Skip to main content
Erschienen in: Annals of Surgical Oncology 2/2010

01.02.2010 | Translational Research and Biomarkers

Inhibition of Autophagy Potentiates Sulforaphane-Induced Apoptosis in Human Colon Cancer Cells

verfasst von: Takeshi Nishikawa, MD, Nelson H. Tsuno, MD, PhD, Yurai Okaji, MD, PhD, Yasutaka Shuno, MD, Kazuhito Sasaki, MD, Kumiko Hongo, MD, Eiji Sunami, MD, PhD, Joji Kitayama, PhD, Koki Takahashi, MD, PhD, Hirokazu Nagawa, PhD

Erschienen in: Annals of Surgical Oncology | Ausgabe 2/2010

Einloggen, um Zugang zu erhalten

Abstract

Background

Sulforaphane (SUL), an isothiocyanate naturally present in widely consumed vegetables, particularly broccoli, has recently attracted attention due to its inhibitory effects on tumor cell growth by inducing apoptosis. We investigated the ability of SUL to induce autophagy in human colon cancer cells and whether inhibition of autophagy could potentiate the proapoptotic effect of SUL.

Methods

The proliferation of cells treated with SUL was assessed by MTS assay and colony-forming assay. Apoptosis and caspases activity were investigated by flow cytometry. The formation of acidic vesicular organelles (AVOs) was detected in acridine-orange-stained cells by flow cytometry. Western blotting was used for the detection of light chain 3 (LC3). Localizations of LC3 and cytochrome c were analyzed by immunocytochemistry.

Results

The proapoptotic effect was observed by treatment of cells with relatively high concentrations of SUL for long periods of time. After 16 h of treatment, evident formation of AVOs and recruitment of LC3 to autophagosomes, features of autophagy, were observed. Treatment of cells with a specific autophagy inhibitor (3-methyladenine) potentiated the proapoptotic effect of SUL, which was dependent on the activation of caspases and the release of cytochrome c to the cytosol.

