Skip to main content
Erschienen in: Multidisciplinary Respiratory Medicine 1/2017

Open Access 01.12.2017 | Original research article

Case-finding for alpha1-antitrypsin deficiency in Kazakh patients with COPD

verfasst von: Ardak Zhumagaliyeva, Stefania Ottaviani, Timm Greulich, Marina Gorrini, Claus Vogelmeier, Ludmila Karazhanova, Gulmira Nurgazina, Annalisa DeSilvestri, Victor Kotke, Valentina Barzon, Michele Zorzetto, Angelo Corsico, Ilaria Ferrarotti

Erschienen in: Multidisciplinary Respiratory Medicine | Ausgabe 1/2017

Abstract

Background

Alpha-1-antitrypsin deficiency (AATD) is an under-diagnosed condition in patients with chronic obstructive pulmonary disease (COPD). The aim of this study was to screen for AATD in Kazakh patients with COPD using dried blood spot specimens.

Methods

The alpha1-antitrypsin (AAT) concentration was determined by nephelometry, PCR was used to detect PiS and PiZ alleles; and isoelectric focusing was used to confirm questionable genotype results and detect rare AAT variants.

Results

To this aim, 187 Kazakh subjects with COPD were recruited. Blood samples were collected as dried blood spot. Genotyping of 187 samples revealed 3 (1.6%) PI*MZ and 1 (0.53%) PI*MS, Phenotyping identified also two sample (1.1%) with phenotype PiMI. Allelic frequencies of pathological mutations Z, S and I resulted 0.8%, 0.3%, 0.5%, respectively, in COPD Kazakh population.

Conclusion

This study proved that AATD is present in the Kazakh population. These results support the general concept of targeted screening for AAT deficiency in countries like Kazakhstan, with a large population of COPD patients and low awareness among care-givers about this genetic condition.
Abkürzungen
AAT
Alpha1-antitrypsin
AATD
Alpha1-antitrypsin deficiency
BMI
Body mass index
CAT
COPD assessment test
COPD
Chronic obstructive pulmonary disease
DBS
Dried blood spot
DNA
Deoxyribonucleic acid
ERS
European Respiratory Society
FEV1
Forced expiratory volume in one second
FVC
Forced vital capacity
GOLD
Global initiative for chronic obstructive lung disease
IEF
Isoelectrofocusing
kDa
Kilodalton
MRC
Medical research council scale
NE
Neuthrophil elastase
SD
Standard deviation
SERPINA1
Serine (Or Cysteine) proteinase inhibitor
WHO
World Health Organization

Background

Chronic obstructive pulmonary disease (COPD) is a principal cause of morbidity and mortality. In 2008, COPD was ranked fourth as a leading cause of death worldwide, and the number of patients is still increasing. The World Health Organization (WHO) predicts that COPD will reach third among the most common causes of mortality by 2030 [1]. In Kazakhstan, the number of patients with COPD has increased more than twofold in the last 10 years, with an incidence of 321 out of 100 thousand people in 2011 [2].
Alpha1-antitrypsin deficiency (AATD), the most widely recognized genetic disorder causing COPD [3, 4] was first reported in 1963 by Carl-Bertil Laurell and his fellow investigator Sten Eriksson, who detected the lack of a normal alpha1-band on plasma protein electrophoresis in two emphysematous patients [5]. After this initial discovery, over 100 variants of alpha 1-antitrypsin (AAT) have been detected; these have been characterized as different genetic variants. Subsequent studies on the prevalence of these variants have greatly contributed to our understanding of the epidemiology of the disorder.
Alpha1-antitrypsin is a 52-kDa glycoprotein produced by hepatocytes and, to a lesser extent, by mononuclear monocytes. Its main function is to protect the lung against proteolytic damage by neutrophil elastase [6]. The AAT protein is encoded by the SERPINA1 gene, which is situated on the long arm of chromosome 14 (14q31–32.3). This gene spans 12.2 kb and is organized into four coding (II, III, IV and V) and three non-coding (Ia, Ib and Ic) exons. The encoded protein includes 394 amino acids, with its reactive center loop corresponding to methionine-358 [7]. AAT inhibits several serine proteinases, but its preferred target is neuthrophil elastase (NE), a 29- kDa neutrophil enzyme that facilitates elastin degradation and lung tissue injury and destruction. When neutrophils are activated, preformed NE is secreted into the lung tissue. Normal AAT plasma levels (1–2 g/L) protect lungs from NE attack, binding the enzyme to the AAT active site and constantly inactivating the enzyme [8]. The pathophysiology of AAT is associated with mutations in the PI locus [9]. The most common deficiency allele is the Z allele (rs28929474) which, in the homozygous state (PiZZ), is associated with AAT plasma levels that are 85% less than normal. The S allele (rs17580) is associated with AAT plasma levels that are nearly 40% less than normal in the homozygous state [10]. The normal allele, usually called M, is characterized by an AAT plasma level that falls within general population normal ranges.
Epidemiological studies have shown that the highest prevalence of PI*ZZ related AATD is among Northern Europeans and populations with a Northern European background (8). Nevertheless, during the last few years, based on evaluations of allele frequencies in available cohort studies, it has been suggested that the Z variant is not only common in Caucasians, but also among other ethnic groups worldwide [11, 12]. Furthermore, there are at least 30 AAT alleles other than the PI*Z and PI*S alleles which are associated with significantly reduced or absent plasma AAT levels. Given the extreme rarity of such variants, often described in the literature as single case reports, little is known about their epidemiology, especially in countries where this disorder is largely under-diagnosed [13].
As an under-diagnosed disorder, the latest AATD guidelines by both the World Health Organization and the American Thoracic Society/European Respiratory Society recommend the establishment of screening programs to detect AATD in patients with COPD. It is rationalized that the coincidental identification of AATD would motivate family screening, while improving appropriate management, and specific counseling for these patients and families [14].
Even though AATD is as a whole, one of the most common hereditary disorders worldwide, its frequency varies markedly from one country to another [1517] and affects many different racial subgroups. In particular, AATD has spread significantly throughout the continent of Asia [18]. Therefore, with this study we aimed to detect AAT deficiency in Kazakh COPD patients.

