatives of very early-onset breast cancer cases with and without BRCA1 and BRCA2 mutations. Br J Cancer. 2010;103(7):1103–8.CrossRef Dite GS, Whittemore AS, Knight JA, John EM, Milne RL, Andrulis IL, et al. Increased cancer risks for relatives of very early-onset breast cancer cases with and without BRCA1 and BRCA2 mutations. Br J Cancer. 2010;103(7):1103–8.CrossRef
39.
Zurück zum Zitat StataCorp. Stata Statistical Software, Release 14. College Station: StataCorp LP; 2015. StataCorp. Stata Statistical Software, Release 14. College Station: StataCorp LP; 2015.
40.
Zurück zum Zitat Surveillance Epidemiology and End Results (SEER) Program. SEER*stat database: incidence - SEER 13 regs research data, Nov 2011 Sub (1992–2009) <Katrina/Rita Population Adjustment> − Linked To County Attributes - Total U.S.; 2011. Surveillance Epidemiology and End Results (SEER) Program. SEER*stat database: incidence - SEER 13 regs research data, Nov 2011 Sub (1992–2009) <Katrina/Rita Population Adjustment> − Linked To County Attributes - Total U.S.; 2011.
41.
Zurück zum Zitat Surveillance Epidemiology and End Results (SEER) Program. SEER*stat database: incidence - SEER 18 regs research data, Nov 2011 Sub (2000–2009) <Katrina/Rita Population Adjustment> − Linked To County Attributes - Total U.S.; 2011. Surveillance Epidemiology and End Results (SEER) Program. SEER*stat database: incidence - SEER 18 regs research data, Nov 2011 Sub (2000–2009) <Katrina/Rita Population Adjustment> − Linked To County Attributes - Total U.S.; 2011.
42.
Zurück zum Zitat Surveillance Epidemiology and End Results (SEER) Program. SEER*stat database: incidence - SEER 9 regs research data, Nov 2011 Sub (1973–2009) <Katrina/Rita Population Adjustment> − Linked To County Attributes - Total U.S.; 2011. Surveillance Epidemiology and End Results (SEER) Program. SEER*stat database: incidence - SEER 9 regs research data, Nov 2011 Sub (1973–2009) <Katrina/Rita Population Adjustment> − Linked To County Attributes - Total U.S.; 2011.
43.
Zurück zum Zitat Lee AJ, Cunningham AP, Kuchenbaecker KB, Mavaddat N, Easton DF, Antoniou AC, et al. BOADICEA breast cancer risk prediction model: updates to cancer incidences, tumour pathology and web interface. Br J Cancer. 2014;110(2):535–45.CrossRef Lee AJ, Cunningham AP, Kuchenbaecker KB, Mavaddat N, Easton DF, Antoniou AC, et al. BOADICEA breast cancer risk prediction model: updates to cancer incidences, tumour pathology and web interface. Br J Cancer. 2014;110(2):535–45.CrossRef
44.
Zurück zum Zitat Amadou A, Ferrari P, Muwonge R, Moskal A, Biessy C, Romieu I, et al. Overweight, obesity and risk of premenopausal breast cancer according to ethnicity: a systematic review and dose-response meta-analysis. Obes Rev. 2013;14(8):665–78.CrossRef Amadou A, Ferrari P, Muwonge R, Moskal A, Biessy C, Romieu I, et al. Overweight, obesity and risk of premenopausal breast cancer according to ethnicity: a systematic review and dose-response meta-analysis. Obes Rev. 2013;14(8):665–78.CrossRef
45.
Zurück zum Zitat Dite GS, MacInnis RJ, Bickerstaffe A, Dowty JG, Milne RL, Antoniou AC, et al. Testing for gene-environment interactions using a prospective family cohort design: body mass index in early and later adulthood and risk of breast cancer. Am J Epidemiol. 2017;185(6):487–500.CrossRef Dite GS, MacInnis RJ, Bickerstaffe A, Dowty JG, Milne RL, Antoniou AC, et al. Testing for gene-environment interactions using a prospective family cohort design: body mass index in early and later adulthood and risk of breast cancer. Am J Epidemiol. 2017;185(6):487–500.CrossRef
