Skip to main content
Erschienen in: Clinical Pharmacokinetics 9/2003

01.08.2003 | Review Article

Pharmacokinetic Interactions with Rifampicin

Clinical Relevance

verfasst von: Mikko Niemi, Janne T. Backman, Martin F. Fromm, Pertti J. Neuvonen, Dr Kari T. Kivistö

Erschienen in: Clinical Pharmacokinetics | Ausgabe 9/2003

Einloggen, um Zugang zu erhalten

Abstract

The antituberculosis drug rifampicin (rifampin) induces a number of drug-metabolising enzymes, having the greatest effects on the expression of cytochrome P450 (CYP) 3A4 in the liver and in the small intestine. In addition, rifampicin induces some drug transporter proteins, such as intestinal and hepatic P-glycoprotein. Full induction of drug-metabolising enzymes is reached in about 1 week after starting rifampicin treatment and the induction dissipates in roughly 2 weeks after discontinuing rifampicin.
Rifampicin has its greatest effects on the pharmacokinetics of orally administered drugs that are metabolised by CYP3A4 and/or are transported by P-glycoprotein. Thus, for example, oral midazolam, triazolam, simvastatin, verapamil and most dihydropyridine calcium channel antagonists are ineffective during rifampicin treatment. The plasma concentrations of several anti-infectives, such as the antimycotics itraconazole and ketoconazole and the HIV protease inhibitors indinavir, nelfinavir and saquinavir, are also greatly reduced by rifampicin. The use of rifampicin with these HIV protease inhibitors is contraindicated to avoid treatment failures. Rifampicin can cause acute transplant rejection in patients treated with immunosuppressive drugs, such as cyclosporin. In addition, rifampicin reduces the plasma concentrations of methadone, leading to symptoms of opioid withdrawal in most patients.
Rifampicin also induces CYP2C-mediated metabolism and thus reduces the plasma concentrations of, for example, the CYP2C9 substrate (S)-warfarin and the sulfonylurea antidiabetic drugs. In addition, rifampicin can reduce the plasma concentrations of drugs that are not metabolised (e.g. digoxin) by inducing drug transporters such as P-glycoprotein.
Thus, the effects of rifampicin on drug metabolism and transport are broad and of established clinical significance. Potential drug interactions should be considered whenever beginning or discontinuing rifampicin treatment. It is particularly important to remember that the concentrations of many of the other drugs used by the patient will increase when rifampicin is discontinued as the induction starts to wear off.
Literatur
1.
Zurück zum Zitat Campbell EA, Korzheva N, Mustaev A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 2001; 104: 901–12PubMedCrossRef Campbell EA, Korzheva N, Mustaev A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 2001; 104: 901–12PubMedCrossRef
2.
Zurück zum Zitat Douglas JG, McLeod MJ. Pharmacokinetic factors in the modern drug treatment of tuberculosis. Clin Pharmacokinet 1999; 37: 127–46PubMedCrossRef Douglas JG, McLeod MJ. Pharmacokinetic factors in the modern drug treatment of tuberculosis. Clin Pharmacokinet 1999; 37: 127–46PubMedCrossRef
3.
Zurück zum Zitat Turnidge J, Grayson ML. Optimum treatment of staphylococcal infections. Drugs 1993; 45: 353–66PubMedCrossRef Turnidge J, Grayson ML. Optimum treatment of staphylococcal infections. Drugs 1993; 45: 353–66PubMedCrossRef
4.
Zurück zum Zitat Combalbert J, Fabre I, Fabre G, et al. Metabolism of cyclosporin A: IV. purification of the rifampicin-inducible human liver cytochrome P-450 (cyclosporin A oxidase) as a product of P450IIIA gene subfamily. Drug Metab Dispos 1989; 17: 197–207PubMed Combalbert J, Fabre I, Fabre G, et al. Metabolism of cyclosporin A: IV. purification of the rifampicin-inducible human liver cytochrome P-450 (cyclosporin A oxidase) as a product of P450IIIA gene subfamily. Drug Metab Dispos 1989; 17: 197–207PubMed
5.
Zurück zum Zitat Kolars JC, Schmiedlin-Ren P, Schuetz JD, et al. Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J Clin Invest 1992; 90: 1871–8PubMedCrossRef Kolars JC, Schmiedlin-Ren P, Schuetz JD, et al. Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J Clin Invest 1992; 90: 1871–8PubMedCrossRef
6.
Zurück zum Zitat Backman JT, Olkkola KT, Ojala M, et al. Concentrations and effects of oral midazolam are greatly reduced in patients treated with carbamazepine or phenytoin. Epilepsia 1996; 37: 253–7PubMedCrossRef Backman JT, Olkkola KT, Ojala M, et al. Concentrations and effects of oral midazolam are greatly reduced in patients treated with carbamazepine or phenytoin. Epilepsia 1996; 37: 253–7PubMedCrossRef
7.
Zurück zum Zitat Backman JT, Olkkola KT, Neuvonen PJ. Rifampin drastically reduces plasma concentrations and effects of oral midazolam. Clin Pharmacol Ther 1996; 59: 7–13PubMedCrossRef Backman JT, Olkkola KT, Neuvonen PJ. Rifampin drastically reduces plasma concentrations and effects of oral midazolam. Clin Pharmacol Ther 1996; 59: 7–13PubMedCrossRef
8.
Zurück zum Zitat Backman JT, Kivistö KT, Olkkola KT, et al. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 1998; 54: 53–8PubMedCrossRef Backman JT, Kivistö KT, Olkkola KT, et al. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 1998; 54: 53–8PubMedCrossRef
9.
Zurück zum Zitat Ucar M, Dahlqvist R, Granberg K, et al. Induction of the metabolism of simvastatin by carbamazepine [abstract]. Pharmacol Toxicol 2001; 89 Suppl. 1: 72 Ucar M, Dahlqvist R, Granberg K, et al. Induction of the metabolism of simvastatin by carbamazepine [abstract]. Pharmacol Toxicol 2001; 89 Suppl. 1: 72
10.
Zurück zum Zitat Kyrklund C, Backman JT, Kivistö RT, et al. Rifampin greatly reduces plasma simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 2000; 68: 592–7PubMedCrossRef Kyrklund C, Backman JT, Kivistö RT, et al. Rifampin greatly reduces plasma simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 2000; 68: 592–7PubMedCrossRef
11.
Zurück zum Zitat Lehmann JM, McRee DD, Watson MA, et al. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 1998; 102: 1016–23PubMedCrossRef Lehmann JM, McRee DD, Watson MA, et al. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 1998; 102: 1016–23PubMedCrossRef
12.
Zurück zum Zitat Goodwin B, Redinbo MR, Kliewer SA. Regulation of CYP3A gene transcription by the pregnane X receptor. Annu Rev Pharmacol Toxicol 2002; 42: 1–23PubMedCrossRef Goodwin B, Redinbo MR, Kliewer SA. Regulation of CYP3A gene transcription by the pregnane X receptor. Annu Rev Pharmacol Toxicol 2002; 42: 1–23PubMedCrossRef
13.
Zurück zum Zitat Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately upregulate these proteins in human colon carcinoma cells. Mol Pharmacol 1996; 49: 311–8PubMed Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately upregulate these proteins in human colon carcinoma cells. Mol Pharmacol 1996; 49: 311–8PubMed
14.
Zurück zum Zitat Rae JM, Johnson MD, Lippman ME, et al. Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: studies with cDNA and oligonucleotide expression arrays. J Pharmacol Exp Ther 2001; 299: 849–57PubMed Rae JM, Johnson MD, Lippman ME, et al. Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: studies with cDNA and oligonucleotide expression arrays. J Pharmacol Exp Ther 2001; 299: 849–57PubMed
15.
Zurück zum Zitat Sumida A, Fukuen S, Yamamoto I, et al. Quantitative analysis of constitutive and inducible CYPs mRNA expression in the HepG2 cell line using reverse transcription-competitive PCR. Biochem Biophys Res Commun 2000; 267: 756–60PubMedCrossRef Sumida A, Fukuen S, Yamamoto I, et al. Quantitative analysis of constitutive and inducible CYPs mRNA expression in the HepG2 cell line using reverse transcription-competitive PCR. Biochem Biophys Res Commun 2000; 267: 756–60PubMedCrossRef
16.
Zurück zum Zitat Dalet-Beluche I, Boulenc X, Fabre G, et al. Purification of two cytochrome P450 isozymes related to Cyp2A and CYP3A gene families from monkey (baboon, Papio papio) liver microsomes: cross reactivity with human forms. Eur J Biochem 1992; 204: 641–8PubMedCrossRef Dalet-Beluche I, Boulenc X, Fabre G, et al. Purification of two cytochrome P450 isozymes related to Cyp2A and CYP3A gene families from monkey (baboon, Papio papio) liver microsomes: cross reactivity with human forms. Eur J Biochem 1992; 204: 641–8PubMedCrossRef
17.
Zurück zum Zitat Chang TRH, Yu L, Maurel P, et al. Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazophosphorines. Cancer Res 1997; 57: 1946–54PubMed Chang TRH, Yu L, Maurel P, et al. Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazophosphorines. Cancer Res 1997; 57: 1946–54PubMed
18.
Zurück zum Zitat Morel F, Beaune PH, Ratanasavanh D, et al. Expression of cytochrome P-450 enzymes in cultured human hepatocytes. Eur J Biochem 1990; 191: 437–44PubMedCrossRef Morel F, Beaune PH, Ratanasavanh D, et al. Expression of cytochrome P-450 enzymes in cultured human hepatocytes. Eur J Biochem 1990; 191: 437–44PubMedCrossRef
19.
Zurück zum Zitat Gerbal-Chaloin S, Pascussi JM, Pichard-Garcia L, et al. Induction of CYP2C genes in human hepatocytes in primary culture. Drug Metab Dispos 2001; 29: 242–51PubMed Gerbal-Chaloin S, Pascussi JM, Pichard-Garcia L, et al. Induction of CYP2C genes in human hepatocytes in primary culture. Drug Metab Dispos 2001; 29: 242–51PubMed
20.
Zurück zum Zitat Syvälahti E, Pihlajamäki R, Iisalo E. Effect of tuberculostatic agents on the response of serum growth hormone and immunoreactive insulin to intravenous tolbutamide, and on the half-life of tolbutamide. Int J Clin Pharmacol Biopharm 1976; 13: 83–9PubMed Syvälahti E, Pihlajamäki R, Iisalo E. Effect of tuberculostatic agents on the response of serum growth hormone and immunoreactive insulin to intravenous tolbutamide, and on the half-life of tolbutamide. Int J Clin Pharmacol Biopharm 1976; 13: 83–9PubMed
21.
Zurück zum Zitat Feng HJ, Huang SL, Wang W, et al. The induction effect of rifampicin on activity of mephenytoin 4′-hydrolase related to Ml mutation of CYP2C19 and gene dose. Br J Clin Pharmacol 1998; 45: 27–9PubMedCrossRef Feng HJ, Huang SL, Wang W, et al. The induction effect of rifampicin on activity of mephenytoin 4′-hydrolase related to Ml mutation of CYP2C19 and gene dose. Br J Clin Pharmacol 1998; 45: 27–9PubMedCrossRef
22.
Zurück zum Zitat Heimark LD, Gibaldi M, Trager WF, et al. The mechanism of the warfarin-rifampin drug interaction in humans. Clin Pharmacol Ther 1987; 42: 388–94PubMedCrossRef Heimark LD, Gibaldi M, Trager WF, et al. The mechanism of the warfarin-rifampin drug interaction in humans. Clin Pharmacol Ther 1987; 42: 388–94PubMedCrossRef
23.
Zurück zum Zitat Gläser H, Drescher S, Burk O, et al. Induction of CYP2C8, CYP2C9, and CYP3A4 by rifampin in shedded human enterocytes [abstract]. Drug Metab Rev 2001; 33 Suppl. 1: 90 Gläser H, Drescher S, Burk O, et al. Induction of CYP2C8, CYP2C9, and CYP3A4 by rifampin in shedded human enterocytes [abstract]. Drug Metab Rev 2001; 33 Suppl. 1: 90
24.
Zurück zum Zitat Branch RA, Adedoyin A, Frye RF, et al. In vivo modulation of CYP enzymes by quinidine and rifampin. Clin Pharmacol Ther 2000; 68: 401–11PubMedCrossRef Branch RA, Adedoyin A, Frye RF, et al. In vivo modulation of CYP enzymes by quinidine and rifampin. Clin Pharmacol Ther 2000; 68: 401–11PubMedCrossRef
25.
Zurück zum Zitat Fuhr U, Rost RL. Simple and reliable CYP1A2 phenotyping by the paraxanthine/caffeine ratio in plasma and in saliva. Pharmacogenetics 1994; 4: 109–16PubMedCrossRef Fuhr U, Rost RL. Simple and reliable CYP1A2 phenotyping by the paraxanthine/caffeine ratio in plasma and in saliva. Pharmacogenetics 1994; 4: 109–16PubMedCrossRef
26.
Zurück zum Zitat Caraco Y, Sheller J, Wood AJJ. Pharmacogenetic determinants of codeine induction by rifampin: the impact on codeine’s respiratory, psychomotor and miotic effects. J Pharmacol Exp Ther 1997; 281: 330–6PubMed Caraco Y, Sheller J, Wood AJJ. Pharmacogenetic determinants of codeine induction by rifampin: the impact on codeine’s respiratory, psychomotor and miotic effects. J Pharmacol Exp Ther 1997; 281: 330–6PubMed
27.