Methods

Study subjects

After approval by the local Ethical Committee (№2, 13.11.2013), all compliant COPD patients referred to the Pulmonary Disease Department in Emergency Hospital of Semey (East Kazakhstan region) from June 2014 to August 2014 and from July 2015 to September 2015 were enrolled in the present study. The analysis was conducted in two major European reference centers for AATD: Centre for research alpha-1-antitrypsin deficiency, Marburg, Germany and Center for Diagnosis of Inherited Alpha1-antitrypsin deficiency, Institute for Respiratory Disease, Pavia, Italy.
According to the protocol: Global Initiative for Chronic Obstructive Lung Disease (GOLD) [19], COPD diagnosis was confirmed by spirometry with FEV1/FVC values <0.7, where FEV1 = forced expiratory volume in one second and FVC = forced vital capacity. Pre-bronchodilator spirometric tests were performed according to ERS guidelines with a rolling seal spirometer followed by post bronchodilator spirometric tests after inhalation of 400 mg salbutamol [20]. After a targeted physical examination, data on patient symptoms were collected. Smoking history was calculated in pack/years as the product of tobacco use (in years) and the average number of cigarettes smoked per day/20 [21].
Capillary blood samples were collected on filter paper. Blood was obtained by pricking a distal finger tip and blotting onto filter paper. The papers were then air-dried at room temperature and stored at 4 °C in separate envelopes to avoid cross contamination.

Quantitative determination of AAT level

The AAT level measurements were performed on dried blood spot (DBS) samples by a rate immune nephelometric method (Dade-Behring BN II, Germany and Immage 800 Immunochemistry System - (Beckman-Coulter, USA) [9, 22].

Genotyping and phenotyping

DNA extracted from the DBS of all subjects by standard methods was submitted to genotyping for Z and S SERPINA1 alleles [23, 24]. Qualitative detection and characterization of AAT phenotypes was carried out by IsoElectroFocusing (IEF) using the Hydrasys electrophoresis platform and the Hydragel 18 AAT Isofocusing kit ​(Sebia, Spain) [25].

Statistical analysis

Data were analyzed using the Statistical Package for the Social Sciences version 20, (SPSS, USA, Chicago, IL). Descriptive statistics were used to analyse data. For continuous variables, the mean, standard deviation (SD), median, minimum and maximum values were calculated.

Results

One hundred eleven subjects with COPD (group 1) were enrolled during the period from June to August 2014 and analysed in Germany. Among those, 64 were male and 47 female, the mean age was 60.7 years (SD 11.3; range 21–79). The large majority of patients were non-smokers (54.05%), current and former smokers were 34.2% and 10.8% respectively. Seventy-six Kazakh subjects (26 male, 50 female) with COPD (group 2) were enrolled during the period from July to September – 2015 and analyzed in Italy. Their mean age was 57.7 years (SD 13.03; range 24–79). The percentage of non-smokers was 64.5%, current and former smokers were 22.4% and 10.8% respectively. Table 1 summarizes the characteristics of the two groups of samples. No statistically significant demographic or clinical variations were revealed between the two groups. All the COPD patients belonged to the Semey area in the north-east of Kazakhstan (Fig. 1).
Table 1
Patient demographic characteristics, spirometric values and clinical data
 
Group 1
Group 2
N
111
76
Age (years) ÷ mean (SD)
60.7(11.3)
57.98(11.03)
Male %
57.6
34.2
BMI (kg/m2) ÷ mean (SD)
22.14(4,33)
21.92(3,8)
FEV1/FVCa
0.56(0.16–0.68)
0.57 (0.26–0.69)
FEV1% Predicteda
65(18–78)
65(25–77)
FVC (%)a
66(12)(1.66–5,12)
60(11,9)(1.66–5.12)
MRC (score)a
2(0–4)
2(0–4)
CAT (score)a
28(4–40)
15(5–40)
Current/former/non smoker (%)
34.2/10.8/54.05
22.4/10.8/64.5
Pack/year÷ (years) mean (SD)
14.48(23.75)
8.78(13.48)
SD Standard deviation; amedian, lowest value and highest value; MRC Medical research council scale, CAT- COPD assessment test
Mean AAT plasma concentrations were 1.04 g/l (SD 0.45; range 0.57–2.25) and 1.24 g/l (SD 0.42; range 0.30–3.41) in groups 1 and 2 respectively. S and Z allele genotyping allowed the detection of two PI*MZ, and one PI*MS in group 1 and one PI*MZ in group 2. By applying the cut - off concentrations used in the German and Italian Centers (1.04 g/L and 1.2 g/L, respectively), we performed IEF [25] in 43 samples from group 1 and 24 samples from group 2 (Fig. 2).
The phenotyping analysis of these samples, confirmed the genotyping results for samples carrying a PI*MZ or PI*MS genotype and revealed two subjects with a PIMI phenotype in group 1 (Fig. 1). Genotype and allele frequencies are reported in Table 2. Demographic and clinical data of patients with AAT deficiency, as established by genotyping and phenotyping are reported in Table 3.
Table 2
Frequency of AAT genotypes and alleles in the study population
 