Conclusion

The present results demonstrate induction of autophagy in colon cancer cells as a protective reaction against the proapoptotic effect of SUL, and consequently, the potentiation of the proapoptotic effect by autophagy inhibition. These findings provide a premise for use of autophagy inhibitors in combination with chemotherapeutic agents for treatment of colorectal cancer.
Literatur
1.
Zurück zum Zitat Gao X, Dinkova-Kostova AT, Talalay P. Powerful and prolonged protection of human retinal pigment epithelial cells, keratinocytes, and mouse leukemia cells against oxidative damage: the indirect antioxidant effects of sulforaphane. Proc Natl Acad Sci USA. 2001;98:15221–6.CrossRefPubMed Gao X, Dinkova-Kostova AT, Talalay P. Powerful and prolonged protection of human retinal pigment epithelial cells, keratinocytes, and mouse leukemia cells against oxidative damage: the indirect antioxidant effects of sulforaphane. Proc Natl Acad Sci USA. 2001;98:15221–6.CrossRefPubMed
2.
Zurück zum Zitat Fahey JW, Zhang Y, Talalay P. Broccoli sprout: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogen. Proc Natl Acad Sci USA. 1997;94:10367–72.CrossRefPubMed Fahey JW, Zhang Y, Talalay P. Broccoli sprout: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogen. Proc Natl Acad Sci USA. 1997;94:10367–72.CrossRefPubMed
3.
Zurück zum Zitat Zhang Y, Talalay P, Cho CG, Posner GH. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA. 1992;89:2399–403.CrossRefPubMed Zhang Y, Talalay P, Cho CG, Posner GH. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA. 1992;89:2399–403.CrossRefPubMed
4.
Zurück zum Zitat Gamet-Payrastre L, Li P, Lumeau S, et al. Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 2000;60:1426–33.PubMed Gamet-Payrastre L, Li P, Lumeau S, et al. Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 2000;60:1426–33.PubMed
5.
Zurück zum Zitat Bonnesen C, Eggleston IM, Hayes JD. Dietary indoles and isothiocyanates that are genereted from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res. 2001;61:6120–30.PubMed Bonnesen C, Eggleston IM, Hayes JD. Dietary indoles and isothiocyanates that are genereted from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res. 2001;61:6120–30.PubMed
6.
Zurück zum Zitat Pappa G, Bartsch H, Gerhause C. Biphasic modulation of cell proliferation by sulforaphane at physiologically relevant exposure times in a human colon cancer cell line. Mol Nutr Food Res. 2007;51:977–84.CrossRefPubMed Pappa G, Bartsch H, Gerhause C. Biphasic modulation of cell proliferation by sulforaphane at physiologically relevant exposure times in a human colon cancer cell line. Mol Nutr Food Res. 2007;51:977–84.CrossRefPubMed
7.
Zurück zum Zitat Singh SV, Herman-Antosiewicz A, Singh AV, et al. Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C. Biol Chem. 2004;279:25813–22.CrossRef Singh SV, Herman-Antosiewicz A, Singh AV, et al. Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C. Biol Chem. 2004;279:25813–22.CrossRef
8.
Zurück zum Zitat Chiao JW, Chung FL, Kancherla R, Ahmed T, Mittelman A, Conaway CC. Sulforaphane and its metabolite mediate growth arrest and apoptosis in human prostate cancer cells. Int J Oncol. 2002;20:631–6.PubMed Chiao JW, Chung FL, Kancherla R, Ahmed T, Mittelman A, Conaway CC. Sulforaphane and its metabolite mediate growth arrest and apoptosis in human prostate cancer cells. Int J Oncol. 2002;20:631–6.PubMed
9.
Zurück zum Zitat Shan Y, Sun C, Zhao X, Wu K, Cassidy A, Bao Y. Effect of sulforaphane on cell growth, G(0)/G(1) phase cell progression and apoptosis in human bladder cancer T24 cells. Int J Oncol. 2006;29:883–8.PubMed Shan Y, Sun C, Zhao X, Wu K, Cassidy A, Bao Y. Effect of sulforaphane on cell growth, G(0)/G(1) phase cell progression and apoptosis in human bladder cancer T24 cells. Int J Oncol. 2006;29:883–8.PubMed
10.
Zurück zum Zitat Asakage M, Tsuno NH, Kitayama J, et al. Sulforaphane induces inhibition of human umbilical vein endothelial cells proliferation by apoptosis. Angiogenesis. 2006;9:83–91.CrossRefPubMed Asakage M, Tsuno NH, Kitayama J, et al. Sulforaphane induces inhibition of human umbilical vein endothelial cells proliferation by apoptosis. Angiogenesis. 2006;9:83–91.CrossRefPubMed
11.
Zurück zum Zitat Nishikawa T, Tsuno NH, Tsuchiya T, et al. Sulforaphane stimulates activation of proapoptotic protein Bax leading to apoptosis of endothelial progenitor cells. Ann Surg Oncol. 2009;16(2):534–43.CrossRefPubMed Nishikawa T, Tsuno NH, Tsuchiya T, et al. Sulforaphane stimulates activation of proapoptotic protein Bax leading to apoptosis of endothelial progenitor cells. Ann Surg Oncol. 2009;16(2):534–43.CrossRefPubMed
