Skip to main content
Erschienen in: Clinical Pharmacokinetics 12/2001

01.12.2001 | Review Articles

Delivery of Neurotrophic Factors to the Central Nervous System

Pharmacokinetic Considerations

verfasst von: Robert G. Thorne, Dr William H. Frey II

Erschienen in: Clinical Pharmacokinetics | Ausgabe 12/2001

Einloggen, um Zugang zu erhalten

Abstract

Neurotrophic factors are proteins with considerable potential in the treatment of central nervous system (CNS) diseases and traumatic injuries. However, a significant challenge to their clinical use is the difficulty associated with delivering these proteins to the CNS. Neurotrophic factors are hydrophilic, typically basic, monomeric or dimeric proteins, mostly in the size range of 5 to 30 kDa. Neurotrophic factors potently support the development, growth and survival of neurons, eliciting biological effects at concentrations in the nanomolar to femtomolar range. They are not orally bioavailable and the blood-brain and blood-cerebrospinal fluid barriers severely limit their ability to enter into and act on sites in the CNS following parenteral systemic routes of administration. Most neurotrophic factors have short in vivo half-lives and poor pharmacokinetic profiles. Their access to the CNS is restricted by rapid enzymatic inactivation, multiple clearance processes, potential immunogenicity and sequestration by binding proteins and other components of the blood and peripheral tissues.
The development of targeted drug delivery strategies for neurotrophic factors will probably determine their clinical effectiveness for CNS conditions. Achieving significant CNS target site concentrations while limiting systemic exposure and distribution to peripheral sites of action will lessen unwanted pleiotropic effects and toxicity.
Local introduction of neurotrophic factors into the CNS intraparenchymally by direct injection/infusion or by implantation of delivery vectors such as polymer matrices or genetically modified cells yields the highest degree of targeting, but is limited by diffusion restrictions and invasiveness. Delivery of neurotrophic factors into the cerebrospinal fluid (CSF) following intracerebroventricular or intrathecal administration is less invasive and allows access to a much wider area of the CNS through CSF circulation pathways. However, diffusional and cellular barriers to penetration into surrounding CNS tissue and significant clearance of CSF into the venous and lymphatic circulation are also limiting. Unconventional delivery strategies such as intranasal administration may offer some degree of CNS targeting with minimal invasiveness.
This review presents a summary of the neurotrophic factors and their indications for CNS disorders, their physicochemical characteristics and the different approaches that have been attempted or suggested for their delivery to the CNS. Future directions for further research such as the potential for CNS disease treatment utilising combinations of neurotrophic factors, displacement strategies, small molecule mimetics, chimaeric molecules and gene therapy are also discussed.
Literatur
1.
2.
Zurück zum Zitat Hefti F, Denton TL, Knusel B, et al. Neurotrophic factors: What are they and what are they doing? In: Loughlin SE, Fallon JH, editors. Neurotrophic factors. San Diego (CA): Academic Press, Inc., 1993: 25–49 Hefti F, Denton TL, Knusel B, et al. Neurotrophic factors: What are they and what are they doing? In: Loughlin SE, Fallon JH, editors. Neurotrophic factors. San Diego (CA): Academic Press, Inc., 1993: 25–49
3.
Zurück zum Zitat Landreth GE. Growth factors. In: Siegel GJ, editor. Basic neurochemistry: molecular, cellular and medical aspects. 6th ed. Philadelphia (PA): Lippincott-Raven, 1999: 383–98 Landreth GE. Growth factors. In: Siegel GJ, editor. Basic neurochemistry: molecular, cellular and medical aspects. 6th ed. Philadelphia (PA): Lippincott-Raven, 1999: 383–98
4.
5.
Zurück zum Zitat Cohen S, Levi-Montalcini R, Hamburger V. A nerve growth-stimulating factor isolated from sarcomas 37 and 180. Proc Natl Acad Sci U S A 1954; 40: 1014–8PubMedCrossRef Cohen S, Levi-Montalcini R, Hamburger V. A nerve growth-stimulating factor isolated from sarcomas 37 and 180. Proc Natl Acad Sci U S A 1954; 40: 1014–8PubMedCrossRef
6.
Zurück zum Zitat Saragovi HU, Gehring K. Development of pharmacological agents for targeting neurotrophins and their receptors. Trends Pharmacol Sci 2000; 21: 93–8PubMedCrossRef Saragovi HU, Gehring K. Development of pharmacological agents for targeting neurotrophins and their receptors. Trends Pharmacol Sci 2000; 21: 93–8PubMedCrossRef
7.
Zurück zum Zitat Broadwell RD, Banks WA. Cell biological perspective for the transcytosis of peptides and proteins through the mammalian blood-brain fluid barriers. In: Pardridge WM, editor. The blood-brain barrier: cellular and molecular biology. New York: Raven Press, 1993: 165–99 Broadwell RD, Banks WA. Cell biological perspective for the transcytosis of peptides and proteins through the mammalian blood-brain fluid barriers. In: Pardridge WM, editor. The blood-brain barrier: cellular and molecular biology. New York: Raven Press, 1993: 165–99
8.
Zurück zum Zitat Davson H, Segal MB. Physiology of the CSF and blood-brain barriers. Boca Raton (FL): CRC Press, 1996 Davson H, Segal MB. Physiology of the CSF and blood-brain barriers. Boca Raton (FL): CRC Press, 1996
9.
Zurück zum Zitat Pardridge WM. Peptide drug delivery to the brain. New York: Raven Press, 1991 Pardridge WM. Peptide drug delivery to the brain. New York: Raven Press, 1991
10.
Zurück zum Zitat Kastin AJ, Pan W, Maness LM, et al. Peptides crossing the blood-brain barrier: some unusual observations. Brain Res 1999; 848: 96–100PubMedCrossRef Kastin AJ, Pan W, Maness LM, et al. Peptides crossing the blood-brain barrier: some unusual observations. Brain Res 1999; 848: 96–100PubMedCrossRef
11.
12.
Zurück zum Zitat Pardridge WM. CNS drug design based on principles of blood-brain barrier transport. J Neurochem 1998; 70: 1781–92PubMedCrossRef Pardridge WM. CNS drug design based on principles of blood-brain barrier transport. J Neurochem 1998; 70: 1781–92PubMedCrossRef
13.
Zurück zum Zitat Langer R. Drug delivery and targeting. Nature 1998; 392 Suppl.: S5–10 Langer R. Drug delivery and targeting. Nature 1998; 392 Suppl.: S5–10
14.
Zurück zum Zitat Putney SD, Burke PA. Improving protein therapeutics with sustained-release formulations. Nat Biotechnol 1998; 16(2): 153–7PubMedCrossRef Putney SD, Burke PA. Improving protein therapeutics with sustained-release formulations. Nat Biotechnol 1998; 16(2): 153–7PubMedCrossRef
15.
Zurück zum Zitat Prentis RA, Lis Y, Walker SR. Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964–1985). Br J Clin Pharmacol 1988; 25: 387–96PubMedCrossRef Prentis RA, Lis Y, Walker SR. Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964–1985). Br J Clin Pharmacol 1988; 25: 387–96PubMedCrossRef
16.
Zurück zum Zitat Verrall M. Lay-offs follow suspension of clinical trials of protein. Nature 1994; 370: 6PubMed Verrall M. Lay-offs follow suspension of clinical trials of protein. Nature 1994; 370: 6PubMed
17.
Zurück zum Zitat Loughlin SE. Neurotrophic factors. San Diego (CA): Academic Press Inc., 1993 Loughlin SE. Neurotrophic factors. San Diego (CA): Academic Press Inc., 1993
18.
Zurück zum Zitat Apfel SC, Water TRVD, Koszer S. Clinical applications of neurotrophic factors. Philadelphia (PA): Lippincott-Raven Publishers, 1997 Apfel SC, Water TRVD, Koszer S. Clinical applications of neurotrophic factors. Philadelphia (PA): Lippincott-Raven Publishers, 1997
19.
Zurück zum Zitat Bregman BS, Broude E, McAtee M, et al. Transplants and neurotrophic factors prevent atrophy of mature CNS neurons after spinal cord injury. Exp Neurol 1998; 149(1): 13–27PubMedCrossRef Bregman BS, Broude E, McAtee M, et al. Transplants and neurotrophic factors prevent atrophy of mature CNS neurons after spinal cord injury. Exp Neurol 1998; 149(1): 13–27PubMedCrossRef
20.
Zurück zum Zitat Bregman BS, McAtee M, Dai HN, et al. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol 1997; 148(2): 475–94PubMedCrossRef Bregman BS, McAtee M, Dai HN, et al. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol 1997; 148(2): 475–94PubMedCrossRef
21.
Zurück zum Zitat Grill R, Murai K, Blesch A, et al. Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci 1997; 17(14): 5560–72PubMed Grill R, Murai K, Blesch A, et al. Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci 1997; 17(14): 5560–72PubMed
22.
Zurück zum Zitat Ye JH, Houle JD. Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Exp Neurol 1997; 143(1): 70–81PubMedCrossRef Ye JH, Houle JD. Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Exp Neurol 1997; 143(1): 70–81PubMedCrossRef
23.
24.
Zurück zum Zitat Walsh G. Nervous excitement over neurotrophic factors. Biol Technol 1995; 13: 1167–71 Walsh G. Nervous excitement over neurotrophic factors. Biol Technol 1995; 13: 1167–71
25.
Zurück zum Zitat Johnson JE. Neurotrophic factors. In: Zigmond MJ, Bloom FE, Landis SC, et al., editors. Fundamental neuroscience. San Diego (CA): Academic Press, 1999: 611–35 Johnson JE. Neurotrophic factors. In: Zigmond MJ, Bloom FE, Landis SC, et al., editors. Fundamental neuroscience. San Diego (CA): Academic Press, 1999: 611–35
26.
Zurück zum Zitat Glass DJ, Yancopoulos GD. The neurotrophins and their receptors. Trends Cell Biol 1993; 3: 262–7PubMedCrossRef Glass DJ, Yancopoulos GD. The neurotrophins and their receptors. Trends Cell Biol 1993; 3: 262–7PubMedCrossRef
27.
Zurück zum Zitat Cordon-Cardo C, Tapley P, Jing SQ, et al. The trk tyrosine protein kinase mediates the mitogenic properties of nerve growth factor and neurotrophin-3. Cell 1991; 66(1): 173–83PubMedCrossRef Cordon-Cardo C, Tapley P, Jing SQ, et al. The trk tyrosine protein kinase mediates the mitogenic properties of nerve growth factor and neurotrophin-3. Cell 1991; 66(1): 173–83PubMedCrossRef
28.
Zurück zum Zitat Soppet D, Escandon E, Maragos J, et al. The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell 1991; 65(5): 895–903PubMedCrossRef Soppet D, Escandon E, Maragos J, et al. The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell 1991; 65(5): 895–903PubMedCrossRef
29.
Zurück zum Zitat Swen JS, Flanagan TR, Wiggans TG. Assessing commercial potential of central nervous system delivery approaches. In: Flanagan TR, Emerich DF, Winn SR, editors. Methods in neurosciences. San Diego (CA): Academic Press, 1994: 485–98 Swen JS, Flanagan TR, Wiggans TG. Assessing commercial potential of central nervous system delivery approaches. In: Flanagan TR, Emerich DF, Winn SR, editors. Methods in neurosciences. San Diego (CA): Academic Press, 1994: 485–98
30.
Zurück zum Zitat Mufson EJ, Kroin JS, Sendera TJ, et al. Distribution and retrograde transport of trophic factors in the central nervous system: functional implications for the treatment of neurodegenerative disease. Prog Neurobiol 1999; 57: 451–84PubMedCrossRef Mufson EJ, Kroin JS, Sendera TJ, et al. Distribution and retrograde transport of trophic factors in the central nervous system: functional implications for the treatment of neurodegenerative disease. Prog Neurobiol 1999; 57: 451–84PubMedCrossRef
31.
Zurück zum Zitat Teng YD, Mocchetti I, Taveira-DaSilva AM, et al. Basic fibroblast growth factor increases long-term survival of spinal motor neurons and improves respiratory function after experimental spinal cord injury. J Neurosci 1999; 19(16): 7037–47PubMed Teng YD, Mocchetti I, Taveira-DaSilva AM, et al. Basic fibroblast growth factor increases long-term survival of spinal motor neurons and improves respiratory function after experimental spinal cord injury. J Neurosci 1999; 19(16): 7037–47PubMed
32.
Zurück zum Zitat Cheng H, Cao Y, Olson L. Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science 1996; 273(5274): 510–3PubMedCrossRef Cheng H, Cao Y, Olson L. Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science 1996; 273(5274): 510–3PubMedCrossRef
33.
Zurück zum Zitat Fisher M, Meadows M-E, Do T, et al. Delayed treatment with intravenous basic fibroblast growth factor reduces infarct size following permanent focal cerebral ischemia in rats. J Cereb Blood Flow Metab 1995; 15: 953–9PubMedCrossRef Fisher M, Meadows M-E, Do T, et al. Delayed treatment with intravenous basic fibroblast growth factor reduces infarct size following permanent focal cerebral ischemia in rats. J Cereb Blood Flow Metab 1995; 15: 953–9PubMedCrossRef
34.
Zurück zum Zitat Cuevas P, Carceller F, Munoz-Willery I, et al. Intravenous fibroblast growth factor penetrates the blood-brain barrier and protects hippocampal neurons against ischemia-reperfusion injury. Surg Neurol 1998; 49(1): 77–83PubMedCrossRef Cuevas P, Carceller F, Munoz-Willery I, et al. Intravenous fibroblast growth factor penetrates the blood-brain barrier and protects hippocampal neurons against ischemia-reperfusion injury. Surg Neurol 1998; 49(1): 77–83PubMedCrossRef
35.
Zurück zum Zitat Teng YD, Mocchetti I, Wrathall JR. Basic and acidic fibroblast growth factors protect spinal motor neurones in vivo after experimental spinal cord injury. Eur J Neurosci 1998; 10(2): 798–802PubMedCrossRef Teng YD, Mocchetti I, Wrathall JR. Basic and acidic fibroblast growth factors protect spinal motor neurones in vivo after experimental spinal cord injury. Eur J Neurosci 1998; 10(2): 798–802PubMedCrossRef
36.
Zurück zum Zitat Guo Q, Sebastian L, Sopher BL, et al. Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation. Proc Natl Acad Sci U S A 1999; 96(7): 4125–30PubMedCrossRef Guo Q, Sebastian L, Sopher BL, et al. Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation. Proc Natl Acad Sci U S A 1999; 96(7): 4125–30PubMedCrossRef
37.
Zurück zum Zitat Eckenstein FP. Fibroblast growth factors in the nervous system. J Neurobiol 1994; 25(11): 1467–80PubMedCrossRef Eckenstein FP. Fibroblast growth factors in the nervous system. J Neurobiol 1994; 25(11): 1467–80PubMedCrossRef
39.
Zurück zum Zitat Murphy M, Dutton R, Koblar S, et al. Cytokines which signal through the LIF receptor and their actions in the nervous system. Prog Neurobiol 1997; 52(5): 355–78PubMedCrossRef Murphy M, Dutton R, Koblar S, et al. Cytokines which signal through the LIF receptor and their actions in the nervous system. Prog Neurobiol 1997; 52(5): 355–78PubMedCrossRef
40.