Group 1 (%)
Group 2 (%)
Total (%)
PI*MM
95.5
98.7
96.8
PI*MS
0.9
-
0.5
PI*MZ
1.8
1.3
1.6
PI MI
1.8
-
1.1
M allele
97.7
99.3
98.4
S allele
0.4
-
0.3
Z allele
0.9
0.7
0.8
I allele
0.9
-
0.6
Table 3
Demographic and clinical data of patients with AAT deficiency
 
PIMZ
PIMS
PIMI
Total
N
3
1
2
6
Age (years) ÷ mean (SD)
59(16.9)
62
51(2)
56.8(12.7)
Male %
33.3
100
50
50
BMI (kg/m2) ÷ mean (SD)
22.7(0,9)
18
25(2.5)
21.2(2.3)
FEV1/FVC ÷ mean (SD)
0.48(0.2)
0.34
0.48(0.02)
0.47(0.6)
FEV1% Predicted ÷ mean (SD)
46.5(2.1)
40
48.5(0.7)
48(4.5)
FVC(%) ÷ mean (SD)
51.3(4.05)
47
49.5(3.5)
2.9(0.2)
MRC (score) ÷ mean (SD)
2
3
2
2.3 (0.5)
CAT (score) ÷ mean (SD)
29.5(2.1)
40
34.5(6.3)
34.3 (9.9)
Current/former/non smoker (%)
0/33,3/0
0/0/0
50/0/0
16,6/16,6/0
Pack/year ÷ (years) mean (SD)
20
0
34
27(7)

Discussion

In Asian populations a systematic review of published data showed that SERPINA1 PI*S and PI*Z deficiency alleles are very rare, as also recently reported by de Serres and Blanco [26] in a genetic epidemiology study investigating AAT deficiency in the major geographic regions worldwide. Although this comprehensive study has potential biases, especially in regions with different ethnic or racial groups, it clearly pointed out the low frequency of S and Z alleles in Northern and Central Asian countries, with the exception of Saudi Arabia. According to the study, PI*S frequencies range from 0.0 in Nepal and Kazakhstan to 31 per 1000 inhabitants in Saudi Arabia; whereas, PI*Z frequencies range from less than 1 in Nepal, India, Jordan and Israel to 15 in Saudi Arabia.
Studies on AAT deficiency as a cause of COPD have only rarely been performed in Asian countries. A study on 356 COPD patients and 185 healthy controls demonstrated a higher frequency for S and F alleles in the COPD group compared with controls, although their frequencies were very low (0.017 and 0.014 respectively) [27]. In China, electrophoretic analysis of 748 normal subjects and 414 COPD patients did not detect any S or Z mutations in either COPD group [28], nor were any S or Z variants identified in a Korean study on 56 male emphysematous patients over 50 years old [29]. Likewise, in Iran, an investigation of 130 COPD patients detected no S and Z variants [30]. While in India, genotyping of 200 COPD patients identified two SS (1%) and one ZZ patient (0.5%) [31].
On the other hand, an investigation of 158 healthy subjects in Saudi Arabia showed that 2.53% were heterozygous for the Z mutation, 11.39% were heterozygous for the S mutation and 3.8% had an SZ genotype [32]. The high frequency in Saudi Arabia could be explained by movement of people over time to major cities in that country [12].
Kazakhstan is a Central Asian country, which has historically been inhabited by nomadic tribes. Indeed, the indigenous population is made up of Kazakhs, a Turkish-speaking people. Anthropologically, Kazakhs belong to the Southern Siberian lineage, the majority of whom have racially-diagnostic features intermediate between Caucasians and Mongoloids, with some predominant Mongoloid components [33, 34].
Recent investigations in the Kazakh population confirmed a remarkable frequency of AATD variants in the general population and healthy subjects. The IEF method in an ultra-thin polyacrylamide gel identified variants of alpha1-antitrypsin in 218 indigenous residents from three ethno-historical regions of the Kazakh Soviet Socialist Republic. The frequencies of alleles - PIM1, PIM2, PIM3 - in the total sample were 0.8477, 0.1372 and 0.0106, respectively, the overall frequency of rare phenotypes (PIN and PIZ) was 0.0046 [35], which however resulted smaller than the frequency of rare pathological genotypes detected in the present paper (0.032). This discrepancy could mainly be explained by the more sensible and updated diagnostic approach we used.
An intergroup variability analysis of phenotypes and allele frequencies of alpha1-antitrypsin showed a clear local diversity. PIM1 frequency among Kazakh residents of the Northern-central area was significantly lower, while the PIM2 frequency was significantly higher than in the Southeastern and Western regions. Accordingly, the PIM3 frequency in the sample did not differ. The results were compared with the published data on alpha-1 antitrypsin polymorphisms in Eurasian populations. The PIM1 and PIM2 allele frequencies in Kazakhs differed from the corresponding average values ​​for both Caucasian and Mongoloid groups. However, they were intermediate between Caucasian and Mongoloid frequency estimates, as might be expected considering the mixed origin of the Kazakh people and the Kazakhstan geographical position and its boundary between Europe and Asia [34].