12.
Zurück zum Zitat Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 2004;23:2891–906.CrossRefPubMed Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 2004;23:2891–906.CrossRefPubMed
13.
Zurück zum Zitat Mizushima N. Review methods for monitoring autophagy. IJBCB. 2004;36:2491–502. Mizushima N. Review methods for monitoring autophagy. IJBCB. 2004;36:2491–502.
14.
Zurück zum Zitat de Bruin EC, Medema JP. Apoptosis and non-apoptotic death in cancer development and treatment response. Cancer Treat Rev. 2008;34:737–49.CrossRefPubMed de Bruin EC, Medema JP. Apoptosis and non-apoptotic death in cancer development and treatment response. Cancer Treat Rev. 2008;34:737–49.CrossRefPubMed
15.
Zurück zum Zitat Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 2005;5:726–34.CrossRefPubMed Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 2005;5:726–34.CrossRefPubMed
16.
Zurück zum Zitat Herman-Antosiewicz A, Johnson DE, Singh SV. Sulforaphane causes autophagy to inhibit release of cytochrome c and apoptosis in human prostate cancer cells. Cancer Res. 2006;66:5828–35.CrossRefPubMed Herman-Antosiewicz A, Johnson DE, Singh SV. Sulforaphane causes autophagy to inhibit release of cytochrome c and apoptosis in human prostate cancer cells. Cancer Res. 2006;66:5828–35.CrossRefPubMed
17.
Zurück zum Zitat Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;21:5720–8.CrossRef Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;21:5720–8.CrossRef
18.
Zurück zum Zitat Cho SD, Li G, Hu H, et al. Involvement of c-Jun N-terminal kinase in G2/M arrest and caspase-mediated apoptosis induced by sulforaphane in DU145 prostate cancer cells. Nutr Cancer. 2005;52:213–24.CrossRefPubMed Cho SD, Li G, Hu H, et al. Involvement of c-Jun N-terminal kinase in G2/M arrest and caspase-mediated apoptosis induced by sulforaphane in DU145 prostate cancer cells. Nutr Cancer. 2005;52:213–24.CrossRefPubMed
19.
Zurück zum Zitat Pappa G, Lichtenberg M, Iori R, Barillari J, Bartsch H, Gerhauser C. Comparison of growth inhibition profiles and mechanism of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae. Mutat Res. 2006;599:76–87.PubMed Pappa G, Lichtenberg M, Iori R, Barillari J, Bartsch H, Gerhauser C. Comparison of growth inhibition profiles and mechanism of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae. Mutat Res. 2006;599:76–87.PubMed
20.
Zurück zum Zitat Park SY, Kim GY, BAE SJ, Yoo YH, Choi YH. Induction of apoptosis by isothiocyanate sulforaphane in human cervical carcinoma HeLa and hepatocarcinoma HepG2 cells through activation of caspase-3. Oncol Rep. 2007;18:181–7.PubMed Park SY, Kim GY, BAE SJ, Yoo YH, Choi YH. Induction of apoptosis by isothiocyanate sulforaphane in human cervical carcinoma HeLa and hepatocarcinoma HepG2 cells through activation of caspase-3. Oncol Rep. 2007;18:181–7.PubMed
21.
Zurück zum Zitat Sekine-Suzuki E, Yu D, Kubota N, Okayasu R, Anzai K. Sulforaphane induces DNA double strand breaks predominantly repaired by homologous recombination pathway in human cancer cells. Biochem Biophys Res Commun. 2008;377:341–5.CrossRefPubMed Sekine-Suzuki E, Yu D, Kubota N, Okayasu R, Anzai K. Sulforaphane induces DNA double strand breaks predominantly repaired by homologous recombination pathway in human cancer cells. Biochem Biophys Res Commun. 2008;377:341–5.CrossRefPubMed
22.
Zurück zum Zitat Herman-Antosiewicz A, Xiao H, Lew KL, Singh SV. Induction of p21 protein protects against sulforaphane-induced mitotic arrest in LNCaP human prostate cancer cell line. Mol Cancer Ther. 2007;6:1673–81.CrossRefPubMed Herman-Antosiewicz A, Xiao H, Lew KL, Singh SV. Induction of p21 protein protects against sulforaphane-induced mitotic arrest in LNCaP human prostate cancer cell line. Mol Cancer Ther. 2007;6:1673–81.CrossRefPubMed
23.
Zurück zum Zitat Jakubikova J, Sedlak J, Mithen R, Bao Y. Role of PI3 K/Akt and MEK/ERK signaling pathways in sulforaphane- and erucin-induced phaseII enzymes and MRP2 transcription, G2/M arrest and cell death in Caco-2 cells. Biochem Pharmacol. 2005;69:1543–52.CrossRefPubMed Jakubikova J, Sedlak J, Mithen R, Bao Y. Role of PI3 K/Akt and MEK/ERK signaling pathways in sulforaphane- and erucin-induced phaseII enzymes and MRP2 transcription, G2/M arrest and cell death in Caco-2 cells. Biochem Pharmacol. 2005;69:1543–52.CrossRefPubMed
24.