Zurück zum Zitat Yamakuni H, Minami M, Satoh M. Localization of mRNA for leukemia inhibitory factor receptor in the adult rat brain. J Neuroimmunol 1996; 70(1): 45–53PubMedCrossRef Yamakuni H, Minami M, Satoh M. Localization of mRNA for leukemia inhibitory factor receptor in the adult rat brain. J Neuroimmunol 1996; 70(1): 45–53PubMedCrossRef
41.
Zurück zum Zitat Pennica D, Shaw KJ, Swanson TA, et al. Cardiotrophin-1. Biological activities and binding to the leukemia inhibitory factor receptor/gp130 signaling complex. J Biol Chem 1995; 270(18): 10915–22PubMedCrossRef Pennica D, Shaw KJ, Swanson TA, et al. Cardiotrophin-1. Biological activities and binding to the leukemia inhibitory factor receptor/gp130 signaling complex. J Biol Chem 1995; 270(18): 10915–22PubMedCrossRef
42.
Zurück zum Zitat Pennica D, Wood WI, Chien KR. Cardiotrophin-1: a multifunctional cytokine that signals via LIF receptor-gp 130 dependent pathways. Cytokine Growth Factor Rev 1996; 7(1): 81–91PubMedCrossRef Pennica D, Wood WI, Chien KR. Cardiotrophin-1: a multifunctional cytokine that signals via LIF receptor-gp 130 dependent pathways. Cytokine Growth Factor Rev 1996; 7(1): 81–91PubMedCrossRef
43.
Zurück zum Zitat Robledo O, Fourcin M, Chevalier S, et al. Signaling of the cardiotrophin-1 receptor. Evidence for a third receptor component. J Biol Chem 1997; 272(8): 4855–63PubMedCrossRef Robledo O, Fourcin M, Chevalier S, et al. Signaling of the cardiotrophin-1 receptor. Evidence for a third receptor component. J Biol Chem 1997; 272(8): 4855–63PubMedCrossRef
44.
Zurück zum Zitat Kurek JB, Radford AJ, Crump DE, et al. LIF (AM424), a promising growth factor for the treatment of ALS. J Neurol Sci 1998; 160 Suppl. 1: S106–13PubMedCrossRef Kurek JB, Radford AJ, Crump DE, et al. LIF (AM424), a promising growth factor for the treatment of ALS. J Neurol Sci 1998; 160 Suppl. 1: S106–13PubMedCrossRef
45.
Zurück zum Zitat Blesch A, Uy HS, Grill RJ, et al. Leukemia inhibitory factor augments neurotrophin expression and corticospinal axon growth after adult CNS injury. J Neurosci 1999; 19(9): 3556–66PubMed Blesch A, Uy HS, Grill RJ, et al. Leukemia inhibitory factor augments neurotrophin expression and corticospinal axon growth after adult CNS injury. J Neurosci 1999; 19(9): 3556–66PubMed
46.
Zurück zum Zitat Ebendal T, Bengtsson H, Soderstrom S. Bone morphogenetic proteins and their receptors: potential functions in the brain. J Neurosci Res 1998; 51(2): 139–46PubMedCrossRef Ebendal T, Bengtsson H, Soderstrom S. Bone morphogenetic proteins and their receptors: potential functions in the brain. J Neurosci Res 1998; 51(2): 139–46PubMedCrossRef
47.
Zurück zum Zitat Helm GA, Alden TD, Sheehan JP, et al. Bone morphogenetic proteins and bone morphogenetic protein gene therapy in neurological surgery: a review. Neurosurgery 2000; 46(5): 1213–22PubMedCrossRef Helm GA, Alden TD, Sheehan JP, et al. Bone morphogenetic proteins and bone morphogenetic protein gene therapy in neurological surgery: a review. Neurosurgery 2000; 46(5): 1213–22PubMedCrossRef
48.
Zurück zum Zitat Nishitoh H, Ichijo H, Kimura M, et al. Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5. J Biol Chem 1996; 271(35): 21345–52PubMedCrossRef Nishitoh H, Ichijo H, Kimura M, et al. Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5. J Biol Chem 1996; 271(35): 21345–52PubMedCrossRef
49.
Zurück zum Zitat Krieglstein K, Suter-Crazzolara C, Hotten G, et al. Trophic and protective effects of growth/differentiation factor 5, a member of the transforming growth factor-beta superfamily, on midbrain dopaminergic neurons. J Neurosci Res 1995; 42(5): 724–32PubMedCrossRef Krieglstein K, Suter-Crazzolara C, Hotten G, et al. Trophic and protective effects of growth/differentiation factor 5, a member of the transforming growth factor-beta superfamily, on midbrain dopaminergic neurons. J Neurosci Res 1995; 42(5): 724–32PubMedCrossRef
50.
Zurück zum Zitat Sullivan AM, Opacka-Juffry J, Pohl J, et al. Neuroprotective effects of growth/differentiation factor 5 depend on the site of administration. Brain Res 1999; 818(1): 176–9PubMedCrossRef Sullivan AM, Opacka-Juffry J, Pohl J, et al. Neuroprotective effects of growth/differentiation factor 5 depend on the site of administration. Brain Res 1999; 818(1): 176–9PubMedCrossRef
51.
Zurück zum Zitat Strelau J, Sullivan A, Bottner M, et al. Growth/differentiation factor-15/macrophage inhibitory cytokine-1 is a novel trophic factor for midbrain dopaminergic neurons in vivo. J Neurosci 2000; 20(23): 8597–603PubMed Strelau J, Sullivan A, Bottner M, et al. Growth/differentiation factor-15/macrophage inhibitory cytokine-1 is a novel trophic factor for midbrain dopaminergic neurons in vivo. J Neurosci 2000; 20(23): 8597–603PubMed
52.
Zurück zum Zitat Wang Y, Lin SZ, Chiou AL, et al. Glial cell line-derived neurotrophic factor protects against ischemia-induced injury in the cerebral cortex. J Neurosci 1997; 17(11): 4341–8PubMed Wang Y, Lin SZ, Chiou AL, et al. Glial cell line-derived neurotrophic factor protects against ischemia-induced injury in the cerebral cortex. J Neurosci 1997; 17(11): 4341–8PubMed
53.
Zurück zum Zitat Watabe K, Ohashi T, Sakamoto T, et al. Rescue of lesioned adult rat spinal motoneurons by adenoviral gene transfer of glial cell line-derived neurotrophic factor. J Neurosci Res 2000; 60(4): 511–9PubMedCrossRef Watabe K, Ohashi T, Sakamoto T, et al. Rescue of lesioned adult rat spinal motoneurons by adenoviral gene transfer of glial cell line-derived neurotrophic factor. J Neurosci Res 2000; 60(4): 511–9PubMedCrossRef
54.
Zurück zum Zitat Perez-Navarro E, Akerud P, Marco S, et al. Neurturin protects striatal projection neurons but not interneurons in a rat model of Huntington’s disease. Neuroscience 2000; 98(1): 89–96PubMedCrossRef Perez-Navarro E, Akerud P, Marco S, et al. Neurturin protects striatal projection neurons but not interneurons in a rat model of Huntington’s disease. Neuroscience 2000; 98(1): 89–96PubMedCrossRef
55.
Zurück zum Zitat Milbrandt J, de Sauvage FJ, Fahrner TJ, et al. Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 1998; 20(2): 245–53PubMedCrossRef Milbrandt J, de Sauvage FJ, Fahrner TJ, et al. Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 1998; 20(2): 245–53PubMedCrossRef
56.
Zurück zum Zitat Masure S, Cik M, Hoefnagel E, et al. Mammalian a-4, a divergent member of the GFRa family of coreceptors for glial cell line-derived neurotrophic factor family ligands, is a receptor for the neurotrophic factor persephin. J Biol Chem 2000; 275(50): 39427–34PubMedCrossRef Masure S, Cik M, Hoefnagel E, et al. Mammalian a-4, a divergent member of the GFRa family of coreceptors for glial cell line-derived neurotrophic factor family ligands, is a receptor for the neurotrophic factor persephin. J Biol Chem 2000; 275(50): 39427–34PubMedCrossRef
57.
Zurück zum Zitat Kotzbauer PT, Lampe PA, Heuckeroth RO, et al. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 1996; 384(6608): 467–70PubMedCrossRef Kotzbauer PT, Lampe PA, Heuckeroth RO, et al. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 1996; 384(6608): 467–70PubMedCrossRef
58.
Zurück zum Zitat Golden JP, Baloh RH, Kotzbauer PT, et al. Expression of neurturin, GDNF, and their receptors in the adult mouse CNS. J Comp Neurol 1998; 398(1): 139–50PubMedCrossRef Golden JP, Baloh RH, Kotzbauer PT, et al. Expression of neurturin, GDNF, and their receptors in the adult mouse CNS. J Comp Neurol 1998; 398(1): 139–50PubMedCrossRef
59.
Zurück zum Zitat GFR(alpha) Nomenclature Committee. Nomenclature of GPI-linked receptors for the GDNF ligand family. GFR(alpha) Nomenclature Committee. Neuron 1997; 19(3): 485 GFR(alpha) Nomenclature Committee. Nomenclature of GPI-linked receptors for the GDNF ligand family. GFR(alpha) Nomenclature Committee. Neuron 1997; 19(3): 485
60.
Zurück zum Zitat Bilak MM, Shifrin DA, Corse AM, et al. Neuroprotective utility and neurotrophic action of neurturin in postnatal motor neurons: comparison with GDNF and persephin. Mol Cell Neurosci 1999; 13(5): 326–36PubMedCrossRef Bilak MM, Shifrin DA, Corse AM, et al. Neuroprotective utility and neurotrophic action of neurturin in postnatal motor neurons: comparison with GDNF and persephin. Mol Cell Neurosci 1999; 13(5): 326–36PubMedCrossRef
61.
Zurück zum Zitat Baloh RH, Tansey MG, Lampe PA, et al. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron 1998; 21(6): 1291–302PubMedCrossRef Baloh RH, Tansey MG, Lampe PA, et al. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron 1998; 21(6): 1291–302PubMedCrossRef
62.
Zurück zum Zitat Henrich-Noack P, Prehn JH, Krieglstein J. TGF-beta 1 protects hippocampal neurons against degeneration caused by transient global ischemia. Dose-response relationship and potential neuroprotective mechanisms. Stroke 1996; 27(9): 1609–14; discussion 15PubMedCrossRef Henrich-Noack P, Prehn JH, Krieglstein J. TGF-beta 1 protects hippocampal neurons against degeneration caused by transient global ischemia. Dose-response relationship and potential neuroprotective mechanisms. Stroke 1996; 27(9): 1609–14; discussion 15PubMedCrossRef
63.
Zurück zum Zitat Pratt BM, McPherson JM. TGF-beta in the central nervous system: potential roles in ischemic injury and neurodegenerative diseases. Cytokine Growth Factor Rev 1997; 8(4): 267–92PubMedCrossRef Pratt BM, McPherson JM. TGF-beta in the central nervous system: potential roles in ischemic injury and neurodegenerative diseases. Cytokine Growth Factor Rev 1997; 8(4): 267–92PubMedCrossRef
64.
65.
Zurück zum Zitat Gozes I, Davidson A, Gozes Y, et al. Antiserum to activity-dependent neurotrophic factor produces neuronal cell death in CNS cultures: immunological and biological specificity. Brain Res Dev Brain Res 1997; 99(2): 167–75PubMedCrossRef Gozes I, Davidson A, Gozes Y, et al. Antiserum to activity-dependent neurotrophic factor produces neuronal cell death in CNS cultures: immunological and biological specificity. Brain Res Dev Brain Res 1997; 99(2): 167–75PubMedCrossRef
66.
Zurück zum Zitat Brenneman DE, Gozes I. A femtomolar-acting neuroprotective peptide. J Clin Invest 1996; 97(10): 2299–307PubMedCrossRef Brenneman DE, Gozes I. A femtomolar-acting neuroprotective peptide. J Clin Invest 1996; 97(10): 2299–307PubMedCrossRef
67.
Zurück zum Zitat Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999; 79(4): 1283–316PubMed Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999; 79(4): 1283–316PubMed
68.
Zurück zum Zitat Gotz R, Koster R, Winkler C, et al. Neurotrophin-6 is a new member of the nerve growth factor family. Nature 1994; 372(6503): 266–9PubMedCrossRef Gotz R, Koster R, Winkler C, et al. Neurotrophin-6 is a new member of the nerve growth factor family. Nature 1994; 372(6503): 266–9PubMedCrossRef
69.
Zurück zum Zitat Nilsson AS, Fainzilber M, Falck P, et al. Neurotrophin-7: a novel member of the neurotrophin family from the zebrafish. FEBS Lett 1998; 424(3): 285–90PubMedCrossRef Nilsson AS, Fainzilber M, Falck P, et al. Neurotrophin-7: a novel member of the neurotrophin family from the zebrafish. FEBS Lett 1998; 424(3): 285–90PubMedCrossRef
70.
Zurück zum Zitat Martin-Zanca D, Hughes SH, Barbacid M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature 1986; 319(6056): 743–8PubMedCrossRef Martin-Zanca D, Hughes SH, Barbacid M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature 1986; 319(6056): 743–8PubMedCrossRef
72.
Zurück zum Zitat Squinto SP, Stitt TN, Aldrich TH, et al. trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell 1991; 65(5): 885–93PubMedCrossRef Squinto SP, Stitt TN, Aldrich TH, et al. trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell 1991; 65(5): 885–93PubMedCrossRef
73.
Zurück zum Zitat Knusel B, Michel PP, Schwaber JS, et al. Selective and nonselective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II. J Neurosci 1990; 10(2): 558–70PubMed Knusel B, Michel PP, Schwaber JS, et al. Selective and nonselective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II. J Neurosci 1990; 10(2): 558–70PubMed
74.
Zurück zum Zitat Knusel B, Winslow JW, Rosenthal A, et al. Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin 3. Proc Natl Acad Sci U S A 1991; 88(3): 961–5PubMedCrossRef Knusel B, Winslow JW, Rosenthal A, et al. Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin 3. Proc Natl Acad Sci U S A 1991; 88(3): 961–5PubMedCrossRef
75.
Zurück zum Zitat Nishimura T, Nakatake Y, Konishi M, et al. Identification of a novel FGF, FGF-21, preferentially expressed in liver. Biochim Biophys Acta 2000; 1492: 203–6PubMedCrossRef Nishimura T, Nakatake Y, Konishi M, et al. Identification of a novel FGF, FGF-21, preferentially expressed in liver. Biochim Biophys Acta 2000; 1492: 203–6PubMedCrossRef
76.
Zurück zum Zitat Masiakowski P, Liu H, Radziejewski C, et al. Recombinant human and rat ciliary neurotrophic factors. J Neurochem 1991; 57: 1003–12PubMedCrossRef Masiakowski P, Liu H, Radziejewski C, et al. Recombinant human and rat ciliary neurotrophic factors. J Neurochem 1991; 57: 1003–12PubMedCrossRef
77.
Zurück zum Zitat Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol 1998; 16(3): 247–52PubMedCrossRef Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol 1998; 16(3): 247–52PubMedCrossRef
78.
Zurück zum Zitat Massague J. TGFb signaling: receptors, transducers, and mad proteins. Cell 1996; 85: 947–50PubMedCrossRef Massague J. TGFb signaling: receptors, transducers, and mad proteins. Cell 1996; 85: 947–50PubMedCrossRef
79.