The present screening of COPD Kazakh patients showed that Z and S allele frequencies (although low) were not that different from other studies on Caucasian populations. The percentage of PI*MZ cases (1.6%) detected was half that of the Spanish study performed in the primary care setting in COPD patients. In that study, nineteen patients out of 596 (3.2%) were carriers of the allelic variant Z, two of whom were homozygous for PiZZ and one heterozygous for PiSZ [36].
In this study, we extended the SERPINA1 gene investigation to variants not detectable by PI*S and PI*Z genotyping. With this strategy, we found two samples with the rare deficiency variant I (frequency 1.1%). The I mutation occurs at the residue, arginine 39, which is involved in the formation of an ionic bond with glutamic acid 264 [37]. Although no subjects with severe AATD deficiency were detected in this study, we found six out of 187 (5%) subjects positive for so called “intermediate genetic AAT deficiency” [mean (SD) AAT level: 0.85 g/L (0.17)]. These findings are consistent with the hypothesis that intermediate AATD, such as PI*MZ and PI*MI, represents a risk factor for developing COPD [38, 39]. An interesting meta-analysis [40] reported that the increased risk for COPD in PI*MZ heterozygous individuals (OR for PI*MZ versus PI*MM (normal genotype) was 2.31 (95% CI 1.60 to 3.35). These data underscore the importance of genetic screening for AATD in Kazakhstan, as it permits the identification of a rarely identified disorder.
We compared our data with other studies on patients with COPD. The largest percentage (4.2%) of rare mutations was found in the study by Sabri et al. on Tunisian patients with COPD. In our study, the frequency of the rare mutation PIMI was 1.1% (Table 4). To characterize the genetic origin of the Kazakhs in relation to Europeans and Mongoloids, the polymorphisms of SERPINA1 gene need to be studied among the peoples of Tunguss, Turkic and Mongol origin, whose ancestors participated in the formation of the South Siberian anthropological Kazakh [33, 41]. On the contrary, the analysis of people with Chinese origin could have less importance regarding this goal, since the Chinese were not nomads and moved to already conquered countries. Thus, past population migrations appears to be the most reasonable explanation for transport of deficiency alleles from Europe to Kazakhstan.
Table 4
Comparison of the current study with data on COPD cohorts from the literature
Phenotype Studies
(n = number of patients)
Normal phenotype
Alpha-1-antitrypsin mutation Phenotypes
Inclusion criteria
PiMM n %
PiMZ n %
PiMS n %
PiSS n %
PiSZ n %
PiZZ n %
Other phenotypes n %
Mittman et al. 1974 [43]
(n = 240)
USA
194
80,8%
20
8,4%
17
7,1%
1
0,4%
2
0,8%
6
2,5%
0
0%
Chronic bronchitis and/or emphysema
Cox et al. 1976 [44]
(n = 163)
USA
139
85,3%
8
4,9%
7
4,3%
0
0%
0
0%
8
4,9%
1
0,6%
COPD and aged over 18 years
Liebermann et al. 1986 [45]
(n = 965)
USA
not indicated
74
7,7%
86
8,9%
3
0,3%
3
0,3%
18
1,9%
not indicated
COPD
Sitkauskiene et al. 2008 [46] (n = 1167)
Lithuania
not indicated
40
3,4%
39
3,3%
1
0,1%
3
0,3%
8
0,7%
0
0%
COPD according to GOLD
Sabri Denden et al. 2008 [47]
(n = 120)
Tunisia
114
95%
1
0.83%
0
0%
0
0%
0
0%
0
0%
5
4,2%
COPD according to GOLD
Molina et al. [36] 2009
(n = 596)
Spain
487
81,7%
16
2,7%
80
13,4%
10
1,7%
1
0,2%
2
0,3%
0
0%
COPD according to GOLD
Novak T et al. 2011, [48] (n = 105)
Germany
94
89,5%
4
3,8%
6
5,7%
0
0%
0
0%
1
1,0%
0
0%
COPD according to GOLD
Sydykova S. et al. 2008 [49]
Kirgizstan
(n = 125)
139
97,2%
3
2,1%
0
0%
0
0%
0
0%
1
0,7%
0
0%
COPD according to GOLD
Rahaghi et al. 2012 [50] (n = 3152)
USA
2780
88,2%
124
3,9%
225
7,1%
9
0,28%
10
0,32%
10
0,32%
0
0%
Case-finding in GOLD II-IV sent for Spirometry excluded previously tested patients
This study
(n = 187)
Kazakhstan
181
96.8
3
1,6%
1
0,5%
0
0%
0
0%
0
0%
2
1,1%
COPD according to GOLD