46.
Zurück zum Zitat Shen J, Liao Y, Hopper JL, Goldberg M, Santella RM, Terry MB. Dependence of cancer risk from environmental exposures on underlying genetic susceptibility: an illustration with polycyclic aromatic hydrocarbons and breast cancer. Br J Cancer. 2017;116(9):1229–33.CrossRef Shen J, Liao Y, Hopper JL, Goldberg M, Santella RM, Terry MB. Dependence of cancer risk from environmental exposures on underlying genetic susceptibility: an illustration with polycyclic aromatic hydrocarbons and breast cancer. Br J Cancer. 2017;116(9):1229–33.CrossRef
47.
Zurück zum Zitat Quante AS, Herz J, Whittemore AS, Fischer C, Strauch K, Terry MB. Assessing absolute changes in breast cancer risk due to modifiable risk factors. Breast Cancer Res Treat. 2015;152(1):193–7.CrossRef Quante AS, Herz J, Whittemore AS, Fischer C, Strauch K, Terry MB. Assessing absolute changes in breast cancer risk due to modifiable risk factors. Breast Cancer Res Treat. 2015;152(1):193–7.CrossRef
48.
Zurück zum Zitat Quante AS, Whittemore AS, Shriver T, Hopper JL, Strauch K, Terry MB. Practical problems with clinical guidelines for breast cancer prevention based on remaining lifetime risk. J Natl Cancer Inst. 2015;107(7):djv124.CrossRef Quante AS, Whittemore AS, Shriver T, Hopper JL, Strauch K, Terry MB. Practical problems with clinical guidelines for breast cancer prevention based on remaining lifetime risk. J Natl Cancer Inst. 2015;107(7):djv124.CrossRef
49.
Zurück zum Zitat Milne RL, Gaudet MM, Spurdle AB, Fasching PA, Couch FJ, Benitez J, et al. Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study. Breast Cancer Res. 2010;12(6):R110.CrossRef Milne RL, Gaudet MM, Spurdle AB, Fasching PA, Couch FJ, Benitez J, et al. Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study. Breast Cancer Res. 2010;12(6):R110.CrossRef
50.
Zurück zum Zitat Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78.CrossRef Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78.CrossRef
51.
Zurück zum Zitat Munsell MF, Sprague BL, Berry DA, Chisholm G, Trentham-Dietz A. Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiol Rev. 2014;36:114–36.CrossRef Munsell MF, Sprague BL, Berry DA, Chisholm G, Trentham-Dietz A. Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiol Rev. 2014;36:114–36.CrossRef
52.
Zurück zum Zitat Ma H, Ursin G, Xu X, Lee E, Togawa K, Malone KE, et al. Body mass index at age 18 years and recent body mass index in relation to risk of breast cancer overall and ER/PR/HER2-defined subtypes in white women and African-American women: a pooled analysis. Breast Cancer Res. 2018;20(1):5.CrossRef Ma H, Ursin G, Xu X, Lee E, Togawa K, Malone KE, et al. Body mass index at age 18 years and recent body mass index in relation to risk of breast cancer overall and ER/PR/HER2-defined subtypes in white women and African-American women: a pooled analysis. Breast Cancer Res. 2018;20(1):5.CrossRef
53.
Zurück zum Zitat Di LJ, Byun JS, Wong MM, Wakano C, Taylor T, Bilke S, et al. Genome-wide profiles of CtBP link metabolism with genome stability and epithelial reprogramming in breast cancer. Nat Commun. 2013;4:1449.CrossRef Di LJ, Byun JS, Wong MM, Wakano C, Taylor T, Bilke S, et al. Genome-wide profiles of CtBP link metabolism with genome stability and epithelial reprogramming in breast cancer. Nat Commun. 2013;4:1449.CrossRef
54.