Zurück zum Zitat Morrison R. Epidermal growth factor: structure, expression, and functions in the central nervous system. In: Loughlin SE, Fallon JH, editors. Neurotrophic factors. San Diego (CA): Academic Press, Inc., 1993: 339–57 Morrison R. Epidermal growth factor: structure, expression, and functions in the central nervous system. In: Loughlin SE, Fallon JH, editors. Neurotrophic factors. San Diego (CA): Academic Press, Inc., 1993: 339–57
80.
Zurück zum Zitat Minghetti L, Goodearl AD, Mistry K, et al. Glial growth factors I–III are specific mitogens for glial cells. J Neurosci Res 1996; 43(6): 684–93PubMedCrossRef Minghetti L, Goodearl AD, Mistry K, et al. Glial growth factors I–III are specific mitogens for glial cells. J Neurosci Res 1996; 43(6): 684–93PubMedCrossRef
81.
Zurück zum Zitat Mahanthappa NK, Anton ES, Matthew WD. Glial growth factor 2, a soluble neuregulin, directly increases Schwann cell motility and indirectly promotes neurite outgrowth. J Neurosci 1996; 16(15): 4673–83PubMed Mahanthappa NK, Anton ES, Matthew WD. Glial growth factor 2, a soluble neuregulin, directly increases Schwann cell motility and indirectly promotes neurite outgrowth. J Neurosci 1996; 16(15): 4673–83PubMed
82.
Zurück zum Zitat LeRoith D, Werner H, Faria TN, et al. CTR. Insulin-like growth factor receptors: implications for nervous system function. Ann N Y Acad Sci 1993; 692: 22–32PubMedCrossRef LeRoith D, Werner H, Faria TN, et al. CTR. Insulin-like growth factor receptors: implications for nervous system function. Ann N Y Acad Sci 1993; 692: 22–32PubMedCrossRef
83.
Zurück zum Zitat Adamo M, Raizada MK, LeRoith D. Insulin and insulin-like growth factor receptors in the nervous system. Mol Neurobiol 1989; 3: 71–100PubMedCrossRef Adamo M, Raizada MK, LeRoith D. Insulin and insulin-like growth factor receptors in the nervous system. Mol Neurobiol 1989; 3: 71–100PubMedCrossRef
84.
Zurück zum Zitat Baxter RC, Binoux MA, Clemmons DR, et al. Recommendations for nomenclature of the insulin-like growth factor binding protein superfamily. J Clin Endocrinol Metab 1998; 83(9): 3213PubMedCrossRef Baxter RC, Binoux MA, Clemmons DR, et al. Recommendations for nomenclature of the insulin-like growth factor binding protein superfamily. J Clin Endocrinol Metab 1998; 83(9): 3213PubMedCrossRef
85.
Zurück zum Zitat Raines EW, Ross R. Platelet-derived growth factor. I. High yield purification and evidence for multiple forms. J Biol Chem 1982; 257(9): 5154–60PubMed Raines EW, Ross R. Platelet-derived growth factor. I. High yield purification and evidence for multiple forms. J Biol Chem 1982; 257(9): 5154–60PubMed
86.
Zurück zum Zitat Fretto LJ, Snape AJ, Tomlinson JE, et al. Mechanism of platelet-derived growth factor (PDGF) AA, AB, and BB binding to alpha and beta PDGF receptor. J Biol Chem 1993; 268(5): 3625–31PubMed Fretto LJ, Snape AJ, Tomlinson JE, et al. Mechanism of platelet-derived growth factor (PDGF) AA, AB, and BB binding to alpha and beta PDGF receptor. J Biol Chem 1993; 268(5): 3625–31PubMed
87.
Zurück zum Zitat Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001; 291: 1304–51PubMedCrossRef Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001; 291: 1304–51PubMedCrossRef
88.
Zurück zum Zitat International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921CrossRef International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921CrossRef
89.
90.
Zurück zum Zitat Desai MM, Zhang P, Hennessy CH. Surveillance for morbidity and mortality among older adults. United States, 1995–1996. Mor Mortal Wkly Rep CDC Surveill Summ 1999; 48(8): 7–25 Desai MM, Zhang P, Hennessy CH. Surveillance for morbidity and mortality among older adults. United States, 1995–1996. Mor Mortal Wkly Rep CDC Surveill Summ 1999; 48(8): 7–25
91.
Zurück zum Zitat Shoulson I. Experimental therapeutics of neurodegenerative disorders: unmet needs. Science 1998; 282: 1072–4PubMedCrossRef Shoulson I. Experimental therapeutics of neurodegenerative disorders: unmet needs. Science 1998; 282: 1072–4PubMedCrossRef
92.
Zurück zum Zitat Hock C, Heese K, Hulette C, et al. Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch Neurol 2000; 57(6): 846–51PubMedCrossRef Hock C, Heese K, Hulette C, et al. Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch Neurol 2000; 57(6): 846–51PubMedCrossRef
93.
Zurück zum Zitat Hock C, Heese K, Muller-Spahn F, et al. Increased CSF levels of nerve growth factor in patients with Alzheimer’s disease. Neurology 2000; 54(10): 2009–11PubMedCrossRef Hock C, Heese K, Muller-Spahn F, et al. Increased CSF levels of nerve growth factor in patients with Alzheimer’s disease. Neurology 2000; 54(10): 2009–11PubMedCrossRef
94.
Zurück zum Zitat Vawter MP, Dillon-Carter O, Tourtellotte WW, et al. TGFbeta2 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid. Exp Neurol 1996; 142(2): 313–22PubMedCrossRef Vawter MP, Dillon-Carter O, Tourtellotte WW, et al. TGFbeta2 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid. Exp Neurol 1996; 142(2): 313–22PubMedCrossRef
95.
Zurück zum Zitat Capsoni S, Ugolini G, Comparini A, et al. Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice. Proc Natl Acad Sci U S A 2000; 97(12): 6826–31PubMedCrossRef Capsoni S, Ugolini G, Comparini A, et al. Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice. Proc Natl Acad Sci U S A 2000; 97(12): 6826–31PubMedCrossRef
96.
Zurück zum Zitat Arakawa Y, Sendtner M, Thoenen H. Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneurons in culture: comparison with other neurotrophic factors and cytokines. J Neurosci 1990; 10(11): 3507–15PubMed Arakawa Y, Sendtner M, Thoenen H. Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneurons in culture: comparison with other neurotrophic factors and cytokines. J Neurosci 1990; 10(11): 3507–15PubMed
97.
Zurück zum Zitat Hefti F. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci 1986; 6(8): 2155–62PubMed Hefti F. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci 1986; 6(8): 2155–62PubMed
98.
Zurück zum Zitat Sendtner M, Holtmann B, Kolbeck R, et al. Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 1992; 360(6406): 757–9PubMedCrossRef Sendtner M, Holtmann B, Kolbeck R, et al. Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 1992; 360(6406): 757–9PubMedCrossRef
99.
Zurück zum Zitat Gluckman P, Klempt N, Guan J, et al. A role for IGF-I in the rescue of CNS neurons following hypoxic ischemic injury. Biochem Biophys Res Commun 1992; 182(2): 593–9PubMedCrossRef Gluckman P, Klempt N, Guan J, et al. A role for IGF-I in the rescue of CNS neurons following hypoxic ischemic injury. Biochem Biophys Res Commun 1992; 182(2): 593–9PubMedCrossRef
100.
Zurück zum Zitat Gross CC. Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 2000; 1: 67–73PubMedCrossRef Gross CC. Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 2000; 1: 67–73PubMedCrossRef
101.
Zurück zum Zitat Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4(11): 1313–7PubMedCrossRef Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4(11): 1313–7PubMedCrossRef
102.
Zurück zum Zitat Wagner JP, Black IB, DiCicco-Bloom E. Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. J Neurosci 1999; 19(14): 6006–16PubMed Wagner JP, Black IB, DiCicco-Bloom E. Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. J Neurosci 1999; 19(14): 6006–16PubMed
103.
Zurück zum Zitat Aberg MA, Aberg ND, Hedbacker H, et al. Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci 2000; 20(8): 2896–903PubMed Aberg MA, Aberg ND, Hedbacker H, et al. Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci 2000; 20(8): 2896–903PubMed
104.
Zurück zum Zitat Emilien G, Beyreuther K, Masters CL, et al. Prospects for pharmacological intervention in Alzheimer disease. Arch Neurol 2000; 57: 454–9PubMedCrossRef Emilien G, Beyreuther K, Masters CL, et al. Prospects for pharmacological intervention in Alzheimer disease. Arch Neurol 2000; 57: 454–9PubMedCrossRef
105.
Zurück zum Zitat Giacobini E. Cholinesterase inhibitor therapy stabilizes symptoms of Alzheimer disease. Alzheimer Dis Assoc Disord 2000; 14 Suppl. 1: S3–10PubMedCrossRef Giacobini E. Cholinesterase inhibitor therapy stabilizes symptoms of Alzheimer disease. Alzheimer Dis Assoc Disord 2000; 14 Suppl. 1: S3–10PubMedCrossRef
107.
Zurück zum Zitat Koliatsos VE, Clatterbuck RE, Nauta HJ, et al. Human nerve growth factor prevents degeneration of basal forebrain cholinergic neurons in primates. Ann Neurol 1991; 30(6): 831–40PubMedCrossRef Koliatsos VE, Clatterbuck RE, Nauta HJ, et al. Human nerve growth factor prevents degeneration of basal forebrain cholinergic neurons in primates. Ann Neurol 1991; 30(6): 831–40PubMedCrossRef
108.
Zurück zum Zitat Davson H, Welch K, Segal MB. Physiology and pathophysiology of the cerebrospinal fluid. Edinburgh: Churchill Livingstone, 1987 Davson H, Welch K, Segal MB. Physiology and pathophysiology of the cerebrospinal fluid. Edinburgh: Churchill Livingstone, 1987
109.
Zurück zum Zitat Greitz D. Cerebrospinal fluid circulation and associated intracranial dynamics: a radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol 1993; 34 Suppl. 386: 1–23 Greitz D. Cerebrospinal fluid circulation and associated intracranial dynamics: a radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol 1993; 34 Suppl. 386: 1–23
110.
Zurück zum Zitat Foldi M. The brain and the lymphatic system (I). Lymphology 1996; 29: 1–9PubMed Foldi M. The brain and the lymphatic system (I). Lymphology 1996; 29: 1–9PubMed
111.
Zurück zum Zitat Kida S, Pantazis A, Weiler RO. CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 1993; 19: 480–8PubMedCrossRef Kida S, Pantazis A, Weiler RO. CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 1993; 19: 480–8PubMedCrossRef
112.
Zurück zum Zitat Lowhagen P, Johansson BB, Nordborg C. The nasal route of cerebrospinal fluid drainage in man. A light-microscope study. Neuropathol Appl Neurobiol 1994; 20: 543–50PubMedCrossRef Lowhagen P, Johansson BB, Nordborg C. The nasal route of cerebrospinal fluid drainage in man. A light-microscope study. Neuropathol Appl Neurobiol 1994; 20: 543–50PubMedCrossRef
113.
Zurück zum Zitat Frey WH, Liu J, Chen X, et al. Delivery of 125I-NGF to the brain via the olfactory route. Drug Deliv 1997; 4: 87–92CrossRef Frey WH, Liu J, Chen X, et al. Delivery of 125I-NGF to the brain via the olfactory route. Drug Deliv 1997; 4: 87–92CrossRef
114.
Zurück zum Zitat Thorne RG, Emory CR, Ala TA, et al. Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res 1995; 692: 278–82PubMedCrossRef Thorne RG, Emory CR, Ala TA, et al. Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res 1995; 692: 278–82PubMedCrossRef
115.
Zurück zum Zitat Kroin JS. Intrathecal drug administration. Present use and future trends. Clin Pharmacokinet 1992; 22(5): 319–26PubMedCrossRef Kroin JS. Intrathecal drug administration. Present use and future trends. Clin Pharmacokinet 1992; 22(5): 319–26PubMedCrossRef
117.
Zurück zum Zitat McMartin C. Peptide and protein drugs. In: Welling PG, Balant LP, editors. Handbook of experimental pharmacology. Berlin: Springer-Verlag, 1994: 371–82 McMartin C. Peptide and protein drugs. In: Welling PG, Balant LP, editors. Handbook of experimental pharmacology. Berlin: Springer-Verlag, 1994: 371–82
118.
Zurück zum Zitat Egleton RD, Davis TP. Bioavailability and transport of peptides and peptide drugs into the brain. Peptides 1997; 18(9): 1431–9PubMedCrossRef Egleton RD, Davis TP. Bioavailability and transport of peptides and peptide drugs into the brain. Peptides 1997; 18(9): 1431–9PubMedCrossRef
119.
Zurück zum Zitat Braeckman R. Pharmacokinetics and pharmacodynamics of protein therapeutics. In: Reid RE, editor. Peptide and protein drug analysis. New York: Marcel Dekker, Inc., 2000: 633–69 Braeckman R. Pharmacokinetics and pharmacodynamics of protein therapeutics. In: Reid RE, editor. Peptide and protein drug analysis. New York: Marcel Dekker, Inc., 2000: 633–69
120.
121.
Zurück zum Zitat Taipale J, Keski-Oja J. Growth factors in the extracellular matrix. FASEB J 1997; 11(1): 51–9PubMed Taipale J, Keski-Oja J. Growth factors in the extracellular matrix. FASEB J 1997; 11(1): 51–9PubMed
122.
Zurück zum Zitat Øie S, Benet LZ. The effect of route of administration and distribution on drug action. In: Banker GS, Rhodes CT, editors. Modern pharmaceutics. 3rd ed. New York: Marcel Dekker, Inc., 1996: 155–78 Øie S, Benet LZ. The effect of route of administration and distribution on drug action. In: Banker GS, Rhodes CT, editors. Modern pharmaceutics. 3rd ed. New York: Marcel Dekker, Inc., 1996: 155–78
123.
Zurück zum Zitat Hunt CA, MacGregor RD, Siegel RA. Engineering targeted in vivo drug delivery: I. The physiological and physicochemical principles governing opportunities and limitations. Pharm Res 1986; 3: 333–44CrossRef Hunt CA, MacGregor RD, Siegel RA. Engineering targeted in vivo drug delivery: I. The physiological and physicochemical principles governing opportunities and limitations. Pharm Res 1986; 3: 333–44CrossRef
124.
Zurück zum Zitat Rowland M, McLachlan A. Pharmacokinetic considerations of regional administration and drug targeting: influence of site of input in target tissue and flux of binding protein. J Pharmacokinet Biopharm 1996; 24(4): 369–87PubMed Rowland M, McLachlan A. Pharmacokinetic considerations of regional administration and drug targeting: influence of site of input in target tissue and flux of binding protein. J Pharmacokinet Biopharm 1996; 24(4): 369–87PubMed
125.
Zurück zum Zitat McDonald NQ, Chao MV. Structural determinants of neurotrophin action. J Biol Chem 1995; 270(34): 19669–72PubMedCrossRef McDonald NQ, Chao MV. Structural determinants of neurotrophin action. J Biol Chem 1995; 270(34): 19669–72PubMedCrossRef
126.
127.