Conclusions

The present study demonstrates that genetic AATD is present in the Kazakh population. Furthermore, this investigation, performed for the first time with current diagnostic standards in a Kazakh population with COPD, highlights the implication of AATD in the development of COPD. The so-called ‘rare’ AAT alleles may not be as rare as expected. We propose that the rare AAT deficiency variant frequency in Kazakhstan may exceed that observed in this pilot study. This assumption requires verification by case-finding in additional Kazakh cohorts, and could support the want of a target screening for AATD in Kazakhstan, a country where, although this disease has been recognized as rare by Ministry of Health in 2015, a program of detection and specific treatments is still lacking.

Aknowledgments

Not applicable.

Funding

Dr. Ardak Zhumagaliyeva is the recipient of a European Respiratory Society Fellowship (STRTF 2015), therefore the results of this study were presented at European Respiratory Congress in 2016 [42] We gratefully acknowledge the support of the European Respiratory Society, Fellowship STRTF 2015–8199.

Availability of data and materials

Please contact author for data requests.
This study was approved by the local Ethical Committee (№2, 13.11.2013), Hospital of Semey (East Kazakhstan region).
Not applicable.

Competing interests

The authors have no competing interests to declare.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
2.
Zurück zum Zitat Kozlova I. New in the diagnosis and treatment of COPD. Kazakhstan Med J. 2012;6:13–5. Kozlova I. New in the diagnosis and treatment of COPD. Kazakhstan Med J. 2012;6:13–5.
3.
Zurück zum Zitat Brantly M, Nukiwa T, Crystal RG. Molecular basis of alpha-1-antitrypsin deficiency. Am J Med. 1988;84:13–31.CrossRefPubMed Brantly M, Nukiwa T, Crystal RG. Molecular basis of alpha-1-antitrypsin deficiency. Am J Med. 1988;84:13–31.CrossRefPubMed
4.
Zurück zum Zitat Stolk J, Seersholm N, Kalsheker N. Alpha1-antitrypsin deficiency: current perspective on research, diagnosis, and management. Int J Chron Obstruct Pulmon Dis. 2006;1:151–60.PubMedPubMedCentral Stolk J, Seersholm N, Kalsheker N. Alpha1-antitrypsin deficiency: current perspective on research, diagnosis, and management. Int J Chron Obstruct Pulmon Dis. 2006;1:151–60.PubMedPubMedCentral
5.
Zurück zum Zitat Laurell CB, Eriksson S. The elctrophoretic a1-globulin pattern of serum in a1-antitrypsin deficiency. Scand J Clin Lab Invest. 1963;15:132–40.CrossRef Laurell CB, Eriksson S. The elctrophoretic a1-globulin pattern of serum in a1-antitrypsin deficiency. Scand J Clin Lab Invest. 1963;15:132–40.CrossRef
6.
Zurück zum Zitat Silverman EK, Sandhaus RA. Clinical practice. Alpha1-antitrypsin deficiency. N Engl J Med. 2009;360:2749–57.CrossRefPubMed Silverman EK, Sandhaus RA. Clinical practice. Alpha1-antitrypsin deficiency. N Engl J Med. 2009;360:2749–57.CrossRefPubMed
7.
Zurück zum Zitat Stoller JK, Aboussouan L.S: α1-antitrypsin deficiency. Lancet. 2005,365:2225-36. Stoller JK, Aboussouan L.S: α1-antitrypsin deficiency. Lancet. 2005,365:2225-36.
8.
Zurück zum Zitat Lomas DA, Mahadeva R. Alpha1-antitrypsin polymerization and the serpinopathies: pathobiology and prospects for therapy. J Klin Invest. 2002;110:1585–90.CrossRef Lomas DA, Mahadeva R. Alpha1-antitrypsin polymerization and the serpinopathies: pathobiology and prospects for therapy. J Klin Invest. 2002;110:1585–90.CrossRef
9.
Zurück zum Zitat Ferrarotti I, Scavini R, Campo I, Ottaviani S, Zorzetto M, Gorrini M, Luisetti M. Laboratory diagnosis of alpha1-antitrypsin deficiency. Transl Res. 2007;150:267–74.CrossRefPubMed Ferrarotti I, Scavini R, Campo I, Ottaviani S, Zorzetto M, Gorrini M, Luisetti M. Laboratory diagnosis of alpha1-antitrypsin deficiency. Transl Res. 2007;150:267–74.CrossRefPubMed
10.
Zurück zum Zitat Luisetti M, Seersholm N. Alpha1-antitrypsin deficiency. I: Epidemiology of Alpha1-antitrypsin deficiency. Thorax. 2004;54:164–9.CrossRef Luisetti M, Seersholm N. Alpha1-antitrypsin deficiency. I: Epidemiology of Alpha1-antitrypsin deficiency. Thorax. 2004;54:164–9.CrossRef
11.
Zurück zum Zitat de Serres FJ. Worldwide racial and ethnic distribution of alpha1-antitrypsin deficiency. Summary of an analysis of published genetic epidemiology surveys. Chest. 2002;122:1818–29.CrossRefPubMed de Serres FJ. Worldwide racial and ethnic distribution of alpha1-antitrypsin deficiency. Summary of an analysis of published genetic epidemiology surveys. Chest. 2002;122:1818–29.CrossRefPubMed
12.
Zurück zum Zitat de Serres FJ, Blanco I, Fernandes-Bustillo E. PIS and PIZ Alpha1-antitrypsin deficiency worldwide. A review of existing genetic epidemiological data. Monaldi Arch Chest Dis. 2007;67:184–208.PubMed de Serres FJ, Blanco I, Fernandes-Bustillo E. PIS and PIZ Alpha1-antitrypsin deficiency worldwide. A review of existing genetic epidemiological data. Monaldi Arch Chest Dis. 2007;67:184–208.PubMed
13.