Zurück zum Zitat Cabanes A, Wang M, Olivo S, DeAssis S, Gustafsson JA, Khan G, et al. Prepubertal estradiol and genistein exposures up-regulate BRCA1 mRNA and reduce mammary tumorigenesis. Carcinogenesis. 2004;25(5):741–8.CrossRef Cabanes A, Wang M, Olivo S, DeAssis S, Gustafsson JA, Khan G, et al. Prepubertal estradiol and genistein exposures up-regulate BRCA1 mRNA and reduce mammary tumorigenesis. Carcinogenesis. 2004;25(5):741–8.CrossRef
55.
Zurück zum Zitat Sherratt MJ, McConnell JC, Streuli CH. Raised mammographic density: causative mechanisms and biological consequences. Breast Cancer Res. 2016;18(1):45.CrossRef Sherratt MJ, McConnell JC, Streuli CH. Raised mammographic density: causative mechanisms and biological consequences. Breast Cancer Res. 2016;18(1):45.CrossRef
56.
Zurück zum Zitat Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, Friedman ER, Slingerland JM. Obesity and adverse breast cancer risk and outcome: mechanistic insights and strategies for intervention. CA Cancer J Clin. 2017;67(5):378–97. Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, Friedman ER, Slingerland JM. Obesity and adverse breast cancer risk and outcome: mechanistic insights and strategies for intervention. CA Cancer J Clin. 2017;67(5):378–97.
57.
Zurück zum Zitat Siiteri PK. Adipose tissue as a source of hormones. Am J Clin Nutr. 1987;45(1 Suppl):277–82.CrossRef Siiteri PK. Adipose tissue as a source of hormones. Am J Clin Nutr. 1987;45(1 Suppl):277–82.CrossRef
58.
Zurück zum Zitat Hudis C, Dannenberg A. Obesity and breast cancer: narrowing the focus. JAMA Oncol. 2015;1(5):622–3.CrossRef Hudis C, Dannenberg A. Obesity and breast cancer: narrowing the focus. JAMA Oncol. 2015;1(5):622–3.CrossRef
59.
Zurück zum Zitat Iyengar NM, Gucalp A, Dannenberg AJ, Hudis CA. Obesity and cancer mechanisms: tumor microenvironment and inflammation. J Clin Oncol. 2016;34(35):4270–6.CrossRef Iyengar NM, Gucalp A, Dannenberg AJ, Hudis CA. Obesity and cancer mechanisms: tumor microenvironment and inflammation. J Clin Oncol. 2016;34(35):4270–6.CrossRef
60.
Zurück zum Zitat Ester WA, Houghton LC, Lumey LH, Michels KB, Hoek HW, Wei Y, et al. Maternal and early childhood determinants of women's body size in midlife: overall cohort and sibling analyses. Am J Epidemiol. 2017;185(5):1–10.CrossRef Ester WA, Houghton LC, Lumey LH, Michels KB, Hoek HW, Wei Y, et al. Maternal and early childhood determinants of women's body size in midlife: overall cohort and sibling analyses. Am J Epidemiol. 2017;185(5):1–10.CrossRef
Metadaten
Titel
Age-specific breast cancer risk by body mass index and familial risk: prospective family study cohort (ProF-SC)
Publikationsdatum
01.12.2018
Erschienen in
Breast Cancer Research / Ausgabe 1/2018
Elektronische ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-018-1056-1

Weitere Artikel der Ausgabe 1/2018

Breast Cancer Research 1/2018 Zur Ausgabe

Nodal-negativ nach neoadjuvanter Chemo: Axilladissektion verzichtbar?

03.05.2024 Mammakarzinom Nachrichten

Wenn bei Mammakarzinomen durch eine neoadjuvante Chemotherapie ein Downstaging von nodal-positiv zu nodal-negativ gelingt, scheint es auch ohne Axilladissektion nur selten zu axillären Rezidiven zu kommen.

Wo hapert es noch bei der Umsetzung der POMGAT-Leitlinie?

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Bestrahlung nach Prostatektomie: mehr Schaden als Nutzen?

02.05.2024 Prostatakarzinom Nachrichten

Eine adjuvante Radiotherapie nach radikaler Prostata-Op. bringt den Betroffenen wahrscheinlich keinen Vorteil. Im Gegenteil: Durch die Bestrahlung steigt offenbar das Risiko für Harn- und Stuhlinkontinenz.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärzte und Psychotherapeuten.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.