Skip to main content
Erschienen in: Clinical Pharmacokinetics 11/2005

01.11.2005 | Review Article

Clinical Pharmacokinetics of Cyclophosphamide

verfasst von: Dr Milly E. de Jonge, Alwin D. R. Huitema, Sjoerd Rodenhuis, Jos H. Beijnen

Erschienen in: Clinical Pharmacokinetics | Ausgabe 11/2005

Einloggen, um Zugang zu erhalten

Abstract

Cyclophosphamide is an extensively used anticancer and immunosuppressive agent. It is a prodrug undergoing a complicated process of metabolic activation and inactivation. Technical difficulties in the accurate determination of the cyclophosphamide metabolites have long hampered the assessment of the clinical pharmacology of this drug. As these techniques are becoming increasingly available, adequate description of the pharmacokinetics of cyclophosphamide and its metabolites has become possible.
There is incomplete understanding on the role of cyclophosphamide metabolites in the efficacy and toxicity of cyclophosphamide therapy. However, relationships between toxicity (cardiotoxicity, veno-occlusive disease) and exposure to cyclophosphamide and its metabolites have been established. Variations in the balance between metabolic activation and inactivation of cyclophosphamide owing to autoinduction, dose escalation, drug-drug interactions and individual differences have been reported, suggesting possibilities for optimisation of cyclophosphamide therapy.
Knowledge of the pharmacokinetics of cyclophosphamide, and possibly monitoring the pharmacokinetics of cyclophosphamide in individuals, may be useful for improving its therapeutic index.
Literatur
1.
Zurück zum Zitat Arnold H, Bourseaux F, Brock N. Chemotherapeutic action of a cyclic nitrogen mustard phosphamide ester (B 518-ASTA) in experimental tumours in rats. Nature 1958; 181: 931PubMedCrossRef Arnold H, Bourseaux F, Brock N. Chemotherapeutic action of a cyclic nitrogen mustard phosphamide ester (B 518-ASTA) in experimental tumours in rats. Nature 1958; 181: 931PubMedCrossRef
2.
Zurück zum Zitat Flowers JL, Ludeman SM, Gamcsik MP, et al. Evidence for a role of chloroethylaziridine in the cytotoxicity of cyclophosphamide. Cancer Chemother Pharmacol 2000; 45: 335–44PubMedCrossRef Flowers JL, Ludeman SM, Gamcsik MP, et al. Evidence for a role of chloroethylaziridine in the cytotoxicity of cyclophosphamide. Cancer Chemother Pharmacol 2000; 45: 335–44PubMedCrossRef
3.
Zurück zum Zitat Shulman-Roskes EM, Noe DA, Gamcsik MP, et al. The partitioning of phosphoramide mustard and its aziridinium ions among alkylation and P-N bond hydrolysis reactions. J Med Chem 1998; 41: 515–29PubMedCrossRef Shulman-Roskes EM, Noe DA, Gamcsik MP, et al. The partitioning of phosphoramide mustard and its aziridinium ions among alkylation and P-N bond hydrolysis reactions. J Med Chem 1998; 41: 515–29PubMedCrossRef
4.
Zurück zum Zitat Colvin M, Brundrett RB, Kan MNN, et al. Alkylating properties of phosphoramide mustard. Cancer Res 1976; 36: 1121–6PubMed Colvin M, Brundrett RB, Kan MNN, et al. Alkylating properties of phosphoramide mustard. Cancer Res 1976; 36: 1121–6PubMed
5.
Zurück zum Zitat Povirk LF, Shuker DE. DNA damage and mutagenesis induced by nitrogen mustards. Mutat Res 1994; 318: 205–26PubMedCrossRef Povirk LF, Shuker DE. DNA damage and mutagenesis induced by nitrogen mustards. Mutat Res 1994; 318: 205–26PubMedCrossRef
6.
Zurück zum Zitat O’Connor PM, Wasserman K, Sarnag M. Relationships between DNA cross-links, cell cycle and apoptosis in Burkitt’s lymphoma cell lines differing in sensitivity to nitrogen mustard. Cancer Res 1991; 51: 6550–7PubMed O’Connor PM, Wasserman K, Sarnag M. Relationships between DNA cross-links, cell cycle and apoptosis in Burkitt’s lymphoma cell lines differing in sensitivity to nitrogen mustard. Cancer Res 1991; 51: 6550–7PubMed