Zurück zum Zitat Eichelbaum M, Mineshita S, Ohnhaus EE, et al. The influence of enzyme induction on polymorphic sparteine oxidation. Br J Clin Pharmacol 1986; 22: 49–53PubMedCrossRef Eichelbaum M, Mineshita S, Ohnhaus EE, et al. The influence of enzyme induction on polymorphic sparteine oxidation. Br J Clin Pharmacol 1986; 22: 49–53PubMedCrossRef
28.
Zurück zum Zitat Shaheen O, Biollaz J, Roshakji RP, et al. Influence of debrisoquin phenotype on the inducibility of propranolol metabolism. Clin Pharmacol Ther 1989; 45: 439–43PubMedCrossRef Shaheen O, Biollaz J, Roshakji RP, et al. Influence of debrisoquin phenotype on the inducibility of propranolol metabolism. Clin Pharmacol Ther 1989; 45: 439–43PubMedCrossRef
29.
Zurück zum Zitat Dilger R, Hofmann U, Klotz U. Enzyme induction in the elderly: effect of rifampin on the pharmacokinetics and pharmacodynamics of propafenone. Clin Pharmacol Ther 2000; 67: 512–20PubMedCrossRef Dilger R, Hofmann U, Klotz U. Enzyme induction in the elderly: effect of rifampin on the pharmacokinetics and pharmacodynamics of propafenone. Clin Pharmacol Ther 2000; 67: 512–20PubMedCrossRef
30.
Zurück zum Zitat Doostdar H, Grant MH, Melvin WT, et al. The effects of inducing agents on cytochrome P450 and UDP-glucuronyltransferase activities in human HepG2 hepatoma cells. Biochem Pharmacol 1993; 46: 629–35PubMedCrossRef Doostdar H, Grant MH, Melvin WT, et al. The effects of inducing agents on cytochrome P450 and UDP-glucuronyltransferase activities in human HepG2 hepatoma cells. Biochem Pharmacol 1993; 46: 629–35PubMedCrossRef
31.
Zurück zum Zitat Kern A, Bader A, Pichlmayr R, et al. Drug metabolism in hepatocyte sandwich cultures of rats and humans. Biochem Pharmacol 1997; 54: 761–72PubMedCrossRef Kern A, Bader A, Pichlmayr R, et al. Drug metabolism in hepatocyte sandwich cultures of rats and humans. Biochem Pharmacol 1997; 54: 761–72PubMedCrossRef
32.
Zurück zum Zitat Prescott LF, Critchley JAJH, Balali-Mood M, et al. Effects of microsomal enzyme induction on paracetamol metabolism in man. Br J Clin Pharmacol 1981; 12: 149–53PubMed Prescott LF, Critchley JAJH, Balali-Mood M, et al. Effects of microsomal enzyme induction on paracetamol metabolism in man. Br J Clin Pharmacol 1981; 12: 149–53PubMed
33.
Zurück zum Zitat Fromm MF, Eckhardt R, Li S, et al. Loss of analgesic effect of morphine due to coadministration of rifampin. Pain 1997; 72: 261–7PubMedCrossRef Fromm MF, Eckhardt R, Li S, et al. Loss of analgesic effect of morphine due to coadministration of rifampin. Pain 1997; 72: 261–7PubMedCrossRef
34.
Zurück zum Zitat Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999; 104: 147–53PubMedCrossRef Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999; 104: 147–53PubMedCrossRef
35.
Zurück zum Zitat Fromm MF. P-glycoprotein: a defence mechanism limiting oral bioavailability and CNS accumulation of drugs. Int J Clin Pharmacol Ther 2000; 38: 69–74PubMed Fromm MF. P-glycoprotein: a defence mechanism limiting oral bioavailability and CNS accumulation of drugs. Int J Clin Pharmacol Ther 2000; 38: 69–74PubMed
36.
Zurück zum Zitat Rarlsson J, Ruo SM, Ziemniak J, et al. Transport of celiprolol across human intestinal epithelial (Caco-2) cells: mediation of secretion by multiple transporters including P-glycoprotein. Br J Pharmacol 1993; 110: 1009–16CrossRef Rarlsson J, Ruo SM, Ziemniak J, et al. Transport of celiprolol across human intestinal epithelial (Caco-2) cells: mediation of secretion by multiple transporters including P-glycoprotein. Br J Pharmacol 1993; 110: 1009–16CrossRef
37.
Zurück zum Zitat Saeki T, Ueda R, Tanigawara Y, et al. Human P-glycoprotein transports cyclosporin A and FR506. J Biol Chem 1993; 268: 6077–80PubMed Saeki T, Ueda R, Tanigawara Y, et al. Human P-glycoprotein transports cyclosporin A and FR506. J Biol Chem 1993; 268: 6077–80PubMed
38.
Zurück zum Zitat Ueda R, Okamura N, Hirai M, et al. Human P-glycoprotein transports Cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem 1992; 267: 24248–52PubMed Ueda R, Okamura N, Hirai M, et al. Human P-glycoprotein transports Cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem 1992; 267: 24248–52PubMed
39.
Zurück zum Zitat de Lannoy IA, Silverman M. The MDR1 gene product, P-glycoprotein, mediates the transport of the cardiac glycoside, digoxin. Biochem Biophys Res Commun 1992; 189: 551–7PubMedCrossRef de Lannoy IA, Silverman M. The MDR1 gene product, P-glycoprotein, mediates the transport of the cardiac glycoside, digoxin. Biochem Biophys Res Commun 1992; 189: 551–7PubMedCrossRef
40.
Zurück zum Zitat Saeki T, Ueda R, Tanigawara Y, et al. P-glycoprotein-mediated transcellular transport of MDR-reversing agents. FEBS Lett 1993; 324: 99–102PubMedCrossRef Saeki T, Ueda R, Tanigawara Y, et al. P-glycoprotein-mediated transcellular transport of MDR-reversing agents. FEBS Lett 1993; 324: 99–102PubMedCrossRef
41.
Zurück zum Zitat Schuetz EG, Yasuda R, Arimori R, et al. Human MDR1 and mouse mdrla P-glycoprotein alter the cellular retention and disposition of erythromycin, but not of retinoic acid or benzo(a)pyrene. Arch Biochem Biophys 1998; 350: 340–7PubMedCrossRef Schuetz EG, Yasuda R, Arimori R, et al. Human MDR1 and mouse mdrla P-glycoprotein alter the cellular retention and disposition of erythromycin, but not of retinoic acid or benzo(a)pyrene. Arch Biochem Biophys 1998; 350: 340–7PubMedCrossRef
42.
Zurück zum Zitat Kim RB, Fromm MF, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 1998; 101: 289–94PubMedCrossRef Kim RB, Fromm MF, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 1998; 101: 289–94PubMedCrossRef
43.
Zurück zum Zitat Schinkel AH, Wagenaar E, Mol CA, et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97: 2517–24PubMedCrossRef Schinkel AH, Wagenaar E, Mol CA, et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97: 2517–24PubMedCrossRef
44.
Zurück zum Zitat Callaghan R, Riordan JR. Synthetic and natural opiates interact with P-glycoprotein in multidrug-resistant cells. J Biol Chem 1993; 268: 16059–64PubMed Callaghan R, Riordan JR. Synthetic and natural opiates interact with P-glycoprotein in multidrug-resistant cells. J Biol Chem 1993; 268: 16059–64PubMed
45.
Zurück zum Zitat Fardel O, Lecureur V, Loyer P, et al. Rifampicin enhances anticancer drug accumulation and activity in multidrug-resistant cells. Biochem Pharmacol 1995; 49: 1255–60PubMedCrossRef Fardel O, Lecureur V, Loyer P, et al. Rifampicin enhances anticancer drug accumulation and activity in multidrug-resistant cells. Biochem Pharmacol 1995; 49: 1255–60PubMedCrossRef
46.
Zurück zum Zitat Kim RB, Wandel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999; 16: 408–14PubMedCrossRef Kim RB, Wandel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999; 16: 408–14PubMedCrossRef
47.
Zurück zum Zitat Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem 2001; 276: 14581–7PubMedCrossRef Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem 2001; 276: 14581–7PubMedCrossRef
48.
Zurück zum Zitat Kliewer SA, Moore JT, Wade L, et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 1998; 92: 73–82PubMedCrossRef Kliewer SA, Moore JT, Wade L, et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 1998; 92: 73–82PubMedCrossRef
49.
Zurück zum Zitat Westphal K, Weibrenner A, Zschieske M, et al. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin Pharmacol Ther 2000; 68: 345–55PubMedCrossRef Westphal K, Weibrenner A, Zschieske M, et al. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin Pharmacol Ther 2000; 68: 345–55PubMedCrossRef
50.
Zurück zum Zitat Hamman MA, Bruce MA, Haehner-Daniels BD, et al. The effect of rifampin administration on the disposition of fexofenadine. Clin Pharmacol Ther 2001; 69: 114–21PubMedCrossRef Hamman MA, Bruce MA, Haehner-Daniels BD, et al. The effect of rifampin administration on the disposition of fexofenadine. Clin Pharmacol Ther 2001; 69: 114–21PubMedCrossRef
51.
Zurück zum Zitat Fromm MF, Kauffman HM, Fritz P, et al. The effect of rifampin treatment on intestinal expression of human MRP transporters. Am J Pathol 2000; 157: 1575–80PubMedCrossRef Fromm MF, Kauffman HM, Fritz P, et al. The effect of rifampin treatment on intestinal expression of human MRP transporters. Am J Pathol 2000; 157: 1575–80PubMedCrossRef
52.
Zurück zum Zitat König J, Nies AT, Cui Y, et al. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta 1999; 1461: 377–94PubMedCrossRef König J, Nies AT, Cui Y, et al. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta 1999; 1461: 377–94PubMedCrossRef
53.
Zurück zum Zitat Staudinger J, Liu Y, Madan A, et al. Coordinate regulation of xenobiotic and bile acid homeostasis by pregnane X receptor. Drug Metab Dispos 2001; 29: 1467–72PubMed Staudinger J, Liu Y, Madan A, et al. Coordinate regulation of xenobiotic and bile acid homeostasis by pregnane X receptor. Drug Metab Dispos 2001; 29: 1467–72PubMed
54.
Zurück zum Zitat Reichel C, Gao B, van Montfoort J, et al. Localization and function of the organic anion-transporting polypeptide Oatp2 in rat liver. Gastroenterology 1999; 117: 688–95PubMedCrossRef Reichel C, Gao B, van Montfoort J, et al. Localization and function of the organic anion-transporting polypeptide Oatp2 in rat liver. Gastroenterology 1999; 117: 688–95PubMedCrossRef
55.
Zurück zum Zitat Fromm MF, Busse D, Kroemer HK, et al. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 1996; 24: 796–801PubMedCrossRef Fromm MF, Busse D, Kroemer HK, et al. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 1996; 24: 796–801PubMedCrossRef
56.
Zurück zum Zitat Kroemer HK, Gautier JC, Beaune P, et al. Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 1993; 348: 332–7PubMedCrossRef Kroemer HK, Gautier JC, Beaune P, et al. Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 1993; 348: 332–7PubMedCrossRef
57.
Zurück zum Zitat Busse D, Cosme J, Beaune P, et al. Cytochromes of the P450 2C subfamily are the major enzymes involved in the O-demethylation of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 1995; 353: 116–21PubMedCrossRef Busse D, Cosme J, Beaune P, et al. Cytochromes of the P450 2C subfamily are the major enzymes involved in the O-demethylation of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 1995; 353: 116–21PubMedCrossRef
58.
Zurück zum Zitat Tran JQ, Kovacs SJ, McIntosh TS, et al. Morning spot and 24-hour urinary 6β-hydroxycortisol to Cortisol ratios: intraindividual variability and correlation under basal conditions and conditions of CYP 3A4 induction. J Clin Pharmacol 1999; 39: 487–94PubMed Tran JQ, Kovacs SJ, McIntosh TS, et al. Morning spot and 24-hour urinary 6β-hydroxycortisol to Cortisol ratios: intraindividual variability and correlation under basal conditions and conditions of CYP 3A4 induction. J Clin Pharmacol 1999; 39: 487–94PubMed
59.
Zurück zum Zitat Lee KH, Shin JG, Chong WS, et al. Time course of the changes in prednisolone pharmacokinetics after co-administration or discontinuation of rifampin. Eur J Clin Pharmacol 1993; 45: 287–9PubMedCrossRef Lee KH, Shin JG, Chong WS, et al. Time course of the changes in prednisolone pharmacokinetics after co-administration or discontinuation of rifampin. Eur J Clin Pharmacol 1993; 45: 287–9PubMedCrossRef
60.
Zurück zum Zitat Ndanusa BU, Mustapha A, Abdu-Aguye I. The effect of single dose of rifampicin on the pharmacokinetics of oral nifedipine. J Pharm Biomed Anal 1997; 15: 1571–5PubMedCrossRef Ndanusa BU, Mustapha A, Abdu-Aguye I. The effect of single dose of rifampicin on the pharmacokinetics of oral nifedipine. J Pharm Biomed Anal 1997; 15: 1571–5PubMedCrossRef
61.