Zurück zum Zitat Perdue JF. Chemistry, structure, and function of insulin-like growth factors and their receptors: a review. Can J Biochem Cell Biol 1984; 62: 1237–45PubMedCrossRef Perdue JF. Chemistry, structure, and function of insulin-like growth factors and their receptors: a review. Can J Biochem Cell Biol 1984; 62: 1237–45PubMedCrossRef
128.
Zurück zum Zitat Thomas KA. Biochemistry and molecular biology of fibroblast growth factors. In: Loughlin SE, Fallon JH, editors. Neurotrophic factors. San Diego (CA): Academic Press, Inc., 1993: 285–312 Thomas KA. Biochemistry and molecular biology of fibroblast growth factors. In: Loughlin SE, Fallon JH, editors. Neurotrophic factors. San Diego (CA): Academic Press, Inc., 1993: 285–312
129.
Zurück zum Zitat Savage CR, Inagami T, Cohen S. The primary structure of epidermal growth factor. J Biol Chem 1972; 247: 7612–21PubMed Savage CR, Inagami T, Cohen S. The primary structure of epidermal growth factor. J Biol Chem 1972; 247: 7612–21PubMed
130.
Zurück zum Zitat Pan W, Banks WA, Kastin AJ. Permeability of the blood-brain barrier to neurotrophins. Brain Res 1998; 788: 87–94PubMedCrossRef Pan W, Banks WA, Kastin AJ. Permeability of the blood-brain barrier to neurotrophins. Brain Res 1998; 788: 87–94PubMedCrossRef
131.
Zurück zum Zitat Barnett J, Chow J, Nguyen B, et al. Physicochemical characterization of recombinant human nerve growth factor produced in insect cells with a baculovirus vector. J Neurochem 1991; 57: 1052–61PubMedCrossRef Barnett J, Chow J, Nguyen B, et al. Physicochemical characterization of recombinant human nerve growth factor produced in insect cells with a baculovirus vector. J Neurochem 1991; 57: 1052–61PubMedCrossRef
132.
Zurück zum Zitat Goldstein LD, Reynolds CP, Perez-Polo JR. Isolation of human nerve growth factor from placental tissue. Neurochem Res 1978; 3: 175–83PubMedCrossRef Goldstein LD, Reynolds CP, Perez-Polo JR. Isolation of human nerve growth factor from placental tissue. Neurochem Res 1978; 3: 175–83PubMedCrossRef
133.
Zurück zum Zitat Rusenko KW, Stach RW Interaction of [125I]β nerve growth factor with acidic proteins. Neurochem Res 1981; 6(3): 287–300PubMedCrossRef Rusenko KW, Stach RW Interaction of [125I]β nerve growth factor with acidic proteins. Neurochem Res 1981; 6(3): 287–300PubMedCrossRef
134.
Zurück zum Zitat Murase K, Takeuchi R, Iwata E, et al. Developmental changes in nerve growth factor level in rat serum. J Neurosci Res 1992; 33(2): 282–8PubMedCrossRef Murase K, Takeuchi R, Iwata E, et al. Developmental changes in nerve growth factor level in rat serum. J Neurosci Res 1992; 33(2): 282–8PubMedCrossRef
135.
Zurück zum Zitat Liebl DJ, Koo PH. Comparative binding of neurotrophins (NT-3, CNTF and NGF) and various cytokines to alpha 2-macroglobulin. Biochem Biophys Res Commun 1993; 193(3): 1255–61PubMedCrossRef Liebl DJ, Koo PH. Comparative binding of neurotrophins (NT-3, CNTF and NGF) and various cytokines to alpha 2-macroglobulin. Biochem Biophys Res Commun 1993; 193(3): 1255–61PubMedCrossRef
136.
Zurück zum Zitat Nguyen CB, Szonyi E, Sadick MD, et al. Stability and interactions of recombinant human nerve growth factor in different biological matrices: in vitro and in vivo studies. Drug Metab Dispos 2000; 28(5): 590–7PubMed Nguyen CB, Szonyi E, Sadick MD, et al. Stability and interactions of recombinant human nerve growth factor in different biological matrices: in vitro and in vivo studies. Drug Metab Dispos 2000; 28(5): 590–7PubMed
137.
Zurück zum Zitat DiStefano PS, Johnson EMJ. Identification of a truncated form of the nerve growth factor receptor. Proc Natl Acad Sci U S A 1988; 85(1): 270–4PubMedCrossRef DiStefano PS, Johnson EMJ. Identification of a truncated form of the nerve growth factor receptor. Proc Natl Acad Sci U S A 1988; 85(1): 270–4PubMedCrossRef
138.
Zurück zum Zitat Rinderknecht E, Humbel RE. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem 1978; 253(8): 2769–76PubMed Rinderknecht E, Humbel RE. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem 1978; 253(8): 2769–76PubMed
139.
Zurück zum Zitat Li CH, Yamashiro D, Gospodarowicz D, et al. Total synthesis of insulin-like growth factor I (somatomedin C). Proc Natl Acad Sci U S A 1983; 80: 2216–20PubMedCrossRef Li CH, Yamashiro D, Gospodarowicz D, et al. Total synthesis of insulin-like growth factor I (somatomedin C). Proc Natl Acad Sci U S A 1983; 80: 2216–20PubMedCrossRef
140.
Zurück zum Zitat Frystyk J, Skjaerbaek C, Dinesen B, et al. Free insulin-like growth factors (IGF-I and IGF-II) in human serum. FEBS Lett 1994; 348: 185–91PubMedCrossRef Frystyk J, Skjaerbaek C, Dinesen B, et al. Free insulin-like growth factors (IGF-I and IGF-II) in human serum. FEBS Lett 1994; 348: 185–91PubMedCrossRef
141.
Zurück zum Zitat Spagnoli A, Rosenfeld RG. Insulinlike growth factor binding proteins. Curr Opin Endocrinol Diabetes 1997; 4: 1–9CrossRef Spagnoli A, Rosenfeld RG. Insulinlike growth factor binding proteins. Curr Opin Endocrinol Diabetes 1997; 4: 1–9CrossRef
142.
Zurück zum Zitat Scott CD, Ballesteros M, Madrid J, et al. Soluble insulin-like growth factor-II/mannose 6-P receptor inhibits deoxyribonucleic acid synthesis in cultured rat hepatocytes. Endocrinology 1996; 137(3): 873–8PubMedCrossRef Scott CD, Ballesteros M, Madrid J, et al. Soluble insulin-like growth factor-II/mannose 6-P receptor inhibits deoxyribonucleic acid synthesis in cultured rat hepatocytes. Endocrinology 1996; 137(3): 873–8PubMedCrossRef
143.
Zurück zum Zitat Karey KP, Sirbasku DA. Glutaraldehyde fixation increases retention of low molecular weight proteins (growth factors) transferred to nylon membranes for western blot analysis. Anal Biochem 1989; 178: 255–9PubMedCrossRef Karey KP, Sirbasku DA. Glutaraldehyde fixation increases retention of low molecular weight proteins (growth factors) transferred to nylon membranes for western blot analysis. Anal Biochem 1989; 178: 255–9PubMedCrossRef
144.
Zurück zum Zitat Deguchi Y, Naito T, Yuge T, et al. Blood-brain barrier transport of 125I-labeled basic fibroblast growth factor. Pharm Res 2000; 17(1): 63–9PubMedCrossRef Deguchi Y, Naito T, Yuge T, et al. Blood-brain barrier transport of 125I-labeled basic fibroblast growth factor. Pharm Res 2000; 17(1): 63–9PubMedCrossRef
145.
Zurück zum Zitat Dennis PA, Saksela O, Harpel P, et al. Alpha 2-macroglobulin is a binding protein for basic fibroblast growth factor. J Biol Chem 1989; 264(13): 7210–6PubMed Dennis PA, Saksela O, Harpel P, et al. Alpha 2-macroglobulin is a binding protein for basic fibroblast growth factor. J Biol Chem 1989; 264(13): 7210–6PubMed
146.
Zurück zum Zitat Hanneken A, Ying W, Ling N, et al. Identification of soluble forms of the fibroblast growth factor receptor in blood. Proc Natl Acad Sci U S A 1994; 91(19): 9170–4PubMedCrossRef Hanneken A, Ying W, Ling N, et al. Identification of soluble forms of the fibroblast growth factor receptor in blood. Proc Natl Acad Sci U S A 1994; 91(19): 9170–4PubMedCrossRef
147.
Zurück zum Zitat Antoniades HN, Scher CD, Stiles CD. Purification of human platelet-derived growth factor. Proc Natl Acad Sci U S A 1979; 76(4): 1809–13PubMedCrossRef Antoniades HN, Scher CD, Stiles CD. Purification of human platelet-derived growth factor. Proc Natl Acad Sci U S A 1979; 76(4): 1809–13PubMedCrossRef
148.
Zurück zum Zitat Deuel TF, Huang JS, Proffitt RT, et al. Human platelet-derived growth factor. Purification and resolution into two active protein fractions. J Biol Chem 1981; 256(17): 8896–9PubMed Deuel TF, Huang JS, Proffitt RT, et al. Human platelet-derived growth factor. Purification and resolution into two active protein fractions. J Biol Chem 1981; 256(17): 8896–9PubMed
149.
Zurück zum Zitat Gonias SL, Carmichael A, Mettenburg JM, et al. Identical or overlapping sequences in the primary structure of human alpha(2)-macroglobulin are responsible for the binding of nerve growth factor-beta, platelet-derived growth factor-BB, and transforming growth factor-beta. J Biol Chem 2000; 275(8): 5826–31PubMedCrossRef Gonias SL, Carmichael A, Mettenburg JM, et al. Identical or overlapping sequences in the primary structure of human alpha(2)-macroglobulin are responsible for the binding of nerve growth factor-beta, platelet-derived growth factor-BB, and transforming growth factor-beta. J Biol Chem 2000; 275(8): 5826–31PubMedCrossRef
150.
Zurück zum Zitat Nexo E, Jorgensen PE, Hansen MR. Human epidermal growth factor-on molecular forms present in urine and blood. Regul Pept 1992; 42: 75–84PubMedCrossRef Nexo E, Jorgensen PE, Hansen MR. Human epidermal growth factor-on molecular forms present in urine and blood. Regul Pept 1992; 42: 75–84PubMedCrossRef
151.
152.
Zurück zum Zitat Kim DC, Sugiyama Y, Fuwa T, et al. Kinetic analysis of the elimination process of human epidermal growth factor (hEGF) in rats. Biochem Pharmacol 1989; 38(2): 241–9PubMedCrossRef Kim DC, Sugiyama Y, Fuwa T, et al. Kinetic analysis of the elimination process of human epidermal growth factor (hEGF) in rats. Biochem Pharmacol 1989; 38(2): 241–9PubMedCrossRef
153.
Zurück zum Zitat Nieto-Sampedro M, Broderick JT. A soluble brain molecule related to epidermal growth factor receptor is a mitogen inhibitor for astrocytes. J Neurosci Res 1989; 22(1): 28–35PubMedCrossRef Nieto-Sampedro M, Broderick JT. A soluble brain molecule related to epidermal growth factor receptor is a mitogen inhibitor for astrocytes. J Neurosci Res 1989; 22(1): 28–35PubMedCrossRef
154.
Zurück zum Zitat Negro A, Corona G, Bigon E, et al. Synthesis, purification, and characterization of human ciliary neuronotrophic factor from E. coli. J Neurosci Res 1991; 29: 251–60PubMedCrossRef Negro A, Corona G, Bigon E, et al. Synthesis, purification, and characterization of human ciliary neuronotrophic factor from E. coli. J Neurosci Res 1991; 29: 251–60PubMedCrossRef
155.
Zurück zum Zitat Marquardt H, Hunkapiller MW, Hood LE, et al. Rat transforming growth factor type 1: structure and relation to epidermal growth factor. Science 1984; 223: 1079–82PubMedCrossRef Marquardt H, Hunkapiller MW, Hood LE, et al. Rat transforming growth factor type 1: structure and relation to epidermal growth factor. Science 1984; 223: 1079–82PubMedCrossRef
156.
Zurück zum Zitat Kuo K-W, Yeh H-W, Chu DZJ, et al. Separation and microanalysis of growth factors by Phast system gel electrophoresis and by DNA synthesis in cell culture. J Chromatogr B Biomed Sci Appl 1991; 543: 463–70 Kuo K-W, Yeh H-W, Chu DZJ, et al. Separation and microanalysis of growth factors by Phast system gel electrophoresis and by DNA synthesis in cell culture. J Chromatogr B Biomed Sci Appl 1991; 543: 463–70
157.
Zurück zum Zitat Pan W, Vallance K, Kastin AJ. TGFa and the blood-brain barrier: accumulation in cerebral vasculature. Exp Neurol 1999; 160: 454–9PubMedCrossRef Pan W, Vallance K, Kastin AJ. TGFa and the blood-brain barrier: accumulation in cerebral vasculature. Exp Neurol 1999; 160: 454–9PubMedCrossRef
158.
Zurück zum Zitat Malamud D, Drysdale JW. Isoelectric points of proteins: a table. Anal Biochem 1978; 86: 620–47PubMedCrossRef Malamud D, Drysdale JW. Isoelectric points of proteins: a table. Anal Biochem 1978; 86: 620–47PubMedCrossRef
159.
Zurück zum Zitat Shulz RM, Liebman MN. Proteins I: composition and structure. In: Devlin TM, editor. Textbook of biochemistry with clinical correlations. 3rd ed. New York: Wiley, 1992: 25–88 Shulz RM, Liebman MN. Proteins I: composition and structure. In: Devlin TM, editor. Textbook of biochemistry with clinical correlations. 3rd ed. New York: Wiley, 1992: 25–88
160.
Zurück zum Zitat Banks WA, Kastin AJ. Peptides and the blood-brain barrier: lipophilicity as a predictor of permeability. Brain Res Bull 1985; 15: 287–92PubMedCrossRef Banks WA, Kastin AJ. Peptides and the blood-brain barrier: lipophilicity as a predictor of permeability. Brain Res Bull 1985; 15: 287–92PubMedCrossRef
161.
Zurück zum Zitat Rockich KT, Hatten JC, Kryscio RJ, et al. Effect of recombinant human growth hormone and insulin-like growth factor-1 administration on IGF-1 and IGF-binding protein-3 levels in brain injury. Pharmacotherapy 1999; 19(12): 1432–6PubMedCrossRef Rockich KT, Hatten JC, Kryscio RJ, et al. Effect of recombinant human growth hormone and insulin-like growth factor-1 administration on IGF-1 and IGF-binding protein-3 levels in brain injury. Pharmacotherapy 1999; 19(12): 1432–6PubMedCrossRef
162.
Zurück zum Zitat Kupfer SR, Underwood LE, Baxter RC, et al. Enhancement of the anabolic effects of growth hormone and insulin-like growth factor I by use of both agents simultaneously. J Clin Invest 1993; 91(2): 391–6PubMedCrossRef Kupfer SR, Underwood LE, Baxter RC, et al. Enhancement of the anabolic effects of growth hormone and insulin-like growth factor I by use of both agents simultaneously. J Clin Invest 1993; 91(2): 391–6PubMedCrossRef
163.
Zurück zum Zitat Blomback B, Hanson LA, editors. Plasma proteins. Chichester: John Wiley & Sons, 1979 Blomback B, Hanson LA, editors. Plasma proteins. Chichester: John Wiley & Sons, 1979
164.