7.
Zurück zum Zitat Bruce WR, Meeker BE, Valeriote FA. Comparison of the sensitivity of normal hematopoietic and transplanted lymphoma colony-forming cells to chemotherapeutic agents administered in vivo. J Natl Cancer Inst 1966; 37: 223–45 Bruce WR, Meeker BE, Valeriote FA. Comparison of the sensitivity of normal hematopoietic and transplanted lymphoma colony-forming cells to chemotherapeutic agents administered in vivo. J Natl Cancer Inst 1966; 37: 223–45
8.
Zurück zum Zitat Klein HO, Wickramanayake PD, Christian E, et al. Therapeutic effects of single-push of fractionated injections or continuous infusion of oxazaphosphorines (cyclophosphamide, ifosfamide; Asta Z 7557). Cancer 1984; 54: 1193–203PubMedCrossRef Klein HO, Wickramanayake PD, Christian E, et al. Therapeutic effects of single-push of fractionated injections or continuous infusion of oxazaphosphorines (cyclophosphamide, ifosfamide; Asta Z 7557). Cancer 1984; 54: 1193–203PubMedCrossRef
9.
Zurück zum Zitat Voelker G, Wagner T, Wientzek C, et al. Pharmacokinetics of “activated” cyclophosphamide and therapeutic efficacies. Cancer 1984; 54: 1179–86CrossRef Voelker G, Wagner T, Wientzek C, et al. Pharmacokinetics of “activated” cyclophosphamide and therapeutic efficacies. Cancer 1984; 54: 1179–86CrossRef
10.
Zurück zum Zitat Ahmed AR, Hombal SM. Cyclophosphamide (Cytoxan): a review on relevant pharmacology and clinical uses. J Am Acad Dermatol 1984; 11: 1115–26PubMedCrossRef Ahmed AR, Hombal SM. Cyclophosphamide (Cytoxan): a review on relevant pharmacology and clinical uses. J Am Acad Dermatol 1984; 11: 1115–26PubMedCrossRef
11.
Zurück zum Zitat Colleoni M, Rocca A, Sandri MT, et al. Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumor activity and correlation with vascular endothelial growth factor levels. Ann Oncol 2002; 13: 73–80PubMedCrossRef Colleoni M, Rocca A, Sandri MT, et al. Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumor activity and correlation with vascular endothelial growth factor levels. Ann Oncol 2002; 13: 73–80PubMedCrossRef
13.
Zurück zum Zitat Grochow LB, Colvin M. Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 1979; 4: 380–94PubMedCrossRef Grochow LB, Colvin M. Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 1979; 4: 380–94PubMedCrossRef
14.
Zurück zum Zitat Moore MJ. Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 1991; 20: 194–208PubMedCrossRef Moore MJ. Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 1991; 20: 194–208PubMedCrossRef
15.
Zurück zum Zitat Fleming RA. An overview of cyclophosphamide and ifosfamide pharmacology. Pharmacotherapy 1997; 17 (5 Suppl.): 146–54S Fleming RA. An overview of cyclophosphamide and ifosfamide pharmacology. Pharmacotherapy 1997; 17 (5 Suppl.): 146–54S
16.
Zurück zum Zitat Lind MJ, Ardiet C. Pharmacokinetics of alkylating agents. Cancer Surv 1993; 17: 157–88PubMed Lind MJ, Ardiet C. Pharmacokinetics of alkylating agents. Cancer Surv 1993; 17: 157–88PubMed
17.
Zurück zum Zitat Boddy AV, Yule SM. Metabolism and pharmacokinetics of oxazaphosphorines. Clin Pharmacokinet 2000; 38: 291–304PubMedCrossRef Boddy AV, Yule SM. Metabolism and pharmacokinetics of oxazaphosphorines. Clin Pharmacokinet 2000; 38: 291–304PubMedCrossRef
18.
Zurück zum Zitat Fenselau C, Kan MNN, Rao SS, et al. Identification of aldophosphamide as a metabolite of cyclophosphamide in vitro and in vivo in humans. Cancer Res 1977; 37: 2538–43PubMed Fenselau C, Kan MNN, Rao SS, et al. Identification of aldophosphamide as a metabolite of cyclophosphamide in vitro and in vivo in humans. Cancer Res 1977; 37: 2538–43PubMed
19.