Zurück zum Zitat Kivisto KT, Brookjans G, Fromm MF, et al. Expression of CYP3A4, CYP3A5 and CYP3A7 in human dudenal tissue. Br J Clin Pharmacol 1996; 42: 387–9PubMedCrossRef Kivisto KT, Brookjans G, Fromm MF, et al. Expression of CYP3A4, CYP3A5 and CYP3A7 in human dudenal tissue. Br J Clin Pharmacol 1996; 42: 387–9PubMedCrossRef
62.
Zurück zum Zitat Zhang QY, Dunbar D, Ostrowska A, et al. Characterization of human small intestinal cytochromes P-450. Drug Metab Dispos 1999; 27: 804–9PubMed Zhang QY, Dunbar D, Ostrowska A, et al. Characterization of human small intestinal cytochromes P-450. Drug Metab Dispos 1999; 27: 804–9PubMed
63.
Zurück zum Zitat Glaeser H, Drescher S, van der Kuip H, et al. Shed human enterocytes as a tool for the study of expression and function of intestinal drug-metabolizing enzymes and transporters. Clin Pharmacol Ther 2002; 71: 131–40PubMedCrossRef Glaeser H, Drescher S, van der Kuip H, et al. Shed human enterocytes as a tool for the study of expression and function of intestinal drug-metabolizing enzymes and transporters. Clin Pharmacol Ther 2002; 71: 131–40PubMedCrossRef
64.
Zurück zum Zitat Alionen H, Ziegler G, Klotz U. Midazolam kinetics. Clin Pharmacol Ther 1981; 30: 653–61CrossRef Alionen H, Ziegler G, Klotz U. Midazolam kinetics. Clin Pharmacol Ther 1981; 30: 653–61CrossRef
65.
Zurück zum Zitat Smith MT, Eadie MJ, Brophy TO. The pharmacokinetics of midazolam in man. Eur J Clin Pharmacol 1981; 19: 271–8PubMedCrossRef Smith MT, Eadie MJ, Brophy TO. The pharmacokinetics of midazolam in man. Eur J Clin Pharmacol 1981; 19: 271–8PubMedCrossRef
66.
Zurück zum Zitat Holtbecker N, Fromm MF, Kroemer HK, et al. The nifedipinerifampin interaction: evidence for induction of gut wall metabolism. Drug Metab Dispos 1996; 24: 1121–3PubMed Holtbecker N, Fromm MF, Kroemer HK, et al. The nifedipinerifampin interaction: evidence for induction of gut wall metabolism. Drug Metab Dispos 1996; 24: 1121–3PubMed
67.
Zurück zum Zitat Smith RB, Kroboth PD, Vanderlugt JT, et al. Pharmacokinetics and pharmacodynamics of alprazolam after oral and IV administration. Psychopharmacology 1984; 84: 452–6PubMedCrossRef Smith RB, Kroboth PD, Vanderlugt JT, et al. Pharmacokinetics and pharmacodynamics of alprazolam after oral and IV administration. Psychopharmacology 1984; 84: 452–6PubMedCrossRef
68.
Zurück zum Zitat Schmider J, Brockmöller J, Arold G, et al. Simultaneous assessment of CYP3A4 and CYP1A2 activity in vivo with alprazolam and caffeine. Pharmacogenetics 1999; 9: 725–34PubMedCrossRef Schmider J, Brockmöller J, Arold G, et al. Simultaneous assessment of CYP3A4 and CYP1A2 activity in vivo with alprazolam and caffeine. Pharmacogenetics 1999; 9: 725–34PubMedCrossRef
69.
Zurück zum Zitat Foster DJ, Somogyi AA, Bochner F. Methadone N-demethylation in human liver microsomes: lack of stereoselectivity and involvement of CYP3A4. Br J Clin Pharmacol 1999; 47: 403–12PubMedCrossRef Foster DJ, Somogyi AA, Bochner F. Methadone N-demethylation in human liver microsomes: lack of stereoselectivity and involvement of CYP3A4. Br J Clin Pharmacol 1999; 47: 403–12PubMedCrossRef
70.
Zurück zum Zitat Kreek MJ, Garfield JW, Gutjahr CL, et al. Rifampin-induced methadone withdrawal. N Engl J Med 1976; 294: 1104–6PubMedCrossRef Kreek MJ, Garfield JW, Gutjahr CL, et al. Rifampin-induced methadone withdrawal. N Engl J Med 1976; 294: 1104–6PubMedCrossRef
71.
Zurück zum Zitat Bending MR, Skacel PO. Rifampicin and methadone withdrawal [letter]. Lancet 1977; I: 1211CrossRef Bending MR, Skacel PO. Rifampicin and methadone withdrawal [letter]. Lancet 1977; I: 1211CrossRef
72.
Zurück zum Zitat Holmes VF. Rifampin-induced methadone withdrawal in AIDS [letter]. J Clin Psychopharmacol 1990; 10: 443–4PubMed Holmes VF. Rifampin-induced methadone withdrawal in AIDS [letter]. J Clin Psychopharmacol 1990; 10: 443–4PubMed
73.
Zurück zum Zitat Raistrick D, Hay A, Wolff K. Methadone maintenance and tuberculosis treatment. BMJ 1996; 313: 925–6PubMedCrossRef Raistrick D, Hay A, Wolff K. Methadone maintenance and tuberculosis treatment. BMJ 1996; 313: 925–6PubMedCrossRef
74.
Zurück zum Zitat Kharasch ED, Russell M, Mautz D, et al. The role of cytochrome P450 3A4 in alfentanil clearance. Anesthesiology 1997; 87: 36–50PubMedCrossRef Kharasch ED, Russell M, Mautz D, et al. The role of cytochrome P450 3A4 in alfentanil clearance. Anesthesiology 1997; 87: 36–50PubMedCrossRef
75.
Zurück zum Zitat Porras AG, Gertz B, Buschmeier A, et al. The effects of metabolic induction by rifampin (Rf) on the elimination of celecoxib (CXB) and the effect of CXB on CYP2D6 metabolism [abstract]. Clin Pharmacol Ther 2001; 69: P58 Porras AG, Gertz B, Buschmeier A, et al. The effects of metabolic induction by rifampin (Rf) on the elimination of celecoxib (CXB) and the effect of CXB on CYP2D6 metabolism [abstract]. Clin Pharmacol Ther 2001; 69: P58
76.
Zurück zum Zitat Manyike PT, Kharasch ED, Kalhorn TF, et al. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther 2000; 67: 275–82PubMedCrossRef Manyike PT, Kharasch ED, Kalhorn TF, et al. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther 2000; 67: 275–82PubMedCrossRef
77.
Zurück zum Zitat Mortimer O, Persson K, Ladona MG, et al. Polymorphic formation of morphine from codeine in poor and extensive metabolizers of dextromethorphan: relationship to the presence of immunoidentified cytochrome P-450IID1. Clin Pharmacol Ther 1990; 47: 27–35PubMedCrossRef Mortimer O, Persson K, Ladona MG, et al. Polymorphic formation of morphine from codeine in poor and extensive metabolizers of dextromethorphan: relationship to the presence of immunoidentified cytochrome P-450IID1. Clin Pharmacol Ther 1990; 47: 27–35PubMedCrossRef
78.
Zurück zum Zitat Yue QY, Svensson JO, Alm C, et al. Codeine O-demethylation co-segregates with polymorphic debrisoquine hydroxylation. Br J Clin Pharmacol 1989; 28: 639–45PubMedCrossRef Yue QY, Svensson JO, Alm C, et al. Codeine O-demethylation co-segregates with polymorphic debrisoquine hydroxylation. Br J Clin Pharmacol 1989; 28: 639–45PubMedCrossRef
79.
Zurück zum Zitat Yue QY, Hasselström J, Svensson JO, et al. Pharmacokinetics of codeine and its metabolites in Caucasian healthy volunteers: comparisons between extensive and poor hydroxylators of debrisoquine. Br J Clin Pharmacol 1991; 31: 635–42PubMedCrossRef Yue QY, Hasselström J, Svensson JO, et al. Pharmacokinetics of codeine and its metabolites in Caucasian healthy volunteers: comparisons between extensive and poor hydroxylators of debrisoquine. Br J Clin Pharmacol 1991; 31: 635–42PubMedCrossRef
80.
Zurück zum Zitat Sindrup SH, Brøsen K, Bjerring P, et al. Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 1990; 48: 686–93PubMedCrossRef Sindrup SH, Brøsen K, Bjerring P, et al. Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 1990; 48: 686–93PubMedCrossRef
81.
Zurück zum Zitat Desmeules J, Gascon MP, Dayer P, et al. Impact of environmental and genetic factors on codeine analgesia. Eur J Clin Pharmacol 1991; 41: 23–6PubMedCrossRef Desmeules J, Gascon MP, Dayer P, et al. Impact of environmental and genetic factors on codeine analgesia. Eur J Clin Pharmacol 1991; 41: 23–6PubMedCrossRef
82.
83.
Zurück zum Zitat Pond SM, Kretschzmar KM. Effect of phenytoin on meperidine clearance and normeperidine formation. Clin Pharmacol Ther 1981; 30: 680–6PubMedCrossRef Pond SM, Kretschzmar KM. Effect of phenytoin on meperidine clearance and normeperidine formation. Clin Pharmacol Ther 1981; 30: 680–6PubMedCrossRef
84.
Zurück zum Zitat Tempelhoff R, Modica PA, Spitznagel Jr EL. Anticonvulsant therapy increases fentanyl requirements during anaesthesia for craniotomy. Can J Anaesth 1990; 37: 327–32PubMedCrossRef Tempelhoff R, Modica PA, Spitznagel Jr EL. Anticonvulsant therapy increases fentanyl requirements during anaesthesia for craniotomy. Can J Anaesth 1990; 37: 327–32PubMedCrossRef
85.
Zurück zum Zitat Stockley IH. Drug interactions. 5th ed. London: Pharmaceutical Press, 1999: 81 Stockley IH. Drug interactions. 5th ed. London: Pharmaceutical Press, 1999: 81
86.
Zurück zum Zitat Goldstein JA, de Morais SM. Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 1994; 4: 285–99PubMedCrossRef Goldstein JA, de Morais SM. Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 1994; 4: 285–99PubMedCrossRef
87.
Zurück zum Zitat Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45: 525–38PubMedCrossRef Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45: 525–38PubMedCrossRef
88.
Zurück zum Zitat Zand R, Nelson SD, Slattery JT, et al. Inhibition and induction of cytochrome P4502El-catalyzed oxidation by isoniazid in humans. Clin Pharmacol Ther 1993; 52: 142–9CrossRef Zand R, Nelson SD, Slattery JT, et al. Inhibition and induction of cytochrome P4502El-catalyzed oxidation by isoniazid in humans. Clin Pharmacol Ther 1993; 52: 142–9CrossRef
89.
Zurück zum Zitat Wen X, Wang JS, Neuvonen PJ, et al. Isoniazid is a mechanism-based inhibitor of cytochrome P450 1A2, 2A6, 2C19 and 3A4 isoforms in human liver microsomes. Eur J Clin Pharmacol 2002; 57: 799–804PubMedCrossRef Wen X, Wang JS, Neuvonen PJ, et al. Isoniazid is a mechanism-based inhibitor of cytochrome P450 1A2, 2A6, 2C19 and 3A4 isoforms in human liver microsomes. Eur J Clin Pharmacol 2002; 57: 799–804PubMedCrossRef
90.
Zurück zum Zitat Kidd RS, Straugh AB, Meyer MC, et al. Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 altele. Pharmacogenetics 1999; 9: 71–80PubMedCrossRef Kidd RS, Straugh AB, Meyer MC, et al. Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 altele. Pharmacogenetics 1999; 9: 71–80PubMedCrossRef
91.
Zurück zum Zitat Kirchheiner J, Brockmöller J, Meineke I, et al. Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin Pharmacol Ther 2002; 71: 286–96PubMedCrossRef Kirchheiner J, Brockmöller J, Meineke I, et al. Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin Pharmacol Ther 2002; 71: 286–96PubMedCrossRef
92.
Zurück zum Zitat Langtry HD, Balfour JA. Glimepiride: a review of its use in the management of type 2 diabetes mellitus. Drugs 1998; 55: 563–84PubMedCrossRef Langtry HD, Balfour JA. Glimepiride: a review of its use in the management of type 2 diabetes mellitus. Drugs 1998; 55: 563–84PubMedCrossRef
93.
Zurück zum Zitat Niemi M, Kivistö KT, Backman JT, et al. Effect of rifampicin on the pharmacokinetics and pharmacodynamics of glimepiride. Br J Clin Pharmacol 2000; 50: 591–5PubMedCrossRef Niemi M, Kivistö KT, Backman JT, et al. Effect of rifampicin on the pharmacokinetics and pharmacodynamics of glimepiride. Br J Clin Pharmacol 2000; 50: 591–5PubMedCrossRef
94.
Zurück zum Zitat Niemi M, Backman JT, Neuvonen M, et al. Effects of rifampin on the pharmacokinetics and pharmacodynamics of glyburide and glipizide. Clin Pharmacol Ther 2001; 69: 400–6PubMedCrossRef Niemi M, Backman JT, Neuvonen M, et al. Effects of rifampin on the pharmacokinetics and pharmacodynamics of glyburide and glipizide. Clin Pharmacol Ther 2001; 69: 400–6PubMedCrossRef
95.