Zurück zum Zitat Rodriguez-Frias F, Miravitlles M, Vidal R, Camos S, Jardi R. Rare alpha-1-antitrypsin variants: are they really so rare? Ther Adv Respir Dis. 2012;6:79–85.CrossRefPubMed Rodriguez-Frias F, Miravitlles M, Vidal R, Camos S, Jardi R. Rare alpha-1-antitrypsin variants: are they really so rare? Ther Adv Respir Dis. 2012;6:79–85.CrossRefPubMed
14.
Zurück zum Zitat American Thoracic Society/European Respiratory Society Statement. Standards for the diagnosis and management of individuals with alpha1-antitrypsin deficiency. Am J Respir Crit Care Med. 2003;168:818–900.CrossRef American Thoracic Society/European Respiratory Society Statement. Standards for the diagnosis and management of individuals with alpha1-antitrypsin deficiency. Am J Respir Crit Care Med. 2003;168:818–900.CrossRef
15.
Zurück zum Zitat De Serres FJ, Blanco I, Fernandez-Bustillo E. Estimating the risk for alpha-1 antitrypsin deficiency among COPD patients: evidence supporting targeted screening. COPD. 2006;3:133–9.CrossRefPubMed De Serres FJ, Blanco I, Fernandez-Bustillo E. Estimating the risk for alpha-1 antitrypsin deficiency among COPD patients: evidence supporting targeted screening. COPD. 2006;3:133–9.CrossRefPubMed
16.
Zurück zum Zitat de Serres FJ, Blanco I, Fernandez-Bustillo E. Health implications of alpha1-antitrypsin deficiency in Sub-Sahara African countries and their emigrants in Europe and the New World. Genet Med. 2005;7:175–84.CrossRefPubMed de Serres FJ, Blanco I, Fernandez-Bustillo E. Health implications of alpha1-antitrypsin deficiency in Sub-Sahara African countries and their emigrants in Europe and the New World. Genet Med. 2005;7:175–84.CrossRefPubMed
17.
Zurück zum Zitat de Serres FJ, Blanco I, Fernandez-Bustillo E. Genetic epidemiology of alpha-1 antitrypsin deficiency in North America and Australia/New Zealand: Australia, Canada, New Zealand and the United States of America. Clin Genet. 2003;64:382–97.CrossRefPubMed de Serres FJ, Blanco I, Fernandez-Bustillo E. Genetic epidemiology of alpha-1 antitrypsin deficiency in North America and Australia/New Zealand: Australia, Canada, New Zealand and the United States of America. Clin Genet. 2003;64:382–97.CrossRefPubMed
18.
Zurück zum Zitat de Serres FJ, Blanco I, Fernández-Bustillo E. Estimated numbers and prevalence of PI*S and PI*Z deficiency alleles of α1-antitrypsindeficiency in Asia. EurRespir J. 2006;28:1091–9.CrossRef de Serres FJ, Blanco I, Fernández-Bustillo E. Estimated numbers and prevalence of PI*S and PI*Z deficiency alleles of α1-antitrypsindeficiency in Asia. EurRespir J. 2006;28:1091–9.CrossRef
19.
Zurück zum Zitat de Serres F, Blanco I, Bustillo EF. Genetic epidemiology of alpha-1antitrypsin deficiency: France, Italy, Portugal, and Spain. Clin Genet. 2003;63:490–509.CrossRefPubMed de Serres F, Blanco I, Bustillo EF. Genetic epidemiology of alpha-1antitrypsin deficiency: France, Italy, Portugal, and Spain. Clin Genet. 2003;63:490–509.CrossRefPubMed
21.
Zurück zum Zitat European Respiratory Society. Standardized lung function testing. Lung volumes and forced ventilatory flows: 1993 update. Eur Respir J. 1993;6:5–40.CrossRef European Respiratory Society. Standardized lung function testing. Lung volumes and forced ventilatory flows: 1993 update. Eur Respir J. 1993;6:5–40.CrossRef
22.
Zurück zum Zitat Gorrini M, Ferrarotti I, Lupi A, Bosoni T, Mazzola P, et al. Validation of a rapid, simple method to measure alpha1-antitrypsin in human dried blood spots. Clin Chem. 2006;52:899–901.CrossRefPubMed Gorrini M, Ferrarotti I, Lupi A, Bosoni T, Mazzola P, et al. Validation of a rapid, simple method to measure alpha1-antitrypsin in human dried blood spots. Clin Chem. 2006;52:899–901.CrossRefPubMed
23.
Zurück zum Zitat Ferrarotti I, Zorzetto M, Scabini R, Mazzola P, Campo I, Luisetti M. A novel method for rapid genotypic identification of alpha1-antitrypsin variants. Diagn Mol Pathol. 2004;12:160–3.CrossRef Ferrarotti I, Zorzetto M, Scabini R, Mazzola P, Campo I, Luisetti M. A novel method for rapid genotypic identification of alpha1-antitrypsin variants. Diagn Mol Pathol. 2004;12:160–3.CrossRef
24.
Zurück zum Zitat Bals R, Koczulla R, Kotke V, Andress J, Blackert K, Vogelmeier C. Identification of individuals with alpha-1-antitrypsin deficiency by a targeted screening program. Respir Med. 2007;101:1708–14.CrossRefPubMed Bals R, Koczulla R, Kotke V, Andress J, Blackert K, Vogelmeier C. Identification of individuals with alpha-1-antitrypsin deficiency by a targeted screening program. Respir Med. 2007;101:1708–14.CrossRefPubMed
25.
Zurück zum Zitat Zerimech F, Hennache G, Bellon F, Barouh G, Jacques Lafitte J, Porchet N, Balduyck M. Evaluation of a new Sebia isoelectric focusing kit for alpha 1-antitrypsin phenotyping with the Hydrasys System. Clin Chem Lab Med. 2008;46:260–3.CrossRefPubMed Zerimech F, Hennache G, Bellon F, Barouh G, Jacques Lafitte J, Porchet N, Balduyck M. Evaluation of a new Sebia isoelectric focusing kit for alpha 1-antitrypsin phenotyping with the Hydrasys System. Clin Chem Lab Med. 2008;46:260–3.CrossRefPubMed