Zurück zum Zitat Friedman OM, Wodinsky I, Myles A. Cyclophosphamide (NSC-26271)-related phosphoramide mustards: recent advances and historical perspective. Cancer Treat Rep 1976; 60: 337–46PubMed Friedman OM, Wodinsky I, Myles A. Cyclophosphamide (NSC-26271)-related phosphoramide mustards: recent advances and historical perspective. Cancer Treat Rep 1976; 60: 337–46PubMed
20.
Zurück zum Zitat Connors TA, Cox PJ, Farmer PB, et al. Some studies on the active intermediates formed in the microsomal metabolism of cyclophosphamide and isophosphamide. Biochem Pharmacol 1974; 23: 115–29PubMedCrossRef Connors TA, Cox PJ, Farmer PB, et al. Some studies on the active intermediates formed in the microsomal metabolism of cyclophosphamide and isophosphamide. Biochem Pharmacol 1974; 23: 115–29PubMedCrossRef
21.
Zurück zum Zitat Chang TKH, Weber GF, Crespi CL, et al. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 1993; 53: 5629–37PubMed Chang TKH, Weber GF, Crespi CL, et al. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 1993; 53: 5629–37PubMed
22.
Zurück zum Zitat Chang TKH, Yu L, Maurel P, et al. Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Cancer Res 1997; 57: 1946–54PubMed Chang TKH, Yu L, Maurel P, et al. Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Cancer Res 1997; 57: 1946–54PubMed
23.
Zurück zum Zitat Ren S, Yang JS, Kalhorn TF, et al. Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res 1997; 57: 4229–35PubMed Ren S, Yang JS, Kalhorn TF, et al. Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res 1997; 57: 4229–35PubMed
24.
Zurück zum Zitat Roy P, Yu LJ, Crespi CL, et al. Development of a substrateactivity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos 1999; 27: 655–66PubMed Roy P, Yu LJ, Crespi CL, et al. Development of a substrateactivity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos 1999; 27: 655–66PubMed
25.
Zurück zum Zitat Huang Z, Roy P, Waxman DJ. Role of liver microsomal CYP 3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol 2000; 59: 961–72PubMedCrossRef Huang Z, Roy P, Waxman DJ. Role of liver microsomal CYP 3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol 2000; 59: 961–72PubMedCrossRef
26.
Zurück zum Zitat Yu L, Waxman DJ. Role of cytochrome P450 in oxazaphosphorine metabolism: deactivation via N-dechloroethylation and activation via 4-hydroxylation catalyzed by distinct subsets of rat liver cytochromes P450. Drug Metab Dispos 1996; 24: 1254–62PubMed Yu L, Waxman DJ. Role of cytochrome P450 in oxazaphosphorine metabolism: deactivation via N-dechloroethylation and activation via 4-hydroxylation catalyzed by distinct subsets of rat liver cytochromes P450. Drug Metab Dispos 1996; 24: 1254–62PubMed
27.
Zurück zum Zitat Griskevicius L, Yasar U, Sandberg H, et al. Bioactivation of cyclophosphamide: the role of polymorphic CYP2C enzymes. Eur J Clin Pharmacol 2003; 59: 103–9PubMed Griskevicius L, Yasar U, Sandberg H, et al. Bioactivation of cyclophosphamide: the role of polymorphic CYP2C enzymes. Eur J Clin Pharmacol 2003; 59: 103–9PubMed
28.
Zurück zum Zitat Xie HJ, Yasar U, Lundgren S, et al. Role of polymorphic CYP2B6 in cyclophosphamide bioactivation. Pharmacogenomics J 2003; 3: 53–61PubMedCrossRef Xie HJ, Yasar U, Lundgren S, et al. Role of polymorphic CYP2B6 in cyclophosphamide bioactivation. Pharmacogenomics J 2003; 3: 53–61PubMedCrossRef
29.
Zurück zum Zitat Boyd VL, Robbins JD, Egan W, et al. 3 1P nuclear magnetic resonance spectroscopic observation of the intracellular transformations of oncostatic cyclophosphamide metabolites. J Med Chem 1986; 29: 1206–10PubMedCrossRef Boyd VL, Robbins JD, Egan W, et al. 3 1P nuclear magnetic resonance spectroscopic observation of the intracellular transformations of oncostatic cyclophosphamide metabolites. J Med Chem 1986; 29: 1206–10PubMedCrossRef
30.