Zurück zum Zitat Surekha V, Peter JV, Jeyaseelan L, et al. Drug interaction: rifampicin and glibenclamide. Natl Med J India 1997; 10: 11–2PubMed Surekha V, Peter JV, Jeyaseelan L, et al. Drug interaction: rifampicin and glibenclamide. Natl Med J India 1997; 10: 11–2PubMed
96.
Zurück zum Zitat Kihara Y, Otsuki M. Interaction of gliclazide and rifampicin [letter]. Diabetes Care 2000; 23: 1204–5PubMedCrossRef Kihara Y, Otsuki M. Interaction of gliclazide and rifampicin [letter]. Diabetes Care 2000; 23: 1204–5PubMedCrossRef
97.
Zurück zum Zitat Niemi M, Backman JT, Neuvonen M, et al. Rifampin decreases the plasma concentrations and effects of repaglinide. Clin Pharmacol Ther 2000; 68: 495–500PubMedCrossRef Niemi M, Backman JT, Neuvonen M, et al. Rifampin decreases the plasma concentrations and effects of repaglinide. Clin Pharmacol Ther 2000; 68: 495–500PubMedCrossRef
98.
Zurück zum Zitat Bidstrup TB, Bjørnsdottir I, Thomsen MS, et al. CYP2C8 and CYP3A4 are the principle enzymes involved in the in vitro biotransformation of the insulin secretagogue repaglinide [abstract]. Pharmacol Toxicol 2001; 89 Suppl. 1: 65 Bidstrup TB, Bjørnsdottir I, Thomsen MS, et al. CYP2C8 and CYP3A4 are the principle enzymes involved in the in vitro biotransformation of the insulin secretagogue repaglinide [abstract]. Pharmacol Toxicol 2001; 89 Suppl. 1: 65
99.
Zurück zum Zitat Kalbag JB, Walter YH, Nedelman JR, et al. Mealtime glucose regulation with nateglinide in healthy volunteers: comparison with repaglinide and placebo. Diabetes Care 2001; 24: 73–7PubMedCrossRef Kalbag JB, Walter YH, Nedelman JR, et al. Mealtime glucose regulation with nateglinide in healthy volunteers: comparison with repaglinide and placebo. Diabetes Care 2001; 24: 73–7PubMedCrossRef
101.
Zurück zum Zitat Weaver ML, Orwig BA, Rodriguez LC, et al. Pharmacokinetics and metabolism of nateglinide in humans. Drug Metab Dispos 2001; 29: 415–21PubMed Weaver ML, Orwig BA, Rodriguez LC, et al. Pharmacokinetics and metabolism of nateglinide in humans. Drug Metab Dispos 2001; 29: 415–21PubMed
102.
Zurück zum Zitat Dunn CJ, Peters DH. Metformin: a review of its pharmacological properties and therapeutic use in non-insulin-dependent diabetes mellitus. Drugs 1995; 49: 721–49PubMedCrossRef Dunn CJ, Peters DH. Metformin: a review of its pharmacological properties and therapeutic use in non-insulin-dependent diabetes mellitus. Drugs 1995; 49: 721–49PubMedCrossRef
103.
Zurück zum Zitat Mudaliar S, Henry RR. New oral therapies for type 2 diabetes mellitus: the glitazones or insulin sensitizers. Annu Rev Med 2001; 52: 239–57PubMedCrossRef Mudaliar S, Henry RR. New oral therapies for type 2 diabetes mellitus: the glitazones or insulin sensitizers. Annu Rev Med 2001; 52: 239–57PubMedCrossRef
104.
Zurück zum Zitat Ono S, Hatanaka T, Miyazawa S, et al. Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: role of CYP2B6, 2C19 and the 3A subfamily. Xenobiotica 1996; 26: 1155–66PubMedCrossRef Ono S, Hatanaka T, Miyazawa S, et al. Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: role of CYP2B6, 2C19 and the 3A subfamily. Xenobiotica 1996; 26: 1155–66PubMedCrossRef
105.
Zurück zum Zitat Ochs HR, Greenblatt DJ, Roberts GM, et al. Diazepam interaction with antituberculosis drugs. Clin Pharmacol Ther 1981; 29: 671–8PubMedCrossRef Ochs HR, Greenblatt DJ, Roberts GM, et al. Diazepam interaction with antituberculosis drugs. Clin Pharmacol Ther 1981; 29: 671–8PubMedCrossRef
106.
Zurück zum Zitat Ohnhaus EE, Brockmeyer N, Dylewicz P, et al. The effect of antipyrine and rifampin on the metabolism of diazepam. Clin Pharmacol Ther 1987; 42: 148–56PubMedCrossRef Ohnhaus EE, Brockmeyer N, Dylewicz P, et al. The effect of antipyrine and rifampin on the metabolism of diazepam. Clin Pharmacol Ther 1987; 42: 148–56PubMedCrossRef
107.
Zurück zum Zitat Breimer DD, Zilly W, Richter E. Influence of rifampin on drug metabolism: differences between hexobarbital and antipyrine. Clin Pharmacol Ther 1977; 21: 470–81PubMed Breimer DD, Zilly W, Richter E. Influence of rifampin on drug metabolism: differences between hexobarbital and antipyrine. Clin Pharmacol Ther 1977; 21: 470–81PubMed
108.
Zurück zum Zitat Smith DA, Chandler MHH, Shedlofsky SI, et al. Age-dependent stereoselective increase in the oral clearance of hexobarbitone isomers caused by rifampicin. Br J Clin Pharmcol 1991; 32: 735–9 Smith DA, Chandler MHH, Shedlofsky SI, et al. Age-dependent stereoselective increase in the oral clearance of hexobarbitone isomers caused by rifampicin. Br J Clin Pharmcol 1991; 32: 735–9
109.
Zurück zum Zitat Ebert U, Thong NQ, Oertel R, et al. Effects of rifampicin and cimetidine on pharmacokinetics and pharmacodynamics of lamotrigine in healthy subjects. Eur J Clin Pharmacol 2000; 56: 299–304PubMedCrossRef Ebert U, Thong NQ, Oertel R, et al. Effects of rifampicin and cimetidine on pharmacokinetics and pharmacodynamics of lamotrigine in healthy subjects. Eur J Clin Pharmacol 2000; 56: 299–304PubMedCrossRef
110.
Zurück zum Zitat Kay L, Kampmann JP, Svendsen TL, et al. Influence of rifampicin and isoniazid on the kinetics of phenytoin. Br J Clin Pharmacol 1985; 20: 323–6PubMedCrossRef Kay L, Kampmann JP, Svendsen TL, et al. Influence of rifampicin and isoniazid on the kinetics of phenytoin. Br J Clin Pharmacol 1985; 20: 323–6PubMedCrossRef
111.
Zurück zum Zitat Valproate sodium injection (Depacon®) prescribing information. North Chicago (IL): Abbott Laboratories, 2000 Valproate sodium injection (Depacon®) prescribing information. North Chicago (IL): Abbott Laboratories, 2000
112.
Zurück zum Zitat Kim YH, Cha IJ, Shim JC, et al. Effect of rifampin on the plasma concentration and the clinical effect of haloperidol concomitantly administered to schizophrenic patients. J Clin Psychopharmacol 1996; 16: 247–52PubMedCrossRef Kim YH, Cha IJ, Shim JC, et al. Effect of rifampin on the plasma concentration and the clinical effect of haloperidol concomitantly administered to schizophrenic patients. J Clin Psychopharmacol 1996; 16: 247–52PubMedCrossRef
113.
Zurück zum Zitat Lamberg TS, Kivisto KT, Neuvonen PJ. Concentrations and effects of buspirone are considerably reduced by rifampicin. Br J Clin Pharmacol 1998; 45: 381–5PubMedCrossRef Lamberg TS, Kivisto KT, Neuvonen PJ. Concentrations and effects of buspirone are considerably reduced by rifampicin. Br J Clin Pharmacol 1998; 45: 381–5PubMedCrossRef
114.
Zurück zum Zitat Brockmeyer NH, Mertins L, Klimek K, et al. Comparative effects of rifampin and/or probenecid on the pharmacokinetics of temazepam and nitrazepam. Int J Clin Pharmacol Ther Toxicol 1990; 28: 387–93PubMed Brockmeyer NH, Mertins L, Klimek K, et al. Comparative effects of rifampin and/or probenecid on the pharmacokinetics of temazepam and nitrazepam. Int J Clin Pharmacol Ther Toxicol 1990; 28: 387–93PubMed
115.
Zurück zum Zitat Villikka K, Kivistö KT, Backman JT, et al. Triazolam is ineffective in patients taking rifampin. Clin Pharmacol Ther 1997; 61: 8–14PubMedCrossRef Villikka K, Kivistö KT, Backman JT, et al. Triazolam is ineffective in patients taking rifampin. Clin Pharmacol Ther 1997; 61: 8–14PubMedCrossRef
116.
Zurück zum Zitat Villikka R, Kivistö RT, Luurila H, et al. Rifampin reduces plasma concentrations and effects of zolpidem. Clin Pharmacol Ther 1997; 62: 629–34PubMedCrossRef Villikka R, Kivistö RT, Luurila H, et al. Rifampin reduces plasma concentrations and effects of zolpidem. Clin Pharmacol Ther 1997; 62: 629–34PubMedCrossRef
117.
Zurück zum Zitat Villikka R, Kivistö RT, Lamberg TS, et al. Concentrations and effects of zopiclone are greatly reduced by rifampicin. Br J Clin Pharmacol 1997; 43: 471–4PubMedCrossRef Villikka R, Kivistö RT, Lamberg TS, et al. Concentrations and effects of zopiclone are greatly reduced by rifampicin. Br J Clin Pharmacol 1997; 43: 471–4PubMedCrossRef
118.
Zurück zum Zitat Locniskar A, Greenblatt DJ. Oxidative versus conjugative bio-transformation of temazepam. Biopharm Drug Dispos 1990; 11: 499–506PubMedCrossRef Locniskar A, Greenblatt DJ. Oxidative versus conjugative bio-transformation of temazepam. Biopharm Drug Dispos 1990; 11: 499–506PubMedCrossRef
119.
Zurück zum Zitat Greenblatt DJ. Clinical pharmacokinetics of oxazepam and lorazepam. Clin Pharmacokinet 1981; 6: 89–105PubMedCrossRef Greenblatt DJ. Clinical pharmacokinetics of oxazepam and lorazepam. Clin Pharmacokinet 1981; 6: 89–105PubMedCrossRef
120.
Zurück zum Zitat Greenblatt DJ, Schillings RT, Ryriakopoulos A, et al. Clinical pharmacokinetics of lorazepam: I. absorption and disposition of oral 14C-lorazepam. Clin Pharmacol Ther 1976; 20: 329–41PubMed Greenblatt DJ, Schillings RT, Ryriakopoulos A, et al. Clinical pharmacokinetics of lorazepam: I. absorption and disposition of oral 14C-lorazepam. Clin Pharmacol Ther 1976; 20: 329–41PubMed
121.
Zurück zum Zitat Scott AR, Rhir ASM, Steele WH, et al. Oxazepam pharmacokinetics in patients with epilepsy treated long-term with phenyloin alone or in combination with phenobarbitone. Br J Clin Pharmacol 1983; 16: 441–4PubMedCrossRef Scott AR, Rhir ASM, Steele WH, et al. Oxazepam pharmacokinetics in patients with epilepsy treated long-term with phenyloin alone or in combination with phenobarbitone. Br J Clin Pharmacol 1983; 16: 441–4PubMedCrossRef
122.
Zurück zum Zitat Zaleplon (Sonata®) prescribing information. Philadelphia (PA): Wyeth Laboratories, 2001 Zaleplon (Sonata®) prescribing information. Philadelphia (PA): Wyeth Laboratories, 2001
123.
Zurück zum Zitat Pichard L, Gillet G, Bonfils C, et al. Oxidative metabolism of zolpidem by human liver cytochrome P450s. Drug Metab Dispos 1995; 23: 1253–62PubMed Pichard L, Gillet G, Bonfils C, et al. Oxidative metabolism of zolpidem by human liver cytochrome P450s. Drug Metab Dispos 1995; 23: 1253–62PubMed
124.
Zurück zum Zitat Becquemont L, Mouajjah S, Escaffre O, et al. Cytochrome P-450 3A4 and 2C8 are involved in zopiclone metabolism. Drug Metab Dispos 1999; 27: 1068–73PubMed Becquemont L, Mouajjah S, Escaffre O, et al. Cytochrome P-450 3A4 and 2C8 are involved in zopiclone metabolism. Drug Metab Dispos 1999; 27: 1068–73PubMed
125.
Zurück zum Zitat Kivistö KT, Lamberg TS, Kantola T, et al. Plasma buspirone concentrations are greatly increased by erythromycin and itraconazole. Clin Pharmacol Ther 1997; 62: 348–54PubMedCrossRef Kivistö KT, Lamberg TS, Kantola T, et al. Plasma buspirone concentrations are greatly increased by erythromycin and itraconazole. Clin Pharmacol Ther 1997; 62: 348–54PubMedCrossRef
126.
Zurück zum Zitat Joos AAB, Frank UG, Kaschka WP. Pharmacokinetic interaction of clozapine and rifampicin in a forensic patient with an atypical mycobacterial infection [letter]. J Clin Psychopharmacol 1998; 18: 83–5PubMedCrossRef Joos AAB, Frank UG, Kaschka WP. Pharmacokinetic interaction of clozapine and rifampicin in a forensic patient with an atypical mycobacterial infection [letter]. J Clin Psychopharmacol 1998; 18: 83–5PubMedCrossRef
127.