Zurück zum Zitat Calissano P, Cozzari C. Interaction of nerve growth factor with the mouse-brain neurotubule protein(s). Proc Natl Acad Sci U S A 1974; 71(5): 2131–5PubMedCrossRef Calissano P, Cozzari C. Interaction of nerve growth factor with the mouse-brain neurotubule protein(s). Proc Natl Acad Sci U S A 1974; 71(5): 2131–5PubMedCrossRef
165.
Zurück zum Zitat Hoener MC, Varon S. Reversible sedimentation and masking of nerve growth factor (NGF) antigen by high molecular weight fractions from rat brain. Brain Res 1997; 772: 1–8PubMedCrossRef Hoener MC, Varon S. Reversible sedimentation and masking of nerve growth factor (NGF) antigen by high molecular weight fractions from rat brain. Brain Res 1997; 772: 1–8PubMedCrossRef
166.
Zurück zum Zitat Koo PH, Stach RW Interaction of nerve growth factor with murine alpha-macroglobulin. J Neurosci Res 1989; 22(3): 247–61PubMedCrossRef Koo PH, Stach RW Interaction of nerve growth factor with murine alpha-macroglobulin. J Neurosci Res 1989; 22(3): 247–61PubMedCrossRef
167.
Zurück zum Zitat Hintzen RQ, van Lier RA, Kuijpers KC, et al. Elevated levels of a soluble form of the T cell activation antigen CD27 in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 1991; 35(1-3): 211–7PubMedCrossRef Hintzen RQ, van Lier RA, Kuijpers KC, et al. Elevated levels of a soluble form of the T cell activation antigen CD27 in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 1991; 35(1-3): 211–7PubMedCrossRef
168.
Zurück zum Zitat Clemmons DR, Jones JI, Busby WH, et al. Role of insulin-like growth factor binding proteins in modifying IGF actions. Ann N Y Acad Sci 1993; 692: 10–21PubMedCrossRef Clemmons DR, Jones JI, Busby WH, et al. Role of insulin-like growth factor binding proteins in modifying IGF actions. Ann N Y Acad Sci 1993; 692: 10–21PubMedCrossRef
169.
Zurück zum Zitat Tanaka Y, Kitao K, Hata T, et al. Kidney as an important metabolic organ for recombinant human insulin-like growth factor-I. Res Commun Mol Pathol Pharmacol 1997; 96(3): 267–76PubMed Tanaka Y, Kitao K, Hata T, et al. Kidney as an important metabolic organ for recombinant human insulin-like growth factor-I. Res Commun Mol Pathol Pharmacol 1997; 96(3): 267–76PubMed
170.
Zurück zum Zitat Froesch ER, Zapf J. Insulin-like growth factors and insulin: comparative aspects. Diabetologia 1985; 28: 485–93PubMedCrossRef Froesch ER, Zapf J. Insulin-like growth factors and insulin: comparative aspects. Diabetologia 1985; 28: 485–93PubMedCrossRef
171.
Zurück zum Zitat Frystyk J, Gronbaek H, Skjaerbaek C, et al. Effect of hyperthyroidism on circulating levels of free and total IGF-1 and IGFBPs in rats. Am J Physiol 1995; 269: E840–5PubMed Frystyk J, Gronbaek H, Skjaerbaek C, et al. Effect of hyperthyroidism on circulating levels of free and total IGF-1 and IGFBPs in rats. Am J Physiol 1995; 269: E840–5PubMed
172.
Zurück zum Zitat Skjaerbaek C, Frystyk J, Grofte T, et al. Serum free insulin-like growth factor-I is dose-dependently decreased by methylprednisolone and related to body weight changes in rats. Growth Horm IGF Res 1999; 9: 74–80PubMedCrossRef Skjaerbaek C, Frystyk J, Grofte T, et al. Serum free insulin-like growth factor-I is dose-dependently decreased by methylprednisolone and related to body weight changes in rats. Growth Horm IGF Res 1999; 9: 74–80PubMedCrossRef
173.
Zurück zum Zitat Loddick SA, Liu X-J, Lu Z-X, et al. Displacement of insulin-like growth factors from their binding proteins as a potential treatment for stroke. Proc Natl Acad Sci U S A 1998; 95: 1894–8PubMedCrossRef Loddick SA, Liu X-J, Lu Z-X, et al. Displacement of insulin-like growth factors from their binding proteins as a potential treatment for stroke. Proc Natl Acad Sci U S A 1998; 95: 1894–8PubMedCrossRef
174.
Zurück zum Zitat Ocrant I, Fay CT, Parmelee JT. Characterization of insulin-like growth factor binding proteins produced in the rat central nervous system. Endocrinology 1990; 127(3): 1260–7PubMedCrossRef Ocrant I, Fay CT, Parmelee JT. Characterization of insulin-like growth factor binding proteins produced in the rat central nervous system. Endocrinology 1990; 127(3): 1260–7PubMedCrossRef
175.
Zurück zum Zitat LeRoith D, Roberts Jr CT, Werner H, Bondy C, et al. Insulin-like growth factors in the brain. In: Loughlin SE, Fallon JH, editors. Neurotrophic factors. San Diego (CA): Academic Press, Inc., 1993: 391–414 LeRoith D, Roberts Jr CT, Werner H, Bondy C, et al. Insulin-like growth factors in the brain. In: Loughlin SE, Fallon JH, editors. Neurotrophic factors. San Diego (CA): Academic Press, Inc., 1993: 391–414
176.
Zurück zum Zitat Clairmont KB, Czech MP. Extracellular release as the major degradative pathway of the insulin-like growth factor II/mannose 6-phosphate receptor. J Biol Chem 1991; 266(19): 12131–4PubMed Clairmont KB, Czech MP. Extracellular release as the major degradative pathway of the insulin-like growth factor II/mannose 6-phosphate receptor. J Biol Chem 1991; 266(19): 12131–4PubMed
177.
Zurück zum Zitat Hanneken A, Frautschy S, Galasko D, et al. A fibroblast growth factor binding protein in human cerebral spinal fluid. Neuroreport 1995; 6(6): 886–8PubMedCrossRef Hanneken A, Frautschy S, Galasko D, et al. A fibroblast growth factor binding protein in human cerebral spinal fluid. Neuroreport 1995; 6(6): 886–8PubMedCrossRef
178.
Zurück zum Zitat Zaina S, Newton RV, Paul MR, et al. Local reduction of organ size in transgenic mice expressing a soluble insulin-like growth factor II/mannose-6-phosphate receptor. Endocrinology 1998; 139(9): 3886–95PubMedCrossRef Zaina S, Newton RV, Paul MR, et al. Local reduction of organ size in transgenic mice expressing a soluble insulin-like growth factor II/mannose-6-phosphate receptor. Endocrinology 1998; 139(9): 3886–95PubMedCrossRef
179.
Zurück zum Zitat Fung LK, Ewend MG, Sills A, et al. Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res 1998; 58(4): 672–84PubMed Fung LK, Ewend MG, Sills A, et al. Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res 1998; 58(4): 672–84PubMed
180.
Zurück zum Zitat Zoli M, Jansson A, Syková E, et al. Volume transmission in the CNS and its relevance for neuropsychopharmacology. Trends Pharmacol Sci 1999; 20: 142–50PubMedCrossRef Zoli M, Jansson A, Syková E, et al. Volume transmission in the CNS and its relevance for neuropsychopharmacology. Trends Pharmacol Sci 1999; 20: 142–50PubMedCrossRef
181.
Zurück zum Zitat Rennels ML, Gregory TF, Blaumanis OR, et al. Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 1985; 326(1): 47–63PubMedCrossRef Rennels ML, Gregory TF, Blaumanis OR, et al. Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 1985; 326(1): 47–63PubMedCrossRef
182.
Zurück zum Zitat Nicholson C, Syková E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci 1998; 21(5): 207–15PubMedCrossRef Nicholson C, Syková E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci 1998; 21(5): 207–15PubMedCrossRef
183.
Zurück zum Zitat Krewson CE, Klarman ML, Saltzman WM. Distribution of nerve growth factor following direct delivery to brain interstitium. Brain Res 1995; 680(1-2): 196–206PubMedCrossRef Krewson CE, Klarman ML, Saltzman WM. Distribution of nerve growth factor following direct delivery to brain interstitium. Brain Res 1995; 680(1-2): 196–206PubMedCrossRef
184.
Zurück zum Zitat Muramatsu N, Minton AP. Tracer diffusion of globular proteins in concentrated protein solutions. Proc Natl Acad Sci U S A 1988; 85: 2984–8PubMedCrossRef Muramatsu N, Minton AP. Tracer diffusion of globular proteins in concentrated protein solutions. Proc Natl Acad Sci U S A 1988; 85: 2984–8PubMedCrossRef
185.
186.
Zurück zum Zitat Fenstermacher J, Kaye T. Drug ‘diffusion’ within the brain. Ann N Y Acad Sci 1988; 531: 29–39PubMedCrossRef Fenstermacher J, Kaye T. Drug ‘diffusion’ within the brain. Ann N Y Acad Sci 1988; 531: 29–39PubMedCrossRef
187.
Zurück zum Zitat Tao L, Nicholson C. Diffusion of albumins in rat cortical slices and relevance to volume transmission. Neuroscience 1996; 75(3): 839–47PubMedCrossRef Tao L, Nicholson C. Diffusion of albumins in rat cortical slices and relevance to volume transmission. Neuroscience 1996; 75(3): 839–47PubMedCrossRef
188.
Zurück zum Zitat Nicholson C, Tao L. Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys J 1993; 65(6): 2277–90PubMedCrossRef Nicholson C, Tao L. Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys J 1993; 65(6): 2277–90PubMedCrossRef
189.
Zurück zum Zitat Busch NA, Kim T, Bloomfield VA. Tracer diffusion of proteins in DNA solutions. 2. Green fluorescent protein in crowded DNA solutions. Macromolecules 2000; 33: 5932–7CrossRef Busch NA, Kim T, Bloomfield VA. Tracer diffusion of proteins in DNA solutions. 2. Green fluorescent protein in crowded DNA solutions. Macromolecules 2000; 33: 5932–7CrossRef
190.
Zurück zum Zitat Berg HC. Random walks in biology. Princeton (NJ): Princeton University Press, 1993 Berg HC. Random walks in biology. Princeton (NJ): Princeton University Press, 1993
191.
Zurück zum Zitat Saltzman WM, Mak MW, Mahoney MJ, et al. Intracranial delivery of recombinant nerve growth factor: release kinetics and protein distribution for three delivery systems. Pharm Res 1999; 16(2): 232–40PubMedCrossRef Saltzman WM, Mak MW, Mahoney MJ, et al. Intracranial delivery of recombinant nerve growth factor: release kinetics and protein distribution for three delivery systems. Pharm Res 1999; 16(2): 232–40PubMedCrossRef
192.
Zurück zum Zitat Haller MF, Saltzman WM. Localized delivery of proteins in the brain: can transport be customized? Pharm Res 1998; 15(3): 377–85PubMedCrossRef Haller MF, Saltzman WM. Localized delivery of proteins in the brain: can transport be customized? Pharm Res 1998; 15(3): 377–85PubMedCrossRef
193.
Zurück zum Zitat Ferguson IA, Schweitzer JB, Bartlett PF, et al. Receptor-mediated retrograde transport in CNS neurons after intraventricular administration of NGF and growth factors. J Comp Neurol 1991; 313(4): 680–92PubMedCrossRef Ferguson IA, Schweitzer JB, Bartlett PF, et al. Receptor-mediated retrograde transport in CNS neurons after intraventricular administration of NGF and growth factors. J Comp Neurol 1991; 313(4): 680–92PubMedCrossRef
194.
Zurück zum Zitat Yan Q, Matheson C, Sun J, et al. Distribution of intracerebral ventricularly administered neurotrophins in rat brain and its correlation with Trk receptor expression. Exp Neurol 1994; 127: 23–36PubMedCrossRef Yan Q, Matheson C, Sun J, et al. Distribution of intracerebral ventricularly administered neurotrophins in rat brain and its correlation with Trk receptor expression. Exp Neurol 1994; 127: 23–36PubMedCrossRef
195.
Zurück zum Zitat Mufson EJ, Kroin JS, Liu Y-T, et al. Intrastriatal and intraventricular infusion of brain-derived neurotrophic factor in the cynomologous monkey: distribution, retrograde transport and co-localization with substantia nigra dopamine-containing neurons. Neuroscience 1996; 71(1): 179–91PubMedCrossRef Mufson EJ, Kroin JS, Liu Y-T, et al. Intrastriatal and intraventricular infusion of brain-derived neurotrophic factor in the cynomologous monkey: distribution, retrograde transport and co-localization with substantia nigra dopamine-containing neurons. Neuroscience 1996; 71(1): 179–91PubMedCrossRef
196.
Zurück zum Zitat Brightman MW. The intracerebral movement of proteins injected into blood and cerebrospinal fluid of mice. Prog Brain Res 1968; 29: 19–40PubMedCrossRef Brightman MW. The intracerebral movement of proteins injected into blood and cerebrospinal fluid of mice. Prog Brain Res 1968; 29: 19–40PubMedCrossRef
197.
Zurück zum Zitat Hutchings M, Weller RO. Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg 1986; 65(3): 316–25PubMedCrossRef Hutchings M, Weller RO. Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg 1986; 65(3): 316–25PubMedCrossRef
198.
Zurück zum Zitat Ichimura T, Fraser PA, Cserr HE Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res 1991; 545(1-2): 103–13PubMedCrossRef Ichimura T, Fraser PA, Cserr HE Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res 1991; 545(1-2): 103–13PubMedCrossRef
199.
Zurück zum Zitat Guan J, Beilharz EJ, Skinner SJ, et al. Intracerebral transportation and cellular localisation of insulin-like growth factor-1 following central administration to rats with hypoxic-ischemic brain injury. Brain Res 2000; 853(2): 163–73PubMedCrossRef Guan J, Beilharz EJ, Skinner SJ, et al. Intracerebral transportation and cellular localisation of insulin-like growth factor-1 following central administration to rats with hypoxic-ischemic brain injury. Brain Res 2000; 853(2): 163–73PubMedCrossRef
200.
Zurück zum Zitat Guan J, Skinner SJ, Beilharz EJ, et al. The movement of IGF-I into the brain parenchyma after hypoxic-ischaemic injury. Neuroreport 1996; 7(2): 632–6PubMedCrossRef Guan J, Skinner SJ, Beilharz EJ, et al. The movement of IGF-I into the brain parenchyma after hypoxic-ischaemic injury. Neuroreport 1996; 7(2): 632–6PubMedCrossRef
201.
Zurück zum Zitat Olson L, Backlund EO, Ebendal T, et al. Intraputaminal infusion of nerve growth factor to support adrenal medullary autografts in Parkinson’s disease. One-year follow-up of first clinical trial. Arch Neurol 1991; 48(4): 373–81PubMedCrossRef Olson L, Backlund EO, Ebendal T, et al. Intraputaminal infusion of nerve growth factor to support adrenal medullary autografts in Parkinson’s disease. One-year follow-up of first clinical trial. Arch Neurol 1991; 48(4): 373–81PubMedCrossRef
202.