26.
Zurück zum Zitat de Serres FJ, Blanco I. Prevalence of alpha1-antitrypsin deficiency alleles PI*S and PI*Z worldwide and effective screening for each of the five phenotypic classes PI*MS, PI*MZ, PI*SS, PI*SZ, and PI*ZZ: a comprehensive review. Ther Adv Respir Dis. 2012;6:277–95.CrossRefPubMed de Serres FJ, Blanco I. Prevalence of alpha1-antitrypsin deficiency alleles PI*S and PI*Z worldwide and effective screening for each of the five phenotypic classes PI*MS, PI*MZ, PI*SS, PI*SZ, and PI*ZZ: a comprehensive review. Ther Adv Respir Dis. 2012;6:277–95.CrossRefPubMed
27.
Zurück zum Zitat Kwok JS, Lawton JW, Yew WW, Chau CH, Lee J, Wong PC. Protease inhibitor phenotypes and serum alpha-1-antitrypsin levels in patients with COPD: a study from Hong Kong. Respirology. 2004;9:265–70.CrossRefPubMed Kwok JS, Lawton JW, Yew WW, Chau CH, Lee J, Wong PC. Protease inhibitor phenotypes and serum alpha-1-antitrypsin levels in patients with COPD: a study from Hong Kong. Respirology. 2004;9:265–70.CrossRefPubMed
28.
Zurück zum Zitat Zhu YJ. Epidemiological survey of chronic obstructive pulmonary disease and alpha-1-deficiency in China. Respirology. 2001;6:S13–5.CrossRefPubMed Zhu YJ. Epidemiological survey of chronic obstructive pulmonary disease and alpha-1-deficiency in China. Respirology. 2001;6:S13–5.CrossRefPubMed
29.
Zurück zum Zitat Shim YS. Epidemiological survey of chronic obstructive pulmonary disease and alpha-1 antitrypsin deficiency in Korea. Respirology. 2001;6:S9–11.CrossRefPubMed Shim YS. Epidemiological survey of chronic obstructive pulmonary disease and alpha-1 antitrypsin deficiency in Korea. Respirology. 2001;6:S9–11.CrossRefPubMed
30.
Zurück zum Zitat Geramizadeh B, Jowkar Z, Karami L, Masoumpour M, Mehrabi S, Ghayoumi M. Alpha-1 Antitrypsin Deficiency in Iranian Patients with Chronic Obstructive Pulmonary Disease. Iran Red Cres Med J. 2013;15:e7508.CrossRef Geramizadeh B, Jowkar Z, Karami L, Masoumpour M, Mehrabi S, Ghayoumi M. Alpha-1 Antitrypsin Deficiency in Iranian Patients with Chronic Obstructive Pulmonary Disease. Iran Red Cres Med J. 2013;15:e7508.CrossRef
31.
Zurück zum Zitat Sobti RC, Thakur H, Gupta L, Janmeja AK, Seth A, Singh SK. Polymorphisms in the HPC/ELAC-2 and alpha 1-antitrypsin genes that correlate with human diseases in a North Indian population. Mol Biol Rep. 2011;38:3137–44.CrossRefPubMed Sobti RC, Thakur H, Gupta L, Janmeja AK, Seth A, Singh SK. Polymorphisms in the HPC/ELAC-2 and alpha 1-antitrypsin genes that correlate with human diseases in a North Indian population. Mol Biol Rep. 2011;38:3137–44.CrossRefPubMed
32.
Zurück zum Zitat Aljarallah B, Ali A, Dowaidar M, Settin A. Prevalence of alpha-1-antitrypsin gene mutations in Saudi Arabia. Saudi J Gastroenterol. 2011;17:256–60.CrossRefPubMedPubMedCentral Aljarallah B, Ali A, Dowaidar M, Settin A. Prevalence of alpha-1-antitrypsin gene mutations in Saudi Arabia. Saudi J Gastroenterol. 2011;17:256–60.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Ismagulov A. Ethnic anthropology of Kazakhstan. Almaty; 1982. p. 229. Ismagulov A. Ethnic anthropology of Kazakhstan. Almaty; 1982. p. 229.
34.
Zurück zum Zitat Roginskii YY, Levin MG. Anthropology. High School; 1978. p. 528. Roginskii YY, Levin MG. Anthropology. High School; 1978. p. 528.
35.
Zurück zum Zitat Petrishev VN, Lebedeva IA, Shneider Iu V. Genetic polymorphism of the alpha 1-antitrypsin system in the native population of the Kazakh.SSR. Genetika. 1987;23:2257–64.PubMed Petrishev VN, Lebedeva IA, Shneider Iu V. Genetic polymorphism of the alpha 1-antitrypsin system in the native population of the Kazakh.SSR. Genetika. 1987;23:2257–64.PubMed
36.
Zurück zum Zitat Molina J, Flor X, Garcia R, Timiraos R, Tirado-Conde G, Miravitlles M. The IDDEA project: a strategy for the detection of alpha-1 antitrypsin deficiency in COPD patients in the primary care setting. Adv Respir Dis. 2011;5:237–43.CrossRef Molina J, Flor X, Garcia R, Timiraos R, Tirado-Conde G, Miravitlles M. The IDDEA project: a strategy for the detection of alpha-1 antitrypsin deficiency in COPD patients in the primary care setting. Adv Respir Dis. 2011;5:237–43.CrossRef
37.
38.
Zurück zum Zitat Molloy K, Hersh CP, Morris VB, Carroll TP, O'Connor CA, Lasky-Su JA, et al. Clarification of the risk of chronic obstructive pulmonary disease in α1-antitrypsin deficiency PiMZ heterozygotes. Am J Respir Crit Care Med. 2014;189:419–27. Molloy K, Hersh CP, Morris VB, Carroll TP, O'Connor CA, Lasky-Su JA, et al. Clarification of the risk of chronic obstructive pulmonary disease in α1-antitrypsin deficiency PiMZ heterozygotes. Am J Respir Crit Care Med. 2014;189:419–27.
39.
Zurück zum Zitat Baur X, Bencze K. Initial study of familial alpha-l-proteinase inhibitor deficiency including a rare proteinase inhibitor phenotype (IZ). Respiration. 1987;51:188–95.CrossRefPubMed Baur X, Bencze K. Initial study of familial alpha-l-proteinase inhibitor deficiency including a rare proteinase inhibitor phenotype (IZ). Respiration. 1987;51:188–95.CrossRefPubMed