Zurück zum Zitat Markowitz JS, DeVane CL. Rifampin-induced selective serotonin reuptake inhibitor withdrawal syndrome in a patient treated with sertraline. J Clin Psychopharmacol 2000; 20: 109–10PubMedCrossRef Markowitz JS, DeVane CL. Rifampin-induced selective serotonin reuptake inhibitor withdrawal syndrome in a patient treated with sertraline. J Clin Psychopharmacol 2000; 20: 109–10PubMedCrossRef
128.
Zurück zum Zitat Bebchuk JM, Stewart DE. Drug interaction between rifampin and nortriptyline: a case report. Int J Psychiatry Med 1991; 21: 183–7PubMedCrossRef Bebchuk JM, Stewart DE. Drug interaction between rifampin and nortriptyline: a case report. Int J Psychiatry Med 1991; 21: 183–7PubMedCrossRef
129.
Zurück zum Zitat Pihlsgård M, Eliasson E. Significant reduction of sertraline plasma levels by carbamazepine and phenytoin [letter]. Eur J Clin Pharmacol 2002; 57: 915–6PubMedCrossRef Pihlsgård M, Eliasson E. Significant reduction of sertraline plasma levels by carbamazepine and phenytoin [letter]. Eur J Clin Pharmacol 2002; 57: 915–6PubMedCrossRef
130.
Zurück zum Zitat Odani A, Hashimoto Y, Otsuki Y, et al. Genetic polymorphisms of the CYP2C subfamily and its effect on the pharmacokinetics of phenytoin in Japanese patients with epilepsy. Clin Pharmacol Ther 1997; 62: 287–92PubMedCrossRef Odani A, Hashimoto Y, Otsuki Y, et al. Genetic polymorphisms of the CYP2C subfamily and its effect on the pharmacokinetics of phenytoin in Japanese patients with epilepsy. Clin Pharmacol Ther 1997; 62: 287–92PubMedCrossRef
131.
Zurück zum Zitat Zolezzi M. Antituberculosis agents and carbamazepine [letter]. Am J Psychiatry 2002; 159: 874PubMedCrossRef Zolezzi M. Antituberculosis agents and carbamazepine [letter]. Am J Psychiatry 2002; 159: 874PubMedCrossRef
132.
Zurück zum Zitat Fleenor ME, Harden JW, Curtis G. Interaction between carbamazepine and antituberculosis agents [letter]. Chest 1991; 99: 1554PubMedCrossRef Fleenor ME, Harden JW, Curtis G. Interaction between carbamazepine and antituberculosis agents [letter]. Chest 1991; 99: 1554PubMedCrossRef
133.
Zurück zum Zitat Schrenzel J, Dayer P, Leemann T, et al. Influence of rifampin on fleroxacin pharmacokinetics. Antimicrob Agents Chemother 1993; 37: 2132–8PubMedCrossRef Schrenzel J, Dayer P, Leemann T, et al. Influence of rifampin on fleroxacin pharmacokinetics. Antimicrob Agents Chemother 1993; 37: 2132–8PubMedCrossRef
134.
Zurück zum Zitat Humbert G, Brumpt I, Montay G, et al. Influence of rifampin on the pharmacokinetics of pefloxacin. Clin Pharmacol Ther 1991; 50: 682–7PubMedCrossRef Humbert G, Brumpt I, Montay G, et al. Influence of rifampin on the pharmacokinetics of pefloxacin. Clin Pharmacol Ther 1991; 50: 682–7PubMedCrossRef
135.
Zurück zum Zitat Chandler MHH, Toler SM, Rapp RP, et al. Multiple-dose pharmacokinetics of concurrent oral ciprofloxacin and rifampin therapy in elderly patients. Antimicrob Agents Chemother 1990; 34: 442–7PubMedCrossRef Chandler MHH, Toler SM, Rapp RP, et al. Multiple-dose pharmacokinetics of concurrent oral ciprofloxacin and rifampin therapy in elderly patients. Antimicrob Agents Chemother 1990; 34: 442–7PubMedCrossRef
136.
Zurück zum Zitat Wallace Jr RJ, Brown BA. Reduced serum levels of clarithromycin in patients treated with multidrug regimens including rifampin or rifabutin for Mycobacterium avium-M. intracellulare infection. J Infect Dis 1995; 171: 747–50PubMedCrossRef Wallace Jr RJ, Brown BA. Reduced serum levels of clarithromycin in patients treated with multidrug regimens including rifampin or rifabutin for Mycobacterium avium-M. intracellulare infection. J Infect Dis 1995; 171: 747–50PubMedCrossRef
137.
Zurück zum Zitat Occhipinti DJ, Choi A, Deyo K, et al. Influence of rifampin and clarithromycin on dapsone (D) disposition and methemoglobin [abstract]. Clin Pharmacol Ther 1995; 57: 163 Occhipinti DJ, Choi A, Deyo K, et al. Influence of rifampin and clarithromycin on dapsone (D) disposition and methemoglobin [abstract]. Clin Pharmacol Ther 1995; 57: 163
138.
Zurück zum Zitat Garraffo R, Dellamonica P, Fournier JP, et al. The effect of rifampicin on the pharmacokinetics of doxycycline [letter]. Infection 1988; 16: 297–8PubMedCrossRef Garraffo R, Dellamonica P, Fournier JP, et al. The effect of rifampicin on the pharmacokinetics of doxycycline [letter]. Infection 1988; 16: 297–8PubMedCrossRef
139.
Zurück zum Zitat Djojosaputro M, Mustofa SS, Donatus IA, et al. The effects of doses and pre-treatment with rifampicin on the elimination kinetics of metronidazole [abstract]. Eur J Pharmacol 1990; 183: 1870–1CrossRef Djojosaputro M, Mustofa SS, Donatus IA, et al. The effects of doses and pre-treatment with rifampicin on the elimination kinetics of metronidazole [abstract]. Eur J Pharmacol 1990; 183: 1870–1CrossRef
140.
Zurück zum Zitat Drusano GL, Townsend RJ, Walsh TJ, et al. Steady-state serum pharmacokinetics of novobiocin and rifampin alone and in combination. Antimicrob Agents Chemother 1986; 30: 42–5PubMedCrossRef Drusano GL, Townsend RJ, Walsh TJ, et al. Steady-state serum pharmacokinetics of novobiocin and rifampin alone and in combination. Antimicrob Agents Chemother 1986; 30: 42–5PubMedCrossRef
141.
Zurück zum Zitat Shaffer JL, Houston JB. The effect of rifampicin on sulphapyridine plasma concentrations following sulphasalazine administration [letter]. Br J Clin Pharmacol 1985; 19: 526–8PubMedCrossRef Shaffer JL, Houston JB. The effect of rifampicin on sulphapyridine plasma concentrations following sulphasalazine administration [letter]. Br J Clin Pharmacol 1985; 19: 526–8PubMedCrossRef
142.
Zurück zum Zitat Emmerson AM, Grüneberg RN, Johnson ES. The pharmacokinetics in man of a combination of rifampicin and trimethoprim. J Antimicrob Chemother 1978; 4: 523–31PubMedCrossRef Emmerson AM, Grüneberg RN, Johnson ES. The pharmacokinetics in man of a combination of rifampicin and trimethoprim. J Antimicrob Chemother 1978; 4: 523–31PubMedCrossRef
143.
Zurück zum Zitat Ridtitid W, Wongnawa M, Mahatthanatrakul W, et al. Effect of rifampin on plasma concentrations of mefloquine in healthy volunteers. J Pharm Pharmacol 2000; 52: 1265–9PubMedCrossRef Ridtitid W, Wongnawa M, Mahatthanatrakul W, et al. Effect of rifampin on plasma concentrations of mefloquine in healthy volunteers. J Pharm Pharmacol 2000; 52: 1265–9PubMedCrossRef
144.
Zurück zum Zitat Wanwimolruk S, Kang W, Coville PF, et al. Marked enhancement by rifampicin and lack of effect of isoniazid on the elimination of quinine in man. Br J Clin Pharmacol 1995; 40: 87–91PubMedCrossRef Wanwimolruk S, Kang W, Coville PF, et al. Marked enhancement by rifampicin and lack of effect of isoniazid on the elimination of quinine in man. Br J Clin Pharmacol 1995; 40: 87–91PubMedCrossRef
145.
Zurück zum Zitat Lazar JD, Wilner KD. Drug interactions with fluconazole. Rev Infect Dis 1990; 12 Suppl. 3: S327–33PubMedCrossRef Lazar JD, Wilner KD. Drug interactions with fluconazole. Rev Infect Dis 1990; 12 Suppl. 3: S327–33PubMedCrossRef
146.
Zurück zum Zitat Jaruratanasirikul S, Sriwiriyajan S. Effect of rifampicin on the pharmacokinetics of itraconazole in normal volunteers and AIDS patients. Eur J Clin Pharmacol 1998; 54: 155–8PubMedCrossRef Jaruratanasirikul S, Sriwiriyajan S. Effect of rifampicin on the pharmacokinetics of itraconazole in normal volunteers and AIDS patients. Eur J Clin Pharmacol 1998; 54: 155–8PubMedCrossRef
147.
Zurück zum Zitat Doble N, Shaw R, Rowland-Hill C, et al. Pharmacokinetic study of the interaction between rifampicin and ketoconazole. J Antimicrob Chemother 1988; 21: 633–5PubMedCrossRef Doble N, Shaw R, Rowland-Hill C, et al. Pharmacokinetic study of the interaction between rifampicin and ketoconazole. J Antimicrob Chemother 1988; 21: 633–5PubMedCrossRef
148.
Zurück zum Zitat Polk RE, Brophy DF, Israel DS, et al. Pharmacokinetic interaction between amprenavir and rifabutin or rifampin in healthy males. Antimicrob Agents Chemother 2001; 45: 502–8PubMedCrossRef Polk RE, Brophy DF, Israel DS, et al. Pharmacokinetic interaction between amprenavir and rifabutin or rifampin in healthy males. Antimicrob Agents Chemother 2001; 45: 502–8PubMedCrossRef
149.
Zurück zum Zitat Borin MT, Chambers JH, Carel BJ, et al. Pharmacokinetic study of the interaction between rifampin and delavirdine mesylate. Clin Pharmacol Ther 1997; 61: 544–53PubMedCrossRef Borin MT, Chambers JH, Carel BJ, et al. Pharmacokinetic study of the interaction between rifampin and delavirdine mesylate. Clin Pharmacol Ther 1997; 61: 544–53PubMedCrossRef
150.
Zurück zum Zitat Efavirenz (Sustiva®) prescribing information. Princeton (NJ): Bristol-Myers Squibb Company, 2002 Efavirenz (Sustiva®) prescribing information. Princeton (NJ): Bristol-Myers Squibb Company, 2002
151.
Zurück zum Zitat McCrea J, Wyss D, Stone J, et al. Pharmacokinetic interaction between indinavir and rifampin [abstract]. Clin Pharmacol Ther 1997; 61: 152 McCrea J, Wyss D, Stone J, et al. Pharmacokinetic interaction between indinavir and rifampin [abstract]. Clin Pharmacol Ther 1997; 61: 152
152.
Zurück zum Zitat Nelfinavir mesylate (Viracept®) prescribing information. La Jolla (CA): Agouron Pharmaceuticals, 2001 Nelfinavir mesylate (Viracept®) prescribing information. La Jolla (CA): Agouron Pharmaceuticals, 2001
153.
Zurück zum Zitat Nevirapine (Viramune®) prescribing information. Columbus (Ohio): Roxane Laboratories, 2000 Nevirapine (Viramune®) prescribing information. Columbus (Ohio): Roxane Laboratories, 2000
154.
Zurück zum Zitat Ritonavir (Norvir®) prescribing information. North Chicago (IL): Abbott Laboratories, 2000 Ritonavir (Norvir®) prescribing information. North Chicago (IL): Abbott Laboratories, 2000
155.
Zurück zum Zitat Grub S, Bryson H, Goggin T, et al. The interaction of saquinavir (soft gelatin capsule) with ketoconazole, erythromycin and rifampicin: comparison of the effect in healthy volunteers and in HIV-infected patients. Eur J Clin Pharmacol 2001; 57: 115–21PubMedCrossRef Grub S, Bryson H, Goggin T, et al. The interaction of saquinavir (soft gelatin capsule) with ketoconazole, erythromycin and rifampicin: comparison of the effect in healthy volunteers and in HIV-infected patients. Eur J Clin Pharmacol 2001; 57: 115–21PubMedCrossRef
156.
Zurück zum Zitat Saquinavir mesylate (Invirase®) capsules prescribing information. Nutley (NJ): Roche Pharmaceuticals, 2000 Saquinavir mesylate (Invirase®) capsules prescribing information. Nutley (NJ): Roche Pharmaceuticals, 2000
157.
Zurück zum Zitat Gallicano KD, Sahai J, Shukla VK, et al. Induction of zidovudine glucuronidation and animation pathways by rifampicin in HIV-infected patients. Br J Clin Pharmacol 1999; 48: 168–79PubMedCrossRef Gallicano KD, Sahai J, Shukla VK, et al. Induction of zidovudine glucuronidation and animation pathways by rifampicin in HIV-infected patients. Br J Clin Pharmacol 1999; 48: 168–79PubMedCrossRef
158.