Zurück zum Zitat Shen G, Xu C, Chen C, Hebbar V, Kong A-NT. p53-independent G1 cell cycle areest of human colon carcinoma cells HT-29 by sulforaphane is associated with induction of p21CIP1 and inhibition of expression of cyclin D1. Cancer Chemother Pharmacol. 2006;57:317–27.CrossRefPubMed Shen G, Xu C, Chen C, Hebbar V, Kong A-NT. p53-independent G1 cell cycle areest of human colon carcinoma cells HT-29 by sulforaphane is associated with induction of p21CIP1 and inhibition of expression of cyclin D1. Cancer Chemother Pharmacol. 2006;57:317–27.CrossRefPubMed
25.
Zurück zum Zitat Wang L, LiuD, Ahmed T, Chung FL, Conaway C, Chiao JW. Targeting cell cycle machinery as a molecular mechanism of sulforaphane in prostate cancer prevention. Int J Oncol. 2004;24:187–92.PubMed Wang L, LiuD, Ahmed T, Chung FL, Conaway C, Chiao JW. Targeting cell cycle machinery as a molecular mechanism of sulforaphane in prostate cancer prevention. Int J Oncol. 2004;24:187–92.PubMed
26.
Zurück zum Zitat Singletary K, Milner J. Diet, autophagy, and cancer: a review. Cancer Epidemiol Biomarkers Prev. 2008;17:1596–610.CrossRefPubMed Singletary K, Milner J. Diet, autophagy, and cancer: a review. Cancer Epidemiol Biomarkers Prev. 2008;17:1596–610.CrossRefPubMed
27.
Zurück zum Zitat Gozuacik D, Kimch A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 2004;23:2891–906.CrossRefPubMed Gozuacik D, Kimch A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 2004;23:2891–906.CrossRefPubMed
28.
Zurück zum Zitat Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290:1717–21.CrossRefPubMed Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290:1717–21.CrossRefPubMed
29.
Zurück zum Zitat Liang XH, Kleeman LK, Jiang HH, et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol. 1998;72:8586–96.PubMed Liang XH, Kleeman LK, Jiang HH, et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol. 1998;72:8586–96.PubMed
30.
Zurück zum Zitat Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122:927–39.CrossRefPubMed Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122:927–39.CrossRefPubMed
31.
Zurück zum Zitat Singh AV, Xiao D, Lew KL, Dhir R, Singh SV. Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis. 2004;25:83–90.CrossRefPubMed Singh AV, Xiao D, Lew KL, Dhir R, Singh SV. Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis. 2004;25:83–90.CrossRefPubMed
32.
Zurück zum Zitat Yang YM, Conaway CC, Chiao JW, et al. Inhibition of benzo(a)pyrene-induced lung tumorigenesis in A/J mice by dietary N-acetylcysteine conjugates of benzyl and phenethyl isotiocyanates during the postinitiation phase is associated with activation of mitogen-activated protein kinases and p53 activity and induction of apoptosis. Cancer Res. 2002;62:2–7.PubMed Yang YM, Conaway CC, Chiao JW, et al. Inhibition of benzo(a)pyrene-induced lung tumorigenesis in A/J mice by dietary N-acetylcysteine conjugates of benzyl and phenethyl isotiocyanates during the postinitiation phase is associated with activation of mitogen-activated protein kinases and p53 activity and induction of apoptosis. Cancer Res. 2002;62:2–7.PubMed
33.
Zurück zum Zitat Matsuda K, Yoshida K, Taya Y, Nakamura K, Nakamura Y, Arakawa H. p53AIP1 regulates the mitochondrial apoptotic pathway. Cancer Res. 2002;62:2883–9.PubMed Matsuda K, Yoshida K, Taya Y, Nakamura K, Nakamura Y, Arakawa H. p53AIP1 regulates the mitochondrial apoptotic pathway. Cancer Res. 2002;62:2883–9.PubMed
34.
Zurück zum Zitat Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature. 1999;399:483–7.CrossRefPubMed Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature. 1999;399:483–7.CrossRefPubMed
35.
Zurück zum Zitat Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275:1132–6.CrossRefPubMed Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275:1132–6.CrossRefPubMed
36.
Zurück zum Zitat Amaravadi RK, Yu D, Lum JJ, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest. 2007;117:326–36.CrossRefPubMed Amaravadi RK, Yu D, Lum JJ, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest. 2007;117:326–36.CrossRefPubMed
37.
Zurück zum Zitat Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol. 2005;26:1401–14.PubMed Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol. 2005;26:1401–14.PubMed
Metadaten
Titel
Inhibition of Autophagy Potentiates Sulforaphane-Induced Apoptosis in Human Colon Cancer Cells
verfasst von
Takeshi Nishikawa, MD
Nelson H. Tsuno, MD, PhD
Yurai Okaji, MD, PhD
Yasutaka Shuno, MD
Kazuhito Sasaki, MD
Kumiko Hongo, MD
Eiji Sunami, MD, PhD
Joji Kitayama, PhD
Koki Takahashi, MD, PhD
Hirokazu Nagawa, PhD
Publikationsdatum
01.02.2010
Verlag
Springer-Verlag
Erschienen in
Annals of Surgical Oncology / Ausgabe 2/2010
Print ISSN: 1068-9265
Elektronische ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-009-0696-x

Weitere Artikel der Ausgabe 2/2010

Annals of Surgical Oncology 2/2010 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.