40.
Zurück zum Zitat Hersh CP, Dahl M, Ly NP, Berkey CS, Nordestgaard BG, Silverman EK. Chronic obstructive pulmonary disease in a1-antitrypsin PI MZ heterozygotes: a meta-analysis. Thorax. 2004;59:843–9.CrossRefPubMedPubMedCentral Hersh CP, Dahl M, Ly NP, Berkey CS, Nordestgaard BG, Silverman EK. Chronic obstructive pulmonary disease in a1-antitrypsin PI MZ heterozygotes: a meta-analysis. Thorax. 2004;59:843–9.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Ginzburg VV, Trofimova TA. Paleoanthropology of Central Asia.Moscow; 1972. p. 371. Ginzburg VV, Trofimova TA. Paleoanthropology of Central Asia.Moscow; 1972. p. 371.
42.
Zurück zum Zitat Zhumagaliyeva A, Gorrini M, Vogelmeier C, Corsico A, Karazhanova L, Greulich T, et al. Alpha-1-antitrypsin deficiency in Kazakh subjects with COPD. Eur Respir J. 2016;48:PA3669. Zhumagaliyeva A, Gorrini M, Vogelmeier C, Corsico A, Karazhanova L, Greulich T, et al. Alpha-1-antitrypsin deficiency in Kazakh subjects with COPD. Eur Respir J. 2016;48:PA3669.
43.
Zurück zum Zitat Mittman C, Lieberman J, Rumsfeld J. Prevalence of abnormal protease inhibitor phenotypes in patients with chronic obstructive lung disease. Am Rev Respir Dis. 1974;109:295–6.PubMed Mittman C, Lieberman J, Rumsfeld J. Prevalence of abnormal protease inhibitor phenotypes in patients with chronic obstructive lung disease. Am Rev Respir Dis. 1974;109:295–6.PubMed
44.
Zurück zum Zitat Cox DW, Hoeppner VH, Levison H. Protease inhibitors in patients with chronic obstructive pulmonary disease: the alpha-antitrypsin heterozygote controversy. Am Rev Respir Dis. 1976;113:601–6.PubMed Cox DW, Hoeppner VH, Levison H. Protease inhibitors in patients with chronic obstructive pulmonary disease: the alpha-antitrypsin heterozygote controversy. Am Rev Respir Dis. 1976;113:601–6.PubMed
45.
Zurück zum Zitat Lieberman J, Winter B, Sastre A. Alpha 1-antitrypsin Pi-types in 965 COPD patients. Chest. 1986;89:370–3.CrossRefPubMed Lieberman J, Winter B, Sastre A. Alpha 1-antitrypsin Pi-types in 965 COPD patients. Chest. 1986;89:370–3.CrossRefPubMed
46.
Zurück zum Zitat Sitkauskiene B, Serapinas D, Blanco I, Fernández-Bustillo E, Janciauskiene S, Sakalauskas R. Screening for alpha1-antitrypsin deficiency in Lithuanian patients with COPD. Respir Med. 2008;102:1654–8.CrossRefPubMed Sitkauskiene B, Serapinas D, Blanco I, Fernández-Bustillo E, Janciauskiene S, Sakalauskas R. Screening for alpha1-antitrypsin deficiency in Lithuanian patients with COPD. Respir Med. 2008;102:1654–8.CrossRefPubMed
47.
Zurück zum Zitat Denden S, Zorzetto M, Amri F, Knani J, Ottaviani S, Scabini R, Gorrini M, Ferrarotti I, Campo I, Chibani JB, Khelil AH, Luisetti M. Screening for Alpha 1 antitrypsin deficiency in Tunisian subjects with obstructive lung disease: a feasibility report. Orphanet J Rare Dis. 2009;4:12.CrossRefPubMedPubMedCentral Denden S, Zorzetto M, Amri F, Knani J, Ottaviani S, Scabini R, Gorrini M, Ferrarotti I, Campo I, Chibani JB, Khelil AH, Luisetti M. Screening for Alpha 1 antitrypsin deficiency in Tunisian subjects with obstructive lung disease: a feasibility report. Orphanet J Rare Dis. 2009;4:12.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Nowak T. Screening of COPD patients for alpha-1 antitrypsin deficiency. Dissertation to obtain the academic degree of doctor medicine. The Friedrich-Schiller University of Jena. 2011 104. Nowak T. Screening of COPD patients for alpha-1 antitrypsin deficiency. Dissertation to obtain the academic degree of doctor medicine. The Friedrich-Schiller University of Jena. 2011 104.
49.
Zurück zum Zitat Sydykova SJ, Alymbaeva MJ, Vogelmeier С, Heine R, Brimkulov NN. Alpha 1-antitrypsin levels and phenotypes in COPD patients in Kyrgyz population. Eur Respir J. 2008;32:S52. Sydykova SJ, Alymbaeva MJ, Vogelmeier С, Heine R, Brimkulov NN. Alpha 1-antitrypsin levels and phenotypes in COPD patients in Kyrgyz population. Eur Respir J. 2008;32:S52.
50.
Zurück zum Zitat Rahaghi F, Ortega I, Rahaghi N, Oliveira E, Ramirez J, Smolley L, Stoller JK. Physician alert suggesting alpha-1 antitrypsin deficiency testing in pulmonary function test (PFT) results. COPD. 2009;6:26–30. Rahaghi F, Ortega I, Rahaghi N, Oliveira E, Ramirez J, Smolley L, Stoller JK. Physician alert suggesting alpha-1 antitrypsin deficiency testing in pulmonary function test (PFT) results. COPD. 2009;6:26–30.
Metadaten
Titel
Case-finding for alpha1-antitrypsin deficiency in Kazakh patients with COPD
verfasst von
Ardak Zhumagaliyeva
Stefania Ottaviani
Timm Greulich
Marina Gorrini
Claus Vogelmeier
Ludmila Karazhanova
Gulmira Nurgazina
Annalisa DeSilvestri
Victor Kotke
Valentina Barzon
Michele Zorzetto
Angelo Corsico
Ilaria Ferrarotti
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
Multidisciplinary Respiratory Medicine / Ausgabe 1/2017
Elektronische ISSN: 2049-6958
DOI
https://doi.org/10.1186/s40248-017-0104-5

Weitere Artikel der Ausgabe 1/2017

Multidisciplinary Respiratory Medicine 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.