Zurück zum Zitat Gharaibeh MN, Gillen LP, Osborne B, et al. Effect of multiple doses of rifampin on the [14C N-methyl] erythromycin breath test in healthy male volunteers. J Clin Pharmacol 1998; 38: 492–5PubMed Gharaibeh MN, Gillen LP, Osborne B, et al. Effect of multiple doses of rifampin on the [14C N-methyl] erythromycin breath test in healthy male volunteers. J Clin Pharmacol 1998; 38: 492–5PubMed
159.
Zurück zum Zitat Prober CG. Effect of rifampin on chloramphenicol levels [letter]. N Engl J Med 1985; 312: 788–9PubMedCrossRef Prober CG. Effect of rifampin on chloramphenicol levels [letter]. N Engl J Med 1985; 312: 788–9PubMedCrossRef
160.
Zurück zum Zitat Kelly HW, Couch RC, Davis RL, et al. Interaction of chloramphenicol and rifampin. J Pediatr 1988; 112: 817–20PubMedCrossRef Kelly HW, Couch RC, Davis RL, et al. Interaction of chloramphenicol and rifampin. J Pediatr 1988; 112: 817–20PubMedCrossRef
161.
Zurück zum Zitat Fleming CM, Branch RA, Wilkinson GR, et al. Human liver microsomal N-hydroxylation of dapsone by cytochrome P-4503A4. Mol Pharmacol 1992; 41: 975–80PubMed Fleming CM, Branch RA, Wilkinson GR, et al. Human liver microsomal N-hydroxylation of dapsone by cytochrome P-4503A4. Mol Pharmacol 1992; 41: 975–80PubMed
162.
Zurück zum Zitat Krishna DR, Rao AV, Ramanakar TV, et al. Pharmacokinetic interaction between dapsone and rifampicin in leprosy patients. Drug Dev Ind Pharm 1986; 12: 443–59CrossRef Krishna DR, Rao AV, Ramanakar TV, et al. Pharmacokinetic interaction between dapsone and rifampicin in leprosy patients. Drug Dev Ind Pharm 1986; 12: 443–59CrossRef
163.
Zurück zum Zitat Venkatesan K. Clinical pharmacokinetic considerations in the treatment of patients with leprosy. Clin Pharmacokinet 1989: 16: 365–86PubMedCrossRef Venkatesan K. Clinical pharmacokinetic considerations in the treatment of patients with leprosy. Clin Pharmacokinet 1989: 16: 365–86PubMedCrossRef
164.
Zurück zum Zitat Horowitz HW, Jorde UP, Wormser GP. Drug interactions in use of dapsone for Pneumocystis carinii prophylaxis [letter]. Lancet 1991; 339: 747CrossRef Horowitz HW, Jorde UP, Wormser GP. Drug interactions in use of dapsone for Pneumocystis carinii prophylaxis [letter]. Lancet 1991; 339: 747CrossRef
165.
Zurück zum Zitat Sarma GR, Kailasam S, NairNGK, et al. Effect of prednisolone and rifampin on isoniazid metabolism in slow and rapid inactivators of isoniazid. Antimicrob Agents Chemother 1980; 18: 661–6PubMedCrossRef Sarma GR, Kailasam S, NairNGK, et al. Effect of prednisolone and rifampin on isoniazid metabolism in slow and rapid inactivators of isoniazid. Antimicrob Agents Chemother 1980; 18: 661–6PubMedCrossRef
166.
Zurück zum Zitat Sarma GP, Immanuel C, Kailasam S, et al. Rifampin-induced release of hydrazine from isoniazid: a possible cause of hepatitis during treatment of tuberculosis with regimens containing isoniazid and rifampin. Am Rev Respir Dis 1986; 133: 1072–5PubMed Sarma GP, Immanuel C, Kailasam S, et al. Rifampin-induced release of hydrazine from isoniazid: a possible cause of hepatitis during treatment of tuberculosis with regimens containing isoniazid and rifampin. Am Rev Respir Dis 1986; 133: 1072–5PubMed
167.
Zurück zum Zitat Steele MA, Burk RF, DesPrez RM. Toxic hepatitis with isoniazid and rifampin: a meta-analysis. Chest 1991; 99: 465–71PubMedCrossRef Steele MA, Burk RF, DesPrez RM. Toxic hepatitis with isoniazid and rifampin: a meta-analysis. Chest 1991; 99: 465–71PubMedCrossRef
168.
Zurück zum Zitat Engelhard D, Stutman HR, Marks MI. Interaction of ketoconazole with rifampin and isoniazid. N Engl J Med 1984; 311: 1681–3PubMedCrossRef Engelhard D, Stutman HR, Marks MI. Interaction of ketoconazole with rifampin and isoniazid. N Engl J Med 1984; 311: 1681–3PubMedCrossRef
169.
Zurück zum Zitat Terbinafine hydrochloride (Lamisil®) prescribing information. Dorval (Canada): Novartis Pharmaceuticals, 2001 Terbinafine hydrochloride (Lamisil®) prescribing information. Dorval (Canada): Novartis Pharmaceuticals, 2001
170.
Zurück zum Zitat Burman WJ, Jones BE. Treatment of HIV-related tuberculosis in the era of effective antiretroviral therapy. Am J Respir Crit Care Med 2001; 164: 7–12PubMed Burman WJ, Jones BE. Treatment of HIV-related tuberculosis in the era of effective antiretroviral therapy. Am J Respir Crit Care Med 2001; 164: 7–12PubMed
171.
Zurück zum Zitat Burman WJ, Gallicano K, Peloquin C. Therapeutic implications of drug interactions in the treatment of human immunodeficiency virus-related tuberculosis. Clin Infect Dis 1999; 28: 419–30PubMedCrossRef Burman WJ, Gallicano K, Peloquin C. Therapeutic implications of drug interactions in the treatment of human immunodeficiency virus-related tuberculosis. Clin Infect Dis 1999; 28: 419–30PubMedCrossRef
172.
Zurück zum Zitat Peters U, Hausamen TU, Grosse-Brockhoff F. The effects of antituberculosis drugs on the pharmacokinetics of digitoxin [in German]. Dtsch Med Wochenschr 1974; 99: 2381–6PubMedCrossRef Peters U, Hausamen TU, Grosse-Brockhoff F. The effects of antituberculosis drugs on the pharmacokinetics of digitoxin [in German]. Dtsch Med Wochenschr 1974; 99: 2381–6PubMedCrossRef
173.
Zurück zum Zitat Boman G, Eliasson K, Odar-Cederlöf I. Acute cardiac failure during treatment with digitoxin: an interaction with rifampicin [letter]. Br J Clin Pharmacol 1980; 10: 89–90PubMedCrossRef Boman G, Eliasson K, Odar-Cederlöf I. Acute cardiac failure during treatment with digitoxin: an interaction with rifampicin [letter]. Br J Clin Pharmacol 1980; 10: 89–90PubMedCrossRef
174.
Zurück zum Zitat Poor DM, Self TH, Davis HL. Interaction of rifampin and digitoxin [letter]. Arch Intern Med 1983; 143: 599PubMedCrossRef Poor DM, Self TH, Davis HL. Interaction of rifampin and digitoxin [letter]. Arch Intern Med 1983; 143: 599PubMedCrossRef
175.
Zurück zum Zitat Williamson KM, Patterson JH, McQueen RH, et al. Effects of erythromycin and rifampin on losartan pharmacokinetics in healthy volunteers. Clin Pharmacol Ther 1998; 63: 316–23PubMedCrossRef Williamson KM, Patterson JH, McQueen RH, et al. Effects of erythromycin and rifampin on losartan pharmacokinetics in healthy volunteers. Clin Pharmacol Ther 1998; 63: 316–23PubMedCrossRef
176.
Zurück zum Zitat Aitio ML, Mansury L, Tala E, et al. The effect of enzyme induction on the metabolism of disopyramide in man. Br J Clin Pharmacol 1981; 11: 279–85PubMedCrossRef Aitio ML, Mansury L, Tala E, et al. The effect of enzyme induction on the metabolism of disopyramide in man. Br J Clin Pharmacol 1981; 11: 279–85PubMedCrossRef
177.
Zurück zum Zitat Reichel C, Skodra T, Nacke A, et al. The lignocaine metabolite (MEGX) liver function test and P-450 induction in humans. Br J Clin Pharmacol 1998; 46: 535–9PubMedCrossRef Reichel C, Skodra T, Nacke A, et al. The lignocaine metabolite (MEGX) liver function test and P-450 induction in humans. Br J Clin Pharmacol 1998; 46: 535–9PubMedCrossRef
178.
Zurück zum Zitat Pentikäinen PJ, Koivula IH, Hiltunen HA. Effect of rifampicin treatment on the kinetics of mexiletine. Eur J Clin Pharmcol 1982; 23: 261–6CrossRef Pentikäinen PJ, Koivula IH, Hiltunen HA. Effect of rifampicin treatment on the kinetics of mexiletine. Eur J Clin Pharmcol 1982; 23: 261–6CrossRef
179.
Zurück zum Zitat Dilger K, Greiner B, Fromm MF, et al. Consequences of rifampicin treatment on propafenone disposition in extensive and poor metabolizers of CYP2D6. Pharmacogenetics 1999; 9: 551–9PubMedCrossRef Dilger K, Greiner B, Fromm MF, et al. Consequences of rifampicin treatment on propafenone disposition in extensive and poor metabolizers of CYP2D6. Pharmacogenetics 1999; 9: 551–9PubMedCrossRef
180.
Zurück zum Zitat Twum-Barima Y, Carruthers SG. Quinidine-rifampin interaction. N Engl J Med 1981; 304: 1466–9PubMedCrossRef Twum-Barima Y, Carruthers SG. Quinidine-rifampin interaction. N Engl J Med 1981; 304: 1466–9PubMedCrossRef
181.
Zurück zum Zitat Damkier P, Hansen LL, Brøsen K. Rifampicin treatment greatly increases the apparent oral clearance of quinidine. Pharmacol Toxicol 1999; 85: 257–62PubMedCrossRef Damkier P, Hansen LL, Brøsen K. Rifampicin treatment greatly increases the apparent oral clearance of quinidine. Pharmacol Toxicol 1999; 85: 257–62PubMedCrossRef
182.
Zurück zum Zitat Rice TL, Patterson JH, Celestin C, et al. Influence of rifampin on tocainide pharmacokinetics in humans. Clin Pharm 1989; 8: 200–5PubMed Rice TL, Patterson JH, Celestin C, et al. Influence of rifampin on tocainide pharmacokinetics in humans. Clin Pharm 1989; 8: 200–5PubMed
183.
Zurück zum Zitat Ohnhaus EE, Kampschulte J, Mönig H. Effect of propranolol and rifampicin on liver blood flow and phenprocoumon elimination [abstract]. Acta Pharmacol Toxicol 1986; 59 Suppl. 5: 92 Ohnhaus EE, Kampschulte J, Mönig H. Effect of propranolol and rifampicin on liver blood flow and phenprocoumon elimination [abstract]. Acta Pharmacol Toxicol 1986; 59 Suppl. 5: 92
184.
Zurück zum Zitat O’Reilly RA. Interaction of sodium warfarin and rifampin. Ann Intern Med 1974; 81: 337–40PubMed O’Reilly RA. Interaction of sodium warfarin and rifampin. Ann Intern Med 1974; 81: 337–40PubMed
185.
Zurück zum Zitat O’Reilly RA. Interaction of chronic daily warfarin therapy and rifampin. Ann Intern Med 1975; 83: 506–8PubMed O’Reilly RA. Interaction of chronic daily warfarin therapy and rifampin. Ann Intern Med 1975; 83: 506–8PubMed
186.
Zurück zum Zitat Kirch W, Rose I, Klingmann I, et al. Interaction of bisoprolol with cimetidine and rifampicin. Eur J Clin Pharmacol 1986; 31: 59–62PubMedCrossRef Kirch W, Rose I, Klingmann I, et al. Interaction of bisoprolol with cimetidine and rifampicin. Eur J Clin Pharmacol 1986; 31: 59–62PubMedCrossRef
187.
Zurück zum Zitat Bennett PN, John VA, Whitmarsh VB. Effect of rifampicin on metoprolol and antipyrine kinetics. Br J Clin Pharmacol 1982; 13: 387–91PubMedCrossRef Bennett PN, John VA, Whitmarsh VB. Effect of rifampicin on metoprolol and antipyrine kinetics. Br J Clin Pharmacol 1982; 13: 387–91PubMedCrossRef
188.
Zurück zum Zitat Herman RJ, Nakamura K, Wilkinson GR, et al. Induction of propranolol metabolism by rifampicin. Br J Clin Pharmacol 1983; 16: 565–9PubMedCrossRef Herman RJ, Nakamura K, Wilkinson GR, et al. Induction of propranolol metabolism by rifampicin. Br J Clin Pharmacol 1983; 16: 565–9PubMedCrossRef
189.
Zurück zum Zitat Kirch W, Milferstadt S, Halabi A, et al. Interaction of tertatolol with rifampicin and ranitidine pharmacokinetics and antihypertensive activity. Cardiovasc Drugs Ther 1990; 4: 487–91PubMedCrossRef Kirch W, Milferstadt S, Halabi A, et al. Interaction of tertatolol with rifampicin and ranitidine pharmacokinetics and antihypertensive activity. Cardiovasc Drugs Ther 1990; 4: 487–91PubMedCrossRef
190.