Zurück zum Zitat Olson L, Nordberg A, von Holst H, et al. Nerve growth factor affects 11C-nicotine binding, blood flow, EEG, and verbal episodic memory in an Alzheimer patient (case report). J Neural Transm Park Dis Dement Sect 1992; 4(1): 79–95PubMedCrossRef Olson L, Nordberg A, von Holst H, et al. Nerve growth factor affects 11C-nicotine binding, blood flow, EEG, and verbal episodic memory in an Alzheimer patient (case report). J Neural Transm Park Dis Dement Sect 1992; 4(1): 79–95PubMedCrossRef
203.
Zurück zum Zitat Jönhagen ME, Nordberg A, Amberla K, et al. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 1998; 9: 246–57CrossRef Jönhagen ME, Nordberg A, Amberla K, et al. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 1998; 9: 246–57CrossRef
204.
Zurück zum Zitat Petty BG, Cornblath DR, Adornate BT, et al. The effect of systemically administered recombinant human nerve growth factor in healthy human subjects. Ann Neurol 1994; 36: 244–6PubMedCrossRef Petty BG, Cornblath DR, Adornate BT, et al. The effect of systemically administered recombinant human nerve growth factor in healthy human subjects. Ann Neurol 1994; 36: 244–6PubMedCrossRef
205.
Zurück zum Zitat Cedarbaum JM, Chapman C, Charatan M, et al. The pharmacokinetics of subcutaneously administered recombinant human ciliary neurotrophic factor (rHCNTF) in patients with amyotrophic lateral sclerosis: relation to parameters of the acutephase response. The ALS CNTF Treatment Study (ACTS) Phase I–II Study Group. Clin Neuropharmacol 1995; 18(6): 500–14CrossRef Cedarbaum JM, Chapman C, Charatan M, et al. The pharmacokinetics of subcutaneously administered recombinant human ciliary neurotrophic factor (rHCNTF) in patients with amyotrophic lateral sclerosis: relation to parameters of the acutephase response. The ALS CNTF Treatment Study (ACTS) Phase I–II Study Group. Clin Neuropharmacol 1995; 18(6): 500–14CrossRef
206.
Zurück zum Zitat Aebischer P, Schluep M, Deglon N, et al. Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells in amyotrophic lateral sclerosis patients. Nat Med 1996; 2(6): 696–9PubMedCrossRef Aebischer P, Schluep M, Deglon N, et al. Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells in amyotrophic lateral sclerosis patients. Nat Med 1996; 2(6): 696–9PubMedCrossRef
207.
Zurück zum Zitat Penn RD, Kroin JS, York MM, et al. Intrathecal ciliary neurotrophic factor delivery for treatment of amyotrophic lateral sclerosis (phase I trial). Neurosurgery 1997; 40(1): 94–9PubMed Penn RD, Kroin JS, York MM, et al. Intrathecal ciliary neurotrophic factor delivery for treatment of amyotrophic lateral sclerosis (phase I trial). Neurosurgery 1997; 40(1): 94–9PubMed
208.
Zurück zum Zitat Ochs G, Giess R, Bendszus M, et al. Epi-arachnoidal drug deposit: a rare complication of intrathecal drug therapy. J Pain Symptom Manage 1999; 18(3): 229–32PubMedCrossRef Ochs G, Giess R, Bendszus M, et al. Epi-arachnoidal drug deposit: a rare complication of intrathecal drug therapy. J Pain Symptom Manage 1999; 18(3): 229–32PubMedCrossRef
209.
Zurück zum Zitat Broadwell RD. Transcytosis of macromolecules through the blood-brain barrier: a cell biological perspective and critical appraisal. Acta Neuropathol (Berl) 1989; 79: 117–28CrossRef Broadwell RD. Transcytosis of macromolecules through the blood-brain barrier: a cell biological perspective and critical appraisal. Acta Neuropathol (Berl) 1989; 79: 117–28CrossRef
210.
Zurück zum Zitat Broadwell RD, Balin BJ, Salcman M. Transcytotic pathway for blood-borne protein through the blood-brain barrier. Proc Natl Acad Sci U S A 1988; 85: 632–6PubMedCrossRef Broadwell RD, Balin BJ, Salcman M. Transcytotic pathway for blood-borne protein through the blood-brain barrier. Proc Natl Acad Sci U S A 1988; 85: 632–6PubMedCrossRef
211.
Zurück zum Zitat Poduslo JF, Curran GL, Berg CT. Macromolecular permeability across the blood-nerve and blood-brain barriers. Proc Natl Acad Sci U S A 1994; 91(12): 5705–9PubMedCrossRef Poduslo JF, Curran GL, Berg CT. Macromolecular permeability across the blood-nerve and blood-brain barriers. Proc Natl Acad Sci U S A 1994; 91(12): 5705–9PubMedCrossRef
212.
Zurück zum Zitat Pan W, Banks WA, Fasold MB, et al. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 1998; 37(12): 1553–61PubMedCrossRef Pan W, Banks WA, Fasold MB, et al. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 1998; 37(12): 1553–61PubMedCrossRef
213.
Zurück zum Zitat Friden PM, Walus LR, Watson P, et al. Blood-brain barrier penetration and in vivo activity of an NGF conjugate. Science 1993; 259: 373–7PubMedCrossRef Friden PM, Walus LR, Watson P, et al. Blood-brain barrier penetration and in vivo activity of an NGF conjugate. Science 1993; 259: 373–7PubMedCrossRef
214.
Zurück zum Zitat Wu D, Pardridge WM. Neuroprotection with noninvasive neurotrophin delivery to the brain. Proc Natl Acad Sci U S A 1999; 96(1): 254–9PubMedCrossRef Wu D, Pardridge WM. Neuroprotection with noninvasive neurotrophin delivery to the brain. Proc Natl Acad Sci U S A 1999; 96(1): 254–9PubMedCrossRef
215.
Zurück zum Zitat Jiao S, Miller PJ, Lapchak PA. Enhanced delivery of [125I]glial cell line-derived neurotrophic factor to the rat CNS following osmotic blood-brain barrier modification. Neurosci Lett 1996; 220(3): 187–90PubMedCrossRef Jiao S, Miller PJ, Lapchak PA. Enhanced delivery of [125I]glial cell line-derived neurotrophic factor to the rat CNS following osmotic blood-brain barrier modification. Neurosci Lett 1996; 220(3): 187–90PubMedCrossRef
216.
Zurück zum Zitat Apfel SC. Neurotrophic factors in the therapy of diabetic neuropathy. Am J Med 1999; 107 Suppl. 2B: S34–42CrossRef Apfel SC. Neurotrophic factors in the therapy of diabetic neuropathy. Am J Med 1999; 107 Suppl. 2B: S34–42CrossRef
217.
Zurück zum Zitat Apfel SC, Kessler JA. Neurotrophic factors in the treatment of peripheral neuropathy. Ciba Found Symp 1996; 196: 98–108PubMed Apfel SC, Kessler JA. Neurotrophic factors in the treatment of peripheral neuropathy. Ciba Found Symp 1996; 196: 98–108PubMed
218.
Zurück zum Zitat Hefti F, editor. Neurotrophic factors. Berlin: Springer-Verlag, 1999 Hefti F, editor. Neurotrophic factors. Berlin: Springer-Verlag, 1999
219.
Zurück zum Zitat Cedarbaum JM, Chapman C, Charatan M, et al. A phase I study of recombinant human ciliary neurotrophic factor (rHCNTF) in patients with amyotrophic lateral sclerosis. The ALS CNTF Treatment Study (ACTS) Phase I–II Study Group. Clin Neuropharmacol 1995; 18(6): 515–32CrossRef Cedarbaum JM, Chapman C, Charatan M, et al. A phase I study of recombinant human ciliary neurotrophic factor (rHCNTF) in patients with amyotrophic lateral sclerosis. The ALS CNTF Treatment Study (ACTS) Phase I–II Study Group. Clin Neuropharmacol 1995; 18(6): 515–32CrossRef
220.
Zurück zum Zitat Cedarbaum JM, Chapman C, Charatan M, et al. A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. ALS CNTF Treatment Study Group. Neurology 1996; 46(5): 1244–9CrossRef Cedarbaum JM, Chapman C, Charatan M, et al. A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. ALS CNTF Treatment Study Group. Neurology 1996; 46(5): 1244–9CrossRef
221.
Zurück zum Zitat Boroujerdi MA, Sonksen PH, Jones RH. A compartmental model for simulation of IGF-I kinetics and metabolism. Methods Inf Med 1994; 33: 514–21PubMed Boroujerdi MA, Sonksen PH, Jones RH. A compartmental model for simulation of IGF-I kinetics and metabolism. Methods Inf Med 1994; 33: 514–21PubMed
222.
Zurück zum Zitat Frystyk J, Hussain M, Skjaerbaek C, et al. The pharmacokinetics of free insulin-like growth factor-I in healthy subjects. Growth Horm IGF Res 1999; 9: 150–6PubMedCrossRef Frystyk J, Hussain M, Skjaerbaek C, et al. The pharmacokinetics of free insulin-like growth factor-I in healthy subjects. Growth Horm IGF Res 1999; 9: 150–6PubMedCrossRef
223.
Zurück zum Zitat Skjaerbaek C, Frystyk J, Kaal A, et al. Circadian variation in serum free and total insulin-like growth factor (IGF)-I and IGF-II in untreated and treated acromegaly and growth hormone deficiency. Clin Endocrinol (Oxf) 2000; 52: 25–33CrossRef Skjaerbaek C, Frystyk J, Kaal A, et al. Circadian variation in serum free and total insulin-like growth factor (IGF)-I and IGF-II in untreated and treated acromegaly and growth hormone deficiency. Clin Endocrinol (Oxf) 2000; 52: 25–33CrossRef
224.
Zurück zum Zitat Reinhardt RR, Bondy CA. Insulin-like growth factors cross the blood-brain barrier. Endocrinology 1994; 135(5): 1753–61PubMedCrossRef Reinhardt RR, Bondy CA. Insulin-like growth factors cross the blood-brain barrier. Endocrinology 1994; 135(5): 1753–61PubMedCrossRef
225.
Zurück zum Zitat Bondy CA, Lee W-H. Patterns of insulin-like growth factor and IGF receptor gene expression in the brain: functional implications. Ann N Y Acad Sci 1993; 692: 33–43PubMedCrossRef Bondy CA, Lee W-H. Patterns of insulin-like growth factor and IGF receptor gene expression in the brain: functional implications. Ann N Y Acad Sci 1993; 692: 33–43PubMedCrossRef
226.
Zurück zum Zitat Pardridge WM. Transport of insulin-related peptides and glucose across the blood-brain barrier. Ann N Y Acad Sci 1993; 692: 126–37PubMedCrossRef Pardridge WM. Transport of insulin-related peptides and glucose across the blood-brain barrier. Ann N Y Acad Sci 1993; 692: 126–37PubMedCrossRef
227.
Zurück zum Zitat Mackic JB, Weiss MH, Miao W, et al. Cerebrovascular accumulation and increased blood-brain barrier permeability to circulating Alzheimer’s amyloid beta peptide in aged squirrel monkey with cerebral amyloid angiopathy. J Neurochem 1998; 70(1): 210–5PubMedCrossRef Mackic JB, Weiss MH, Miao W, et al. Cerebrovascular accumulation and increased blood-brain barrier permeability to circulating Alzheimer’s amyloid beta peptide in aged squirrel monkey with cerebral amyloid angiopathy. J Neurochem 1998; 70(1): 210–5PubMedCrossRef
228.
Zurück zum Zitat Nitsch C, Goping G, Laursen H, et al. The blood-brain barrier to horseradish peroxidase at the onset of bicuculline-induced seizures in hypothalamus, pallidum, hippocampus, and other selected regions of the rabbit. Acta Neuropathol (Berl) 1986; 69(1-2): 1–16CrossRef Nitsch C, Goping G, Laursen H, et al. The blood-brain barrier to horseradish peroxidase at the onset of bicuculline-induced seizures in hypothalamus, pallidum, hippocampus, and other selected regions of the rabbit. Acta Neuropathol (Berl) 1986; 69(1-2): 1–16CrossRef
229.
Zurück zum Zitat Plateel M, Teissier E, Cecchelli R. Hypoxia dramatically increases the nonspecific transport of blood-borne proteins to the brain. J Neurochem 1997; 68(2): 874–7PubMedCrossRef Plateel M, Teissier E, Cecchelli R. Hypoxia dramatically increases the nonspecific transport of blood-borne proteins to the brain. J Neurochem 1997; 68(2): 874–7PubMedCrossRef
230.
Zurück zum Zitat Albayrak S, Zhao Q, Siesjo BK, et al. Effect of transient focal ischemia on blood-brain barrier permeability in the rat: correlation to cell injury. Acta Neuropathol (Berl) 1997; 94(2): 158–63CrossRef Albayrak S, Zhao Q, Siesjo BK, et al. Effect of transient focal ischemia on blood-brain barrier permeability in the rat: correlation to cell injury. Acta Neuropathol (Berl) 1997; 94(2): 158–63CrossRef
231.
Zurück zum Zitat Preston E, Foster DO. Evidence for pore-like opening of the blood-brain barrierfollowing forebrain ischemia in rats. Brain Res 1997; 761(1): 4–10PubMedCrossRef Preston E, Foster DO. Evidence for pore-like opening of the blood-brain barrierfollowing forebrain ischemia in rats. Brain Res 1997; 761(1): 4–10PubMedCrossRef
232.
Zurück zum Zitat Tuomanen E. Entry of pathogens into the central nervous system. FEMS Microbiol Rev 1996; 18(4): 289–99PubMedCrossRef Tuomanen E. Entry of pathogens into the central nervous system. FEMS Microbiol Rev 1996; 18(4): 289–99PubMedCrossRef
233.
Zurück zum Zitat de Vries HE, Blom-Roosemalen MC, de Boer AG, et al. Effect of endotoxin on permeability of bovine cerebral endothelial cell layers in vitro. J Pharmacol Exp Ther 1996; 277(3): 1418–23PubMed de Vries HE, Blom-Roosemalen MC, de Boer AG, et al. Effect of endotoxin on permeability of bovine cerebral endothelial cell layers in vitro. J Pharmacol Exp Ther 1996; 277(3): 1418–23PubMed
234.
Zurück zum Zitat Moor AC, de Vries HE, de Boer AG, et al. The blood-brain barrier and multiple sclerosis. Biochem Pharmacol 1994; 47(10): 1717–24PubMedCrossRef Moor AC, de Vries HE, de Boer AG, et al. The blood-brain barrier and multiple sclerosis. Biochem Pharmacol 1994; 47(10): 1717–24PubMedCrossRef
235.
Zurück zum Zitat Mahoney MJ, Saltzman WM. Millimeter-scale positioning of a nerve-growth-factor source and biological activity in the brain. Proc Natl Acad Sci U S A 1999; 96(8): 4536–9PubMedCrossRef Mahoney MJ, Saltzman WM. Millimeter-scale positioning of a nerve-growth-factor source and biological activity in the brain. Proc Natl Acad Sci U S A 1999; 96(8): 4536–9PubMedCrossRef
236.
Zurück zum Zitat Krewson CE, Saltzman WM. Transport and elimination of recombinant human NGF during long-term delivery to the brain. Brain Res 1996; 727(1-2): 169–81PubMedCrossRef Krewson CE, Saltzman WM. Transport and elimination of recombinant human NGF during long-term delivery to the brain. Brain Res 1996; 727(1-2): 169–81PubMedCrossRef
237.