Zurück zum Zitat Saima S, Furule K, Yoshimoto H, et al. The effects of rifampicin on the pharmacokinetics and pharmacodynamics of orally administered nilvadipine to healthy volunteers. Br J Clin Pharmacol 2002; 53: 203–6PubMedCrossRef Saima S, Furule K, Yoshimoto H, et al. The effects of rifampicin on the pharmacokinetics and pharmacodynamics of orally administered nilvadipine to healthy volunteers. Br J Clin Pharmacol 2002; 53: 203–6PubMedCrossRef
191.
Zurück zum Zitat Barbarash RA, Bauman JL, Fischer JH, et al. Near total reduction in verapamil bioavailability by rifampin: electrocardiographic correlates [abstract]. J Am Coll Cardiol 1988; 11 Suppl. A: 205A Barbarash RA, Bauman JL, Fischer JH, et al. Near total reduction in verapamil bioavailability by rifampin: electrocardiographic correlates [abstract]. J Am Coll Cardiol 1988; 11 Suppl. A: 205A
192.
Zurück zum Zitat Fromm MF, Dilger K, Busse D, et al. Gut wall metabolism of verapamil in older people: effects of rifampicin-mediated enzyme induction. Br J Clin Pharmacol 1998; 45: 247–55PubMedCrossRef Fromm MF, Dilger K, Busse D, et al. Gut wall metabolism of verapamil in older people: effects of rifampicin-mediated enzyme induction. Br J Clin Pharmacol 1998; 45: 247–55PubMedCrossRef
193.
Zurück zum Zitat Jokubaitis LA. Updated clinical safety experience with fluvastatin. Am J Cardiol 1994; 73: 18D–24DPubMedCrossRef Jokubaitis LA. Updated clinical safety experience with fluvastatin. Am J Cardiol 1994; 73: 18D–24DPubMedCrossRef
194.
Zurück zum Zitat Affrime MB, Lowenthal DT, Rufo M. Failure of rifampin to induce the metabolism of clonidine in normal volunteers. Drug Intell Clin Pharm 1981; 15: 964–6PubMed Affrime MB, Lowenthal DT, Rufo M. Failure of rifampin to induce the metabolism of clonidine in normal volunteers. Drug Intell Clin Pharm 1981; 15: 964–6PubMed
195.
Zurück zum Zitat Frydman A. Pharmacokinetic profile of nicorandil in humans: an overview. J Cardiovasc Pharmacol 1992; 20 Suppl. 3: S34–44PubMedCrossRef Frydman A. Pharmacokinetic profile of nicorandil in humans: an overview. J Cardiovasc Pharmacol 1992; 20 Suppl. 3: S34–44PubMedCrossRef
196.
Zurück zum Zitat Tada Y, Tsuda Y, Otsuda T, et al. Case report: nifedipinerifampicin interaction attenuates the effect on blood pressure in a patient with essential hypertension. Am J Med Sci 1992; 303: 25–7PubMedCrossRef Tada Y, Tsuda Y, Otsuda T, et al. Case report: nifedipinerifampicin interaction attenuates the effect on blood pressure in a patient with essential hypertension. Am J Med Sci 1992; 303: 25–7PubMedCrossRef
197.
Zurück zum Zitat Capewell S, Freestone S, Critchley JAJH, et al. Reduced felodipine bioavailability in patients taking anticonvulsants. Lancet 1988; II: 480–2CrossRef Capewell S, Freestone S, Critchley JAJH, et al. Reduced felodipine bioavailability in patients taking anticonvulsants. Lancet 1988; II: 480–2CrossRef
198.
Zurück zum Zitat Tartara A, Galimberti CA, Manni R, et al. Differential effects of valproic acid and enzyme-inducing anticonvulsants on nimodipine pharmacokinetics in epileptic patients. Br J Clin Pharmacol 1991; 32: 335–40PubMedCrossRef Tartara A, Galimberti CA, Manni R, et al. Differential effects of valproic acid and enzyme-inducing anticonvulsants on nimodipine pharmacokinetics in epileptic patients. Br J Clin Pharmacol 1991; 32: 335–40PubMedCrossRef
199.
Zurück zum Zitat Michelucci R, Cipolla G, Passarelli D, et al. Reduced plasma nisoldipine concentrations in phenytoin-treated patients with epilepsy. Epilepsia 1996; 37: 1107–10PubMedCrossRef Michelucci R, Cipolla G, Passarelli D, et al. Reduced plasma nisoldipine concentrations in phenytoin-treated patients with epilepsy. Epilepsia 1996; 37: 1107–10PubMedCrossRef
200.
Zurück zum Zitat Kandiah D, Penny WJ, Fraser AG, et al. A possible drug interaction between rifampicin and enalapril. Eur J Clin Pharmacol 1988; 35: 431–2PubMedCrossRef Kandiah D, Penny WJ, Fraser AG, et al. A possible drug interaction between rifampicin and enalapril. Eur J Clin Pharmacol 1988; 35: 431–2PubMedCrossRef
201.
Zurück zum Zitat Yasar Ü, Forslund-Bergengren C, Tybring G, et al. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin Pharmacol Ther 2002; 71: 89–98PubMedCrossRef Yasar Ü, Forslund-Bergengren C, Tybring G, et al. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin Pharmacol Ther 2002; 71: 89–98PubMedCrossRef
202.
Zurück zum Zitat Prueksaritanont T, Gorham LM, Ma B, et al. In vitro metabolism of simvastatin in humans: identification of metabolizing enzymes and effect of the drug on hepatic P450s. Drug Metab Dispos 1997; 25: 1191–9PubMed Prueksaritanont T, Gorham LM, Ma B, et al. In vitro metabolism of simvastatin in humans: identification of metabolizing enzymes and effect of the drug on hepatic P450s. Drug Metab Dispos 1997; 25: 1191–9PubMed
203.
Zurück zum Zitat Transon C, Leemann T, Vogt N, et al. In vivo inhibition profile of cytochrome P450TB (CYP2C9) by (±)-fluvastatin. Clin Pharmacol Ther 1995; 58: 412–7PubMedCrossRef Transon C, Leemann T, Vogt N, et al. In vivo inhibition profile of cytochrome P450TB (CYP2C9) by (±)-fluvastatin. Clin Pharmacol Ther 1995; 58: 412–7PubMedCrossRef
204.
Zurück zum Zitat Transon C, Leemann T, Dayer P. In vitro comparative inhibition profiles of major human drug metabolising cytochrome P450 isozymes (CYP2C9, CYP2D6 and CYP3A4) by HMG-CoA reductase inhibitors. Eur J Clin Pharmacol 1996; 50: 209–15PubMedCrossRef Transon C, Leemann T, Dayer P. In vitro comparative inhibition profiles of major human drug metabolising cytochrome P450 isozymes (CYP2C9, CYP2D6 and CYP3A4) by HMG-CoA reductase inhibitors. Eur J Clin Pharmacol 1996; 50: 209–15PubMedCrossRef
205.
Zurück zum Zitat Sennwald G. Etude de l’influence de la rifampicine sur l’effet anticoagulant de l’acenocoumarol. Rev Med Suisse Romande 1974; 94: 945–54PubMed Sennwald G. Etude de l’influence de la rifampicine sur l’effet anticoagulant de l’acenocoumarol. Rev Med Suisse Romande 1974; 94: 945–54PubMed
206.
Zurück zum Zitat Hansen JM, Siersbæk-Nielsen K, Kristensen M, et al. Effect of diphenylhydantoin on the metabolism of dicoumarol in man. Acta Med Scand 1971; 189: 15–9PubMedCrossRef Hansen JM, Siersbæk-Nielsen K, Kristensen M, et al. Effect of diphenylhydantoin on the metabolism of dicoumarol in man. Acta Med Scand 1971; 189: 15–9PubMedCrossRef
207.
Zurück zum Zitat Boekhout-Mussert RJ, Bieger R, van Brummelen P, et al. Inhibition by rifampin of the anticoagulant effect of phenprocoumon. JAMA 1974; 229: 1903–4PubMedCrossRef Boekhout-Mussert RJ, Bieger R, van Brummelen P, et al. Inhibition by rifampin of the anticoagulant effect of phenprocoumon. JAMA 1974; 229: 1903–4PubMedCrossRef
208.
Zurück zum Zitat Ohnhaus EE, Studer H. A link between liver microsomal enzyme activity and thyroid hormone metabolism in man. Br J Clin Pharmacol 1983; 15: 71–6PubMedCrossRef Ohnhaus EE, Studer H. A link between liver microsomal enzyme activity and thyroid hormone metabolism in man. Br J Clin Pharmacol 1983; 15: 71–6PubMedCrossRef
209.
Zurück zum Zitat McAllister WAC, Thompson PJ, Al-Habet SM, et al. Rifampicin reduces effectiveness and biovailability of prednisolone. BMJ 1983; 286: 923–5PubMedCrossRef McAllister WAC, Thompson PJ, Al-Habet SM, et al. Rifampicin reduces effectiveness and biovailability of prednisolone. BMJ 1983; 286: 923–5PubMedCrossRef
210.
Zurück zum Zitat Löfdahl CG, Meilstrand T, Svedmyr N, et al. Increased metabolism of prednisolone and rifampicin after rifampicin treatment [abstract]. Am Rev Respir Dis 1984; 129: A201 Löfdahl CG, Meilstrand T, Svedmyr N, et al. Increased metabolism of prednisolone and rifampicin after rifampicin treatment [abstract]. Am Rev Respir Dis 1984; 129: A201
211.
Zurück zum Zitat Powell-Jackson PR, Gray BJ, Heaton RW, et al. Adverse effect of rifampicin administration on steroid-dependent asthma. Am Rev Respir Dis 1983; 128: 307–10PubMed Powell-Jackson PR, Gray BJ, Heaton RW, et al. Adverse effect of rifampicin administration on steroid-dependent asthma. Am Rev Respir Dis 1983; 128: 307–10PubMed
212.
Zurück zum Zitat Bergrem H, Refvem OK. Altered prednisolone pharmacokinetics in patients treated with rifampicin. Acta Med Scand 1983; 213: 339–43PubMedCrossRef Bergrem H, Refvem OK. Altered prednisolone pharmacokinetics in patients treated with rifampicin. Acta Med Scand 1983; 213: 339–43PubMedCrossRef
213.
Zurück zum Zitat Schulte HM, Mönig H, Benker G, et al. Pharmacokinetics of aldosterone in patients with Addison’s disease: effect of rifampicin treatment on glucocorticoid and mineralocorticoid metabolism. Clin Endocrinol 1987; 27: 655–62CrossRef Schulte HM, Mönig H, Benker G, et al. Pharmacokinetics of aldosterone in patients with Addison’s disease: effect of rifampicin treatment on glucocorticoid and mineralocorticoid metabolism. Clin Endocrinol 1987; 27: 655–62CrossRef
214.
Zurück zum Zitat Joshi JV, Joshi UM, Sankolli GM, et al. A study of interaction of a low-dose combination oral contraceptive with antitubercular drugs. Contraception 1980; 21: 617–29PubMedCrossRef Joshi JV, Joshi UM, Sankolli GM, et al. A study of interaction of a low-dose combination oral contraceptive with antitubercular drugs. Contraception 1980; 21: 617–29PubMedCrossRef
215.
Zurück zum Zitat Bardith-Crovo P, Trapnell CB, Ette E, et al. The effects of rifampin and rifabutin on the pharmacokinetics and pharmacodynamics of a combination oral contraceptive. Clin Pharmacol Ther 1999; 65: 428–38CrossRef Bardith-Crovo P, Trapnell CB, Ette E, et al. The effects of rifampin and rifabutin on the pharmacokinetics and pharmacodynamics of a combination oral contraceptive. Clin Pharmacol Ther 1999; 65: 428–38CrossRef
216.
Zurück zum Zitat Bammel A, van der Mee K, Ohnhaus EE, et al. Divergent effects of different enzyme-inducing agents on endogenous and exogenous testosterone. Eur J Clin Pharmacol 1992; 42: 641–4PubMedCrossRef Bammel A, van der Mee K, Ohnhaus EE, et al. Divergent effects of different enzyme-inducing agents on endogenous and exogenous testosterone. Eur J Clin Pharmacol 1992; 42: 641–4PubMedCrossRef
217.
Zurück zum Zitat Hebert MF, Roberts JP, Prueksaritanont T, et al. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther 1992; 52: 453–7PubMedCrossRef Hebert MF, Roberts JP, Prueksaritanont T, et al. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther 1992; 52: 453–7PubMedCrossRef
218.
Zurück zum Zitat Sirolimus (Rapamune®) prescribing information. Philadelphia (PA): Wyeth Laboratories, 2001 Sirolimus (Rapamune®) prescribing information. Philadelphia (PA): Wyeth Laboratories, 2001
219.
Zurück zum Zitat Hebert MF, Fisher RM, Marsh CL, et al. Effects of rifampin on tacrolimus pharmacokinetics in healthy volunteers. J Clin Pharmacol 1999; 39: 91–6PubMedCrossRef Hebert MF, Fisher RM, Marsh CL, et al. Effects of rifampin on tacrolimus pharmacokinetics in healthy volunteers. J Clin Pharmacol 1999; 39: 91–6PubMedCrossRef
220.
Zurück zum Zitat Stjernholm MR, Katz FH. Effects of diphenylhydantoin, phenobarbital, and diazepam on the metabolism of methyl-prednisolone and its sodium succinate. J Clin Endocrinol Metab 1975; 41: 887–93PubMedCrossRef Stjernholm MR, Katz FH. Effects of diphenylhydantoin, phenobarbital, and diazepam on the metabolism of methyl-prednisolone and its sodium succinate. J Clin Endocrinol Metab 1975; 41: 887–93PubMedCrossRef
221.
Zurück zum Zitat Haque N, Thrasher K, Werk Jr EE, et al. Studies on dexamethasone metabolism in man: effect of diphenylhydantoin. J Clin Endocrinol 1972; 34: 44–50CrossRef Haque N, Thrasher K, Werk Jr EE, et al. Studies on dexamethasone metabolism in man: effect of diphenylhydantoin. J Clin Endocrinol 1972; 34: 44–50CrossRef
222.
Zurück zum Zitat Petereit LB, Meikle AW. Effectiveness of prednisolone during phenytoin therapy. Clin Pharmacol Ther 1977; 22: 913–6 Petereit LB, Meikle AW. Effectiveness of prednisolone during phenytoin therapy. Clin Pharmacol Ther 1977; 22: 913–6
223.
Zurück zum Zitat Choi Y, Thrasher K, Werk Jr EE, et al. Effect of diphenylhydantoin on cortisol kinetics in humans. J Pharmacol Exp Ther 1971; 176: 27–34PubMed Choi Y, Thrasher K, Werk Jr EE, et al. Effect of diphenylhydantoin on cortisol kinetics in humans. J Pharmacol Exp Ther 1971; 176: 27–34PubMed
224.
Zurück zum Zitat Maisey DN, Brown RC, Day JL. Rifampicin and cortisone replacement therapy [letter]. Lancet 1974; II: 896–7CrossRef Maisey DN, Brown RC, Day JL. Rifampicin and cortisone replacement therapy [letter]. Lancet 1974; II: 896–7CrossRef
225.
Zurück zum Zitat Langhoff E, Madsen S. Rapid metabolism of cyclosporin and prednisone in kidney transplant patients on tuberculostatic treatment [letter]. Lancet 1983; II: 1303CrossRef Langhoff E, Madsen S. Rapid metabolism of cyclosporin and prednisone in kidney transplant patients on tuberculostatic treatment [letter]. Lancet 1983; II: 1303CrossRef
226.
Zurück zum Zitat Carrie F, Roblot P, Bouquet S, et al. Rifampin-induced nonresponsiveness of giant cell arteritis to prednisone treatment. Arch Intern Med 1994; 154: 1521–4PubMedCrossRef Carrie F, Roblot P, Bouquet S, et al. Rifampin-induced nonresponsiveness of giant cell arteritis to prednisone treatment. Arch Intern Med 1994; 154: 1521–4PubMedCrossRef
227.
Zurück zum Zitat Lin FL. Rifampin-induced deterioration in steroid-dependent asthma [letter]. J Allergy Clin Immunol 1996; 98: 1125PubMedCrossRef Lin FL. Rifampin-induced deterioration in steroid-dependent asthma [letter]. J Allergy Clin Immunol 1996; 98: 1125PubMedCrossRef
228.
Zurück zum Zitat Buffington GA, Dominguez JH, Piering WF, et al. Interaction of rifampin and glucocorticoids: adverse effect on renal allograft function. JAMA 1976; 236: 1958–60PubMedCrossRef Buffington GA, Dominguez JH, Piering WF, et al. Interaction of rifampin and glucocorticoids: adverse effect on renal allograft function. JAMA 1976; 236: 1958–60PubMedCrossRef
229.
Zurück zum Zitat Brodie MJ, Boobis AR, Gill M, et al. Does rifampicin increase serum levels of testosterone and oestradiol by inducing sex hormone binding globulin capacity? [letter]. Br J Clin Pharmacol 1981; 12: 431–2PubMedCrossRef Brodie MJ, Boobis AR, Gill M, et al. Does rifampicin increase serum levels of testosterone and oestradiol by inducing sex hormone binding globulin capacity? [letter]. Br J Clin Pharmacol 1981; 12: 431–2PubMedCrossRef
230.
Zurück zum Zitat Li AP, Hartman NR, Lu C, et al. Effects of cytochrome P450 inducers on 17β-ethinyloestradiol (EE2) conjugation by primary human hepatocytes. Br J Clin Pharmacol 1999; 48: 733–42PubMedCrossRef Li AP, Hartman NR, Lu C, et al. Effects of cytochrome P450 inducers on 17β-ethinyloestradiol (EE2) conjugation by primary human hepatocytes. Br J Clin Pharmacol 1999; 48: 733–42PubMedCrossRef
231.
Zurück zum Zitat Modry DL, Stinson EB, Oyer PE, et al. Acute rejection and massive cyclosporine requirements in heart transplant recipients treated with rifampin. Transplantation 1985; 39: 313–4PubMedCrossRef Modry DL, Stinson EB, Oyer PE, et al. Acute rejection and massive cyclosporine requirements in heart transplant recipients treated with rifampin. Transplantation 1985; 39: 313–4PubMedCrossRef
232.
Zurück zum Zitat Coward RA, Raferty AT, Brown CB. Cyclosporin and antituberculous therapy. Lancet 1985; I: 1342–3CrossRef Coward RA, Raferty AT, Brown CB. Cyclosporin and antituberculous therapy. Lancet 1985; I: 1342–3CrossRef
233.
Zurück zum Zitat Burman WJ, Gallicano K, Peloquin C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet 2001; 40: 327–41PubMedCrossRef Burman WJ, Gallicano K, Peloquin C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet 2001; 40: 327–41PubMedCrossRef
234.
Zurück zum Zitat Furian V, Perello L, Jacquemin E, et al. Interactions between FK506 and rifampicin or erythromycin in pediatric liver recipients. Transplantation 1995; 59: 1217–8 Furian V, Perello L, Jacquemin E, et al. Interactions between FK506 and rifampicin or erythromycin in pediatric liver recipients. Transplantation 1995; 59: 1217–8
235.
Zurück zum Zitat Kiuchi T, Inomata Y, Uemoto S, et al. A hepatic graft tuberculosis transmitted from a living-related donor. Transplantation 1997; 63: 905–7PubMedCrossRef Kiuchi T, Inomata Y, Uemoto S, et al. A hepatic graft tuberculosis transmitted from a living-related donor. Transplantation 1997; 63: 905–7PubMedCrossRef
236.
Zurück zum Zitat Chenhsu RY, Loong CC, Chou MH, et al. Renal allograft dysfunction associated with rifampin-tacrolimus interaction. Ann Pharmacother 2000; 34: 27–31PubMedCrossRef Chenhsu RY, Loong CC, Chou MH, et al. Renal allograft dysfunction associated with rifampin-tacrolimus interaction. Ann Pharmacother 2000; 34: 27–31PubMedCrossRef
237.
Zurück zum Zitat Tjia JF, Colbert J, Back DJ. Theophylline metabolism in human liver microsomes: inhibition studies. J Pharmacol Exp Ther 1996; 276: 912–7PubMed Tjia JF, Colbert J, Back DJ. Theophylline metabolism in human liver microsomes: inhibition studies. J Pharmacol Exp Ther 1996; 276: 912–7PubMed
238.
Zurück zum Zitat Boyce EG, Dukes GE, Rollins DE, et al. The effect of rifampin on theophylline kinetics [abstract]. Clin Pharmacol Ther 1985; 37: 183 Boyce EG, Dukes GE, Rollins DE, et al. The effect of rifampin on theophylline kinetics [abstract]. Clin Pharmacol Ther 1985; 37: 183
239.
Zurück zum Zitat Powell-Jackson PR, Jamieson AP, Gray BJ, et al. Effect of rifampicin administration on theophylline pharmacokinetics in humans. Am Rev Respir Dis 1985; 131: 939–40PubMed Powell-Jackson PR, Jamieson AP, Gray BJ, et al. Effect of rifampicin administration on theophylline pharmacokinetics in humans. Am Rev Respir Dis 1985; 131: 939–40PubMed
240.
Zurück zum Zitat Gillum JG, Sesler JM, Bruzzese VL, et al. Induction of theophylline clearance by rifampin and rifabutin in healthy male volunteers. Antimicrob Agents Chemother 1996; 40: 1866–9PubMed Gillum JG, Sesler JM, Bruzzese VL, et al. Induction of theophylline clearance by rifampin and rifabutin in healthy male volunteers. Antimicrob Agents Chemother 1996; 40: 1866–9PubMed
241.
Zurück zum Zitat Keller E, Schollmeyer P, Brandenstein U, et al. Increased nonrenai clearance of cimetidine during antituberculous therapy. Int J Clin Pharmacol Ther Toxicol 1984; 22: 307–11PubMed Keller E, Schollmeyer P, Brandenstein U, et al. Increased nonrenai clearance of cimetidine during antituberculous therapy. Int J Clin Pharmacol Ther Toxicol 1984; 22: 307–11PubMed
242.
Zurück zum Zitat Kerbusch T, Jansen RLH, Matht RAA, et al. Modulation of the cytochrome P450-mediated metabolism of ifosfamide by ketoconazole and rifampin. Clin Pharmacol Ther 2001; 70: 132–41PubMedCrossRef Kerbusch T, Jansen RLH, Matht RAA, et al. Modulation of the cytochrome P450-mediated metabolism of ifosfamide by ketoconazole and rifampin. Clin Pharmacol Ther 2001; 70: 132–41PubMedCrossRef
243.
Zurück zum Zitat Villikka K, Kivistö KT, Neuvonen PJ. The effect of rifampin on the pharmacokinetics of oral and intravenous ondansetron. Clin Pharmacol Ther 1999; 65: 377–81PubMedCrossRef Villikka K, Kivistö KT, Neuvonen PJ. The effect of rifampin on the pharmacokinetics of oral and intravenous ondansetron. Clin Pharmacol Ther 1999; 65: 377–81PubMedCrossRef
244.
Zurück zum Zitat Jokinen M, Olkkola KT, Ahonen J, et al. Effect of rifampin and tobacco smoking on the pharmacokinetics of ropivacaine. Clin Pharmacol Ther 2001; 70: 344–50PubMed Jokinen M, Olkkola KT, Ahonen J, et al. Effect of rifampin and tobacco smoking on the pharmacokinetics of ropivacaine. Clin Pharmacol Ther 2001; 70: 344–50PubMed
245.
Zurück zum Zitat Kivistö KT, Villikka K, Nyman L, et al. Tamoxifen and toremifene concentrations in plasma are greatly decreased by rifampin. Clin Pharmacol Ther 1998; 64: 648–54PubMedCrossRef Kivistö KT, Villikka K, Nyman L, et al. Tamoxifen and toremifene concentrations in plasma are greatly decreased by rifampin. Clin Pharmacol Ther 1998; 64: 648–54PubMedCrossRef
246.
Zurück zum Zitat Robson RA, Miners JO, Wing LMH, et al. Theophylline-rifampicin interaction: non-selective induction of theophylline metabolic pathways. Br J Clin Pharmacol 1984; 18: 445–8PubMedCrossRef Robson RA, Miners JO, Wing LMH, et al. Theophylline-rifampicin interaction: non-selective induction of theophylline metabolic pathways. Br J Clin Pharmacol 1984; 18: 445–8PubMedCrossRef
247.
Zurück zum Zitat Straughn AB, Henderson RP, Lieberman PL, et al. Effect of rifampin on theophylline disposition. Ther Drug Monit 1984; 6: 153–6PubMedCrossRef Straughn AB, Henderson RP, Lieberman PL, et al. Effect of rifampin on theophylline disposition. Ther Drug Monit 1984; 6: 153–6PubMedCrossRef
248.
Zurück zum Zitat Hauser AR, Lee C, Teague RB, et al. The effect of rifampin on theophylline disposition [abstract]. Clin Pharmacol Ther 1983; 33: 254 Hauser AR, Lee C, Teague RB, et al. The effect of rifampin on theophylline disposition [abstract]. Clin Pharmacol Ther 1983; 33: 254
249.
Zurück zum Zitat Cvetkovic M, Leake B, Fromm MF, et al. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos 1999; 27: 866–71PubMed Cvetkovic M, Leake B, Fromm MF, et al. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos 1999; 27: 866–71PubMed
250.
Zurück zum Zitat Kivistö KT, Kroemer HK, Eichelbaum M. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications for drug interactions. Br J Clin Pharmacol 1995; 40: 523–30PubMedCrossRef Kivistö KT, Kroemer HK, Eichelbaum M. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications for drug interactions. Br J Clin Pharmacol 1995; 40: 523–30PubMedCrossRef
251.
Zurück zum Zitat Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38: 41–57PubMedCrossRef Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38: 41–57PubMedCrossRef
Metadaten
Titel
Pharmacokinetic Interactions with Rifampicin
Clinical Relevance
verfasst von
Mikko Niemi
Janne T. Backman
Martin F. Fromm
Pertti J. Neuvonen
Dr Kari T. Kivistö
Publikationsdatum
01.08.2003
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 9/2003
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200342090-00003