Zurück zum Zitat Mahoney MJ, Saltzman WM. Controlled release of proteins to tissue transplants for the treatment of neurodegenerative disorders. J Pharm Sci 1996; 85(12): 1276–81PubMedCrossRef Mahoney MJ, Saltzman WM. Controlled release of proteins to tissue transplants for the treatment of neurodegenerative disorders. J Pharm Sci 1996; 85(12): 1276–81PubMedCrossRef
238.
Zurück zum Zitat Krewson CE, Dause R, Mak M, et al. Stabilization of nerve growth factor in controlled release polymers and in tissue. J Biomater Sci Polym Ed 1996; 8(2): 103–17PubMedCrossRef Krewson CE, Dause R, Mak M, et al. Stabilization of nerve growth factor in controlled release polymers and in tissue. J Biomater Sci Polym Ed 1996; 8(2): 103–17PubMedCrossRef
239.
Zurück zum Zitat Morse JK, Wiegand SJ, Anderson K, et al. Brain-derived neurotrophic factor (BDNF) prevents the degeneration of medial septal cholinergic neurons following fimbria transection. J Neurosci 1993; 13(10): 4146–56PubMed Morse JK, Wiegand SJ, Anderson K, et al. Brain-derived neurotrophic factor (BDNF) prevents the degeneration of medial septal cholinergic neurons following fimbria transection. J Neurosci 1993; 13(10): 4146–56PubMed
240.
Zurück zum Zitat Venero JL, Hefti F, Knusel B. Trophic effect of exogenous nerve growth factor on rat striatal cholinergic neurons: comparison between intraparenchymal and intraventricular administration. Mol Pharmacol 1996; 49(2): 303–10PubMed Venero JL, Hefti F, Knusel B. Trophic effect of exogenous nerve growth factor on rat striatal cholinergic neurons: comparison between intraparenchymal and intraventricular administration. Mol Pharmacol 1996; 49(2): 303–10PubMed
241.
Zurück zum Zitat Lapchak PA, Araujo DM, Carswell S, et al. Distribution of [125I]nerve growth factor in the rat brain following a single intraventricular injection: correlation with the topographical distribution of trkA messenger RNA-expressing cells. Neuroscience 1993; 54(2): 445–60PubMedCrossRef Lapchak PA, Araujo DM, Carswell S, et al. Distribution of [125I]nerve growth factor in the rat brain following a single intraventricular injection: correlation with the topographical distribution of trkA messenger RNA-expressing cells. Neuroscience 1993; 54(2): 445–60PubMedCrossRef
242.
Zurück zum Zitat Emmett CJ, Stewart GR, Johnson RM, et al. Distribution of radioiodinated recombinant human nerve growth factor in primate brain following intracerebroventricular infusion. Exp Neurol 1996; 140: 151–60PubMedCrossRef Emmett CJ, Stewart GR, Johnson RM, et al. Distribution of radioiodinated recombinant human nerve growth factor in primate brain following intracerebroventricular infusion. Exp Neurol 1996; 140: 151–60PubMedCrossRef
243.
Zurück zum Zitat Jonhagen ME. Nerve growth factor treatment in dementia. Alzheimer Dis Assoc Disord 2000; 14 Suppl. 1: S31–8PubMedCrossRef Jonhagen ME. Nerve growth factor treatment in dementia. Alzheimer Dis Assoc Disord 2000; 14 Suppl. 1: S31–8PubMedCrossRef
244.
Zurück zum Zitat Kordower JH, Palfi S, Chen E-Y, et al. Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann Neurol 1999; 46(3): 419–24PubMedCrossRef Kordower JH, Palfi S, Chen E-Y, et al. Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann Neurol 1999; 46(3): 419–24PubMedCrossRef
245.
Zurück zum Zitat Hao J, Ebendal T, Xu X, et al. Intracerebroventricular infusion of nerve growth factor induces pain-like response in rats. Neurosci Lett 2000; 286(3): 208–12PubMedCrossRef Hao J, Ebendal T, Xu X, et al. Intracerebroventricular infusion of nerve growth factor induces pain-like response in rats. Neurosci Lett 2000; 286(3): 208–12PubMedCrossRef
246.
Zurück zum Zitat Johanson CE, Szmydynger-Chodobska J, Chodobski A, et al. Altered formation and bulk absorption of cerebrospinal fluid in FGF-2-induced hydrocephalus. Am J Physiol 1999; 277 (1 Pt 2): R263–71PubMed Johanson CE, Szmydynger-Chodobska J, Chodobski A, et al. Altered formation and bulk absorption of cerebrospinal fluid in FGF-2-induced hydrocephalus. Am J Physiol 1999; 277 (1 Pt 2): R263–71PubMed
247.
Zurück zum Zitat Dittrich F, Ochs G, Grobe-Wilde A, et al. Pharmacokinetics of intrathecally applied BDNF and effects on spinal motoneurons. Exp Neurol 1996; 141: 225–39PubMedCrossRef Dittrich F, Ochs G, Grobe-Wilde A, et al. Pharmacokinetics of intrathecally applied BDNF and effects on spinal motoneurons. Exp Neurol 1996; 141: 225–39PubMedCrossRef
248.
Zurück zum Zitat Gold BG. Axonal regeneration of sensory nerves is delayed by continuous intrathecal infusion of nerve growth factor. Neuroscience 1997; 76(4): 1153–8PubMedCrossRef Gold BG. Axonal regeneration of sensory nerves is delayed by continuous intrathecal infusion of nerve growth factor. Neuroscience 1997; 76(4): 1153–8PubMedCrossRef
249.
Zurück zum Zitat Frey WH, Liu J, Thome RG, et al. Intranasal delivery of 125I-labeled nerve growth factor to the brain via the olfactory route. In: Iqbal K, Mortimer JA, Winblad B, et al., editors. Research advances in Alzheimer’s disease and related disorders. Chichester: John Wiley & Sons Ltd, 1995: 329–35 Frey WH, Liu J, Thome RG, et al. Intranasal delivery of 125I-labeled nerve growth factor to the brain via the olfactory route. In: Iqbal K, Mortimer JA, Winblad B, et al., editors. Research advances in Alzheimer’s disease and related disorders. Chichester: John Wiley & Sons Ltd, 1995: 329–35
250.
Zurück zum Zitat Ilium L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci 2000; 11: 1–18CrossRef Ilium L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci 2000; 11: 1–18CrossRef
251.
Zurück zum Zitat Mathison S, Nagilla R, Kompella UB. Nasal route for direct delivery of solutes to the central nervous system: fact or fiction? J Drug Target 1998; 5: 415–41PubMedCrossRef Mathison S, Nagilla R, Kompella UB. Nasal route for direct delivery of solutes to the central nervous system: fact or fiction? J Drug Target 1998; 5: 415–41PubMedCrossRef
252.
Zurück zum Zitat Baker H, Spencer RF. Transneuronal transport of peroxidase-conjugated wheat germ agglutinin (WGA-HRP) from the olfactory epithelium to the brain of the adult rat. Exp Brain Res 1986; 63(3): 461–73PubMedCrossRef Baker H, Spencer RF. Transneuronal transport of peroxidase-conjugated wheat germ agglutinin (WGA-HRP) from the olfactory epithelium to the brain of the adult rat. Exp Brain Res 1986; 63(3): 461–73PubMedCrossRef
253.
Zurück zum Zitat Broadwell RD, Balin BJ. Endocytic and exocytic pathways of the neuronal secretory process and trans-synaptic transfer of wheat germ agglutinin-horseradish peroxidase in vivo. J Comp Neurol 1985; 242: 632–50PubMedCrossRef Broadwell RD, Balin BJ. Endocytic and exocytic pathways of the neuronal secretory process and trans-synaptic transfer of wheat germ agglutinin-horseradish peroxidase in vivo. J Comp Neurol 1985; 242: 632–50PubMedCrossRef
254.
Zurück zum Zitat Shipley MT. Transport of molecules from nose to brain: transneuronal anterograde and retrograde labeling in the rat olfactory system by wheat germ agglutinin-horseradish peroxidase applied to the nasal epithelium. Brain Res Bull 1985; 15(2): 129–42PubMedCrossRef Shipley MT. Transport of molecules from nose to brain: transneuronal anterograde and retrograde labeling in the rat olfactory system by wheat germ agglutinin-horseradish peroxidase applied to the nasal epithelium. Brain Res Bull 1985; 15(2): 129–42PubMedCrossRef
255.
Zurück zum Zitat Fawcett JR, Chen X, Rahman YE, et al. Previously reported nerve growth factor levels are underestimated due to an incomplete release from receptors and interaction with standard curve media. Brain Res 1999; 842(1): 206–10PubMedCrossRef Fawcett JR, Chen X, Rahman YE, et al. Previously reported nerve growth factor levels are underestimated due to an incomplete release from receptors and interaction with standard curve media. Brain Res 1999; 842(1): 206–10PubMedCrossRef
256.
Zurück zum Zitat Chen X-Q, Fawcett JR, Rahman Y-E, et al. Delivery of nerve growth factor to the brain via the olfactory pathway. J Alzheimer Dis 1998; 1: 35–44 Chen X-Q, Fawcett JR, Rahman Y-E, et al. Delivery of nerve growth factor to the brain via the olfactory pathway. J Alzheimer Dis 1998; 1: 35–44
257.
Zurück zum Zitat Gozes I, Bardea A, Reshef A, et al. Neuroprotective strategy for Alzheimer disease: intranasal administration of a fatty neuropeptide. Proc Natl Acad Sci U S A 1996; 93: 427–32PubMedCrossRef Gozes I, Bardea A, Reshef A, et al. Neuroprotective strategy for Alzheimer disease: intranasal administration of a fatty neuropeptide. Proc Natl Acad Sci U S A 1996; 93: 427–32PubMedCrossRef
258.
Zurück zum Zitat Gozes I, Giladi E, Pinhasov A, et al. Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improve performance in a water maze. J Pharmacol Exp Ther 2000; 293(3): 1091–8PubMed Gozes I, Giladi E, Pinhasov A, et al. Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improve performance in a water maze. J Pharmacol Exp Ther 2000; 293(3): 1091–8PubMed
259.
Zurück zum Zitat Kucheryanu VG, Kryzhanovsky GN, Kudrin VS, et al. Intranasal fibroblast growth factors: delivery into the brain exerts antiparkinsonian effect in mice. In: Torchilin V, Veronese FM, editors. Proceedings of the 26th International Symposium on Controlled Release of Bioactive Materials; 1999 Jun 20–23; Boston. Deerfield (IL): Controlled Release Society, Inc., 1999: 643–4 Kucheryanu VG, Kryzhanovsky GN, Kudrin VS, et al. Intranasal fibroblast growth factors: delivery into the brain exerts antiparkinsonian effect in mice. In: Torchilin V, Veronese FM, editors. Proceedings of the 26th International Symposium on Controlled Release of Bioactive Materials; 1999 Jun 20–23; Boston. Deerfield (IL): Controlled Release Society, Inc., 1999: 643–4
260.
Zurück zum Zitat Date I, Notter MF, Feiten SY, et al. MPTP-treated young mice but not aging mice show partial recovery of the nigrostriatal dopaminergic system by stereotaxic injection of acidic fibroblast growth factor (aFGF). Brain Res 1990; 526(1): 156–60PubMedCrossRef Date I, Notter MF, Feiten SY, et al. MPTP-treated young mice but not aging mice show partial recovery of the nigrostriatal dopaminergic system by stereotaxic injection of acidic fibroblast growth factor (aFGF). Brain Res 1990; 526(1): 156–60PubMedCrossRef
261.
Zurück zum Zitat Date I, Yoshimoto Y, Imaoka T, et al. Enhanced recovery of the nigrostriatal dopaminergic system in MPTP-treated mice following intrastriatal injection of basic fibroblast growth factor in relation to aging. Brain Res 1993; 621(1): 150–4PubMedCrossRef Date I, Yoshimoto Y, Imaoka T, et al. Enhanced recovery of the nigrostriatal dopaminergic system in MPTP-treated mice following intrastriatal injection of basic fibroblast growth factor in relation to aging. Brain Res 1993; 621(1): 150–4PubMedCrossRef
262.
Zurück zum Zitat Dahlin M, Bergman U, Jansson B, et al. Transfer of dopamine in the olfactory pathway following nasal administration in mice. Pharm Res 2000; 17(6): 737–42PubMedCrossRef Dahlin M, Bergman U, Jansson B, et al. Transfer of dopamine in the olfactory pathway following nasal administration in mice. Pharm Res 2000; 17(6): 737–42PubMedCrossRef
263.
Zurück zum Zitat Chen X. Investigation of delivery of nerve growth factor (NGF) to the central nervous system (CNS) via the olfactory neural pathway [PhD thesis]. Minneapolis (MN): University of Minnesota, 2000 Chen X. Investigation of delivery of nerve growth factor (NGF) to the central nervous system (CNS) via the olfactory neural pathway [PhD thesis]. Minneapolis (MN): University of Minnesota, 2000
264.
Zurück zum Zitat DeSesso JM. The relevance to humans of animal models for inhalation studies of cancer in the nose and upper airways. Qual Assur 1993; 2(3): 213–31PubMed DeSesso JM. The relevance to humans of animal models for inhalation studies of cancer in the nose and upper airways. Qual Assur 1993; 2(3): 213–31PubMed
265.
Zurück zum Zitat Roberts E. Alzheimer’s disease may begin in the nose and may be caused by aluminosilicates. Neurobiol Aging 1986; 7: 561–7PubMedCrossRef Roberts E. Alzheimer’s disease may begin in the nose and may be caused by aluminosilicates. Neurobiol Aging 1986; 7: 561–7PubMedCrossRef
266.
Zurück zum Zitat Okuyama S. The first attempt at radioisotopic evaluation of the integrity of the nose-brain barrier. Life Sci 1997; 60(21): 1881–4PubMedCrossRef Okuyama S. The first attempt at radioisotopic evaluation of the integrity of the nose-brain barrier. Life Sci 1997; 60(21): 1881–4PubMedCrossRef
267.
Zurück zum Zitat Riekkinen P, Legros J-J, Sennef C, et al. Penetration of DGAVP (Org 5667) across the blood-brain barrier in human subjects. Peptides 1987; 8: 261–5PubMedCrossRef Riekkinen P, Legros J-J, Sennef C, et al. Penetration of DGAVP (Org 5667) across the blood-brain barrier in human subjects. Peptides 1987; 8: 261–5PubMedCrossRef
268.
Zurück zum Zitat Kern W, Born J, Schreiber H, et al. Central nervous system effects of intranasally administered insulin during euglycemia in men. Diabetes 1999; 48: 557–63PubMedCrossRef Kern W, Born J, Schreiber H, et al. Central nervous system effects of intranasally administered insulin during euglycemia in men. Diabetes 1999; 48: 557–63PubMedCrossRef
269.
Zurück zum Zitat Kern W, Schiefer B, Schwarzenburg J, et al. Evidence for central nervous effects of corticotropin-releasing hormone on gastric acid secretion in humans. Clin Neuroendocrinol 1997; 65: 291–8CrossRef Kern W, Schiefer B, Schwarzenburg J, et al. Evidence for central nervous effects of corticotropin-releasing hormone on gastric acid secretion in humans. Clin Neuroendocrinol 1997; 65: 291–8CrossRef
270.
Zurück zum Zitat Perras B, Marshall L, Kohler G, et al. Sleep and endocrine changes after intranasal administration of growth hormone-releasing hormone in young and aged humans. Psychoneuro-endocrinology 1999; 24: 743–57CrossRef Perras B, Marshall L, Kohler G, et al. Sleep and endocrine changes after intranasal administration of growth hormone-releasing hormone in young and aged humans. Psychoneuro-endocrinology 1999; 24: 743–57CrossRef
271.
Zurück zum Zitat Pietrowsky R, Struben C, Molle M, et al. Brain potential changes after intranasal vs. intravenous administration of vasopressin: evidence for a direct nose-brain pathway for peptide effects in humans. Biol Psychiatry 1996; 39: 332–40PubMedCrossRef Pietrowsky R, Struben C, Molle M, et al. Brain potential changes after intranasal vs. intravenous administration of vasopressin: evidence for a direct nose-brain pathway for peptide effects in humans. Biol Psychiatry 1996; 39: 332–40PubMedCrossRef
272.
Zurück zum Zitat Pietrowsky R, Thiemann A, Kern W, et al. A nose-brain pathway for psychotropic peptides: evidence from a brain evoked potential study with cholecystokinin. Psychoneuroendocrinology 1996; 21(6): 559–72PubMedCrossRef Pietrowsky R, Thiemann A, Kern W, et al. A nose-brain pathway for psychotropic peptides: evidence from a brain evoked potential study with cholecystokinin. Psychoneuroendocrinology 1996; 21(6): 559–72PubMedCrossRef
273.
Zurück zum Zitat Fehm-Wolfsdorf G, Born J. Behavioral effects of neurohypophyseal peptides in healthy volunteers: 10 years of research. Peptides 1991; 12: 1399–406PubMedCrossRef Fehm-Wolfsdorf G, Born J. Behavioral effects of neurohypophyseal peptides in healthy volunteers: 10 years of research. Peptides 1991; 12: 1399–406PubMedCrossRef
274.
Zurück zum Zitat Sakane T, Akizuki M, Yamashita S, et al. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the dissociation of the drug. J Pharm Pharmacol 1994; 46: 378–9PubMedCrossRef Sakane T, Akizuki M, Yamashita S, et al. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the dissociation of the drug. J Pharm Pharmacol 1994; 46: 378–9PubMedCrossRef
275.
Zurück zum Zitat Sakane T, Akizuki M, Yamashita S, et al. The transport of a drug to the cerebrospinal fluid from the nasal cavity: the relation to the lipophilicity of the drug. Chem Pharm Bull (Tokyo) 1991; 39(9): 2456–8CrossRef Sakane T, Akizuki M, Yamashita S, et al. The transport of a drug to the cerebrospinal fluid from the nasal cavity: the relation to the lipophilicity of the drug. Chem Pharm Bull (Tokyo) 1991; 39(9): 2456–8CrossRef
276.
Zurück zum Zitat Sakane T, Akizuki M, Taki Y, et al. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of drugs. J Pharm Pharmacol 1995; 47: 379–81PubMedCrossRef Sakane T, Akizuki M, Taki Y, et al. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of drugs. J Pharm Pharmacol 1995; 47: 379–81PubMedCrossRef
278.
Zurück zum Zitat Washington N, McGlashan JA, Jackson SJ, et al. The effect of nasal patency on the clearance of radiolabeled saline in healthy volunteers. Pharm Res 2000; 17(6): 733–6PubMedCrossRef Washington N, McGlashan JA, Jackson SJ, et al. The effect of nasal patency on the clearance of radiolabeled saline in healthy volunteers. Pharm Res 2000; 17(6): 733–6PubMedCrossRef
279.
Zurück zum Zitat Bojsen-Moller F, Fahrenkrug J. Nasal swell bodies and cyclic changes in the air passage of the rat and rabbit nose. J Anat 1971; 110(1): 25–37PubMed Bojsen-Moller F, Fahrenkrug J. Nasal swell bodies and cyclic changes in the air passage of the rat and rabbit nose. J Anat 1971; 110(1): 25–37PubMed
280.
Zurück zum Zitat Lowman HB, Chen YM, Skelton NJ, et al. Molecular mimics of insulin-like growth factor 1 (IGF-1) for inhibiting IGF-1: IGF-binding protein interactions. Biochemistry 1998; 37(25): 8870–8PubMedCrossRef Lowman HB, Chen YM, Skelton NJ, et al. Molecular mimics of insulin-like growth factor 1 (IGF-1) for inhibiting IGF-1: IGF-binding protein interactions. Biochemistry 1998; 37(25): 8870–8PubMedCrossRef
281.
Zurück zum Zitat Beglova N, LeSauteur L, Ekiel I, et al. Solution structure and internal motion of a bioactive peptide derived from nerve growth factor. J Biol Chem 1998; 273(37): 23652–8PubMedCrossRef Beglova N, LeSauteur L, Ekiel I, et al. Solution structure and internal motion of a bioactive peptide derived from nerve growth factor. J Biol Chem 1998; 273(37): 23652–8PubMedCrossRef
282.
Zurück zum Zitat Kaechi K, Furukawa Y, Ikegami R, et al. Pharmacological induction of physiologically active nerve growth factor in rat peripheral nervous system. J Pharmacol Exp Ther 1993; 264(1): 321–6PubMed Kaechi K, Furukawa Y, Ikegami R, et al. Pharmacological induction of physiologically active nerve growth factor in rat peripheral nervous system. J Pharmacol Exp Ther 1993; 264(1): 321–6PubMed
283.
Zurück zum Zitat Yamada K, Nitta A, Hasegawa T, et al. Orally active NGF synthesis stimulators: potential therapeutic agents in Alzheimer’s disease. Behav Brain Res 1997; 83(1-2): 117–22PubMedCrossRef Yamada K, Nitta A, Hasegawa T, et al. Orally active NGF synthesis stimulators: potential therapeutic agents in Alzheimer’s disease. Behav Brain Res 1997; 83(1-2): 117–22PubMedCrossRef
284.
Zurück zum Zitat Nitta A, Ogihara Y, Onishi J, et al. Propentofylline prevents neuronal dysfunction induced by infusion of anti-nerve growth factor antibody into the rat septum. Eur J Pharmacol 1996; 307(1): 1–6PubMedCrossRef Nitta A, Ogihara Y, Onishi J, et al. Propentofylline prevents neuronal dysfunction induced by infusion of anti-nerve growth factor antibody into the rat septum. Eur J Pharmacol 1996; 307(1): 1–6PubMedCrossRef
285.
Zurück zum Zitat Middlemiss PJ, Glasky AJ, Rathbone MP, et al. AIT-082, a unique purine derivative, enhances nerve growth factor mediated neurite outgrowth from PC12 cells. Neurosci Lett 1995; 199(2): 131–4PubMedCrossRef Middlemiss PJ, Glasky AJ, Rathbone MP, et al. AIT-082, a unique purine derivative, enhances nerve growth factor mediated neurite outgrowth from PC12 cells. Neurosci Lett 1995; 199(2): 131–4PubMedCrossRef
286.
Zurück zum Zitat Rathbone MP, Middlemiss PJ, Gysbers JW, et al. Trophic effects of purines in neurons and glial cells. Prog Neurobiol 1999; 59(6): 663–90PubMedCrossRef Rathbone MP, Middlemiss PJ, Gysbers JW, et al. Trophic effects of purines in neurons and glial cells. Prog Neurobiol 1999; 59(6): 663–90PubMedCrossRef
287.
Zurück zum Zitat Tirassa P, Aloe L, Stenfors C, et al. Cholecystokinin-8 protects central cholinergic neurons against fimbria-fornix lesion through the up-regulation of nerve growth factor synthesis. Proc Natl Acad Sci U S A 1999; 96(11): 6473–7PubMedCrossRef Tirassa P, Aloe L, Stenfors C, et al. Cholecystokinin-8 protects central cholinergic neurons against fimbria-fornix lesion through the up-regulation of nerve growth factor synthesis. Proc Natl Acad Sci U S A 1999; 96(11): 6473–7PubMedCrossRef
288.
Zurück zum Zitat Snyder SH, Sabatini DM, Lai MM, et al. Neural actions of immunophilin ligands. Trends Pharmacol Sci 1998; 19(1): 21–6PubMedCrossRef Snyder SH, Sabatini DM, Lai MM, et al. Neural actions of immunophilin ligands. Trends Pharmacol Sci 1998; 19(1): 21–6PubMedCrossRef
289.
Zurück zum Zitat Steiner JP, Hamilton GS, Ross DT, et al. Neurotrophic immunophilin ligands stimulate structural and functional recovery in neurodegenerative animal models. Proc Natl Acad Sci U S A 1997; 94(5): 2019–24PubMedCrossRef Steiner JP, Hamilton GS, Ross DT, et al. Neurotrophic immunophilin ligands stimulate structural and functional recovery in neurodegenerative animal models. Proc Natl Acad Sci U S A 1997; 94(5): 2019–24PubMedCrossRef
290.
Zurück zum Zitat Costantini LC, Isacson O. Immunophilin ligands and GDNF enhance neurite branching or elongation from developing dopamine neurons in culture. Exp Neurol 2000; 164(1): 60–70PubMedCrossRef Costantini LC, Isacson O. Immunophilin ligands and GDNF enhance neurite branching or elongation from developing dopamine neurons in culture. Exp Neurol 2000; 164(1): 60–70PubMedCrossRef
291.
Zurück zum Zitat Sharkey J, Butcher SP. Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischemia. Nature 1994; 371: 336–9PubMedCrossRef Sharkey J, Butcher SP. Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischemia. Nature 1994; 371: 336–9PubMedCrossRef
292.
Zurück zum Zitat Poduslo JF, Curran GL, Gill JS. Putrescine-modified nerve growth factor: bioactivity, plasma pharmacokinetics, blood-brain/nerve barrier permeability, and nervous system biodistribution. J Neurochem 1998; 71(4): 1651–60PubMedCrossRef Poduslo JF, Curran GL, Gill JS. Putrescine-modified nerve growth factor: bioactivity, plasma pharmacokinetics, blood-brain/nerve barrier permeability, and nervous system biodistribution. J Neurochem 1998; 71(4): 1651–60PubMedCrossRef
293.
Zurück zum Zitat Martinez-Serrano A, Bjorklund A. Ex vivo nerve growth factor gene transfer to the basal forebrain in presymptomatic middle-aged rats prevents the development of cholinergic neuron atrophy and cognitive impairment during aging. Proc Natl Acad Sci U S A 1998; 95(4): 1858–63PubMedCrossRef Martinez-Serrano A, Bjorklund A. Ex vivo nerve growth factor gene transfer to the basal forebrain in presymptomatic middle-aged rats prevents the development of cholinergic neuron atrophy and cognitive impairment during aging. Proc Natl Acad Sci U S A 1998; 95(4): 1858–63PubMedCrossRef
294.
Zurück zum Zitat Smith DE, Roberts J, Gage FH, et al. Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy. Proc Natl Acad Sci U S A 1999; 96(19): 10893–8PubMedCrossRef Smith DE, Roberts J, Gage FH, et al. Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy. Proc Natl Acad Sci U S A 1999; 96(19): 10893–8PubMedCrossRef
295.
Zurück zum Zitat Tuszynski MH, Roberts J, Senut MC, et al. Gene therapy in the adult primate brain: intraparenchymal grafts of cells genetically modified to produce nerve growth factor prevent cholinergic neuronal degeneration. Gene Ther 1996; 3(4): 305–14PubMed Tuszynski MH, Roberts J, Senut MC, et al. Gene therapy in the adult primate brain: intraparenchymal grafts of cells genetically modified to produce nerve growth factor prevent cholinergic neuronal degeneration. Gene Ther 1996; 3(4): 305–14PubMed
297.
Zurück zum Zitat Verma IM, Somia N. Gene therapy: promises, problems and prospects. Nature 1997; 389: 239–42PubMedCrossRef Verma IM, Somia N. Gene therapy: promises, problems and prospects. Nature 1997; 389: 239–42PubMedCrossRef
298.
Zurück zum Zitat Bachoud-Levi AC, Deglon N, Nguyen JP, et al. Neuroprotective gene therapy for Huntington’s disease using a polymer encapsulated BHK cell line engineered to secrete human CNTF. Hum Gene Ther 2000; 11(12): 1723–9PubMedCrossRef Bachoud-Levi AC, Deglon N, Nguyen JP, et al. Neuroprotective gene therapy for Huntington’s disease using a polymer encapsulated BHK cell line engineered to secrete human CNTF. Hum Gene Ther 2000; 11(12): 1723–9PubMedCrossRef
299.
Zurück zum Zitat Meuli-Simmen C, Liu Y, Yeo TT, et al. Gene expression along the cerebral-spinal axis after regional gene delivery. Hum Gene Ther 1999; 10: 2689–700PubMedCrossRef Meuli-Simmen C, Liu Y, Yeo TT, et al. Gene expression along the cerebral-spinal axis after regional gene delivery. Hum Gene Ther 1999; 10: 2689–700PubMedCrossRef
300.
Zurück zum Zitat Zhou LL, Huang L, Hayes RL, et al. Liposome-mediated NGF gene transfection following neuronal injury: Potential therapeutic applications. Gene Ther 1999; 6: 994–1005CrossRef Zhou LL, Huang L, Hayes RL, et al. Liposome-mediated NGF gene transfection following neuronal injury: Potential therapeutic applications. Gene Ther 1999; 6: 994–1005CrossRef
301.
Zurück zum Zitat Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 2000; 290: 767–73PubMedCrossRef Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 2000; 290: 767–73PubMedCrossRef
302.
Zurück zum Zitat Mandir AS, Dawson VL, Dawson TM. Gene therapy to the rescue in Parkinson’s disease. Trends Pharmacol Sci 2001; 22: 103–5PubMedCrossRef Mandir AS, Dawson VL, Dawson TM. Gene therapy to the rescue in Parkinson’s disease. Trends Pharmacol Sci 2001; 22: 103–5PubMedCrossRef
303.
304.
305.
Zurück zum Zitat Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001; 344: 710–9PubMedCrossRef Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001; 344: 710–9PubMedCrossRef
306.
Zurück zum Zitat Hottinger AF, Aebischer P. Strategies for administering neurotrophic factors to the central nervous system. In: Hefti F, editor. Neurotrophic factors. Berlin: Springer-Verlag, 1999: 255–80CrossRef Hottinger AF, Aebischer P. Strategies for administering neurotrophic factors to the central nervous system. In: Hefti F, editor. Neurotrophic factors. Berlin: Springer-Verlag, 1999: 255–80CrossRef
307.
Zurück zum Zitat Zlokovic BV, Apuzzo ML. Cellular and molecular neurosurgery: pathways from concept to reality: part II. Vector systems and delivery methodologies for gene therapy of the central nervous system. Neurosurgery 1997; 40(4): 805–12PubMedCrossRef Zlokovic BV, Apuzzo ML. Cellular and molecular neurosurgery: pathways from concept to reality: part II. Vector systems and delivery methodologies for gene therapy of the central nervous system. Neurosurgery 1997; 40(4): 805–12PubMedCrossRef
Metadaten
Titel
Delivery of Neurotrophic Factors to the Central Nervous System
Pharmacokinetic Considerations
verfasst von
Robert G. Thorne
Dr William H. Frey II
Publikationsdatum
01.12.2001
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 12/2001
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200140120-00003