Zurück zum Zitat Völker G, Dräger U, Peter G, et al. Studien zum spontanzerfall von 4-hydroxycyclophosphamid und 4-hydroxyperoxycyclophosphamid mit hilfe der dünnschichtschromatographie. Arzneimittelforschung 1974; 24: 1172–6PubMed Völker G, Dräger U, Peter G, et al. Studien zum spontanzerfall von 4-hydroxycyclophosphamid und 4-hydroxyperoxycyclophosphamid mit hilfe der dünnschichtschromatographie. Arzneimittelforschung 1974; 24: 1172–6PubMed
31.
Zurück zum Zitat Alarcon RA, Meienhofer J. Formation of the cytotoxic aldehyde acrolein during in vitro degradation of cyclophosphamide. Nat New Biol 1971; 233: 250–2PubMed Alarcon RA, Meienhofer J. Formation of the cytotoxic aldehyde acrolein during in vitro degradation of cyclophosphamide. Nat New Biol 1971; 233: 250–2PubMed
32.
Zurück zum Zitat Kwon CH, Maddison K, LoCastro L, et al. Accelerated decomposition of 4-hydroxycyclophosphamide by human serum albumin. Cancer Res 1987; 47: 1505–8PubMed Kwon CH, Maddison K, LoCastro L, et al. Accelerated decomposition of 4-hydroxycyclophosphamide by human serum albumin. Cancer Res 1987; 47: 1505–8PubMed
33.
Zurück zum Zitat Voelker G, Bielicki L, Hohorst HJ. Evidence for enzymatic toxification of activated cyclophosphamide (4-hydroxycyclophosphamide). J Cancer Res Clin Oncol 1981; 99: A58–9 Voelker G, Bielicki L, Hohorst HJ. Evidence for enzymatic toxification of activated cyclophosphamide (4-hydroxycyclophosphamide). J Cancer Res Clin Oncol 1981; 99: A58–9
34.
Zurück zum Zitat Hohorst HJ, Bielicki L, Voelcker G. The enzymatic basis of cyclophosphamide specificity. Adv Enzyme Regul 1986; 25: 99–122PubMedCrossRef Hohorst HJ, Bielicki L, Voelcker G. The enzymatic basis of cyclophosphamide specificity. Adv Enzyme Regul 1986; 25: 99–122PubMedCrossRef
35.
Zurück zum Zitat Struck RF, Kirk MC, Witt MH, et al. Isolation and mass spectral identification of blood metabolites of cyclophosphamide: evidence for phosphoramide mustard as the biologically active metabolite. Biomed Environ Mass Spectrom 1975; 2: 46–52CrossRef Struck RF, Kirk MC, Witt MH, et al. Isolation and mass spectral identification of blood metabolites of cyclophosphamide: evidence for phosphoramide mustard as the biologically active metabolite. Biomed Environ Mass Spectrom 1975; 2: 46–52CrossRef
36.
Zurück zum Zitat Domeyer BE, Sladek NE. Kinetics of cyclophosphamide biotransformation in vivo. Cancer Res 1980; 40: 174–80PubMed Domeyer BE, Sladek NE. Kinetics of cyclophosphamide biotransformation in vivo. Cancer Res 1980; 40: 174–80PubMed
37.
Zurück zum Zitat Schmidt R, Baumann F, Knupfer H, et al. CYP3A4, CYP2C9 and CYP2B6 expression and ifosfamide turnover in breast cancer tissue microsomes. Br J Cancer 2004; 90: 911–6PubMedCrossRef Schmidt R, Baumann F, Knupfer H, et al. CYP3A4, CYP2C9 and CYP2B6 expression and ifosfamide turnover in breast cancer tissue microsomes. Br J Cancer 2004; 90: 911–6PubMedCrossRef
38.
Zurück zum Zitat Highley MS, Harper PG, Slee PH, et al. Preferential location of circulating activated cyclophosphamide within the erythrocyte. Int J Cancer 1996; 65: 711–2PubMedCrossRef Highley MS, Harper PG, Slee PH, et al. Preferential location of circulating activated cyclophosphamide within the erythrocyte. Int J Cancer 1996; 65: 711–2PubMedCrossRef
39.
Zurück zum Zitat Highley MS, Schrijvers D, Van Oosterom AT, et al. Activated oxazaphosphorines are transported predominantly by erythrocytes. Ann Oncol 1997; 8: 1139–44PubMedCrossRef Highley MS, Schrijvers D, Van Oosterom AT, et al. Activated oxazaphosphorines are transported predominantly by erythrocytes. Ann Oncol 1997; 8: 1139–44PubMedCrossRef
40.
Zurück zum Zitat Chen TL, Kennedy MJ, Anderson LW, et al. Nonlinear pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide/aldophosphamide in patients with metastatic breast cancer receiving high-dose chemotherapy followed by autologous bone-marrow transplantation. Drug Metab Dispos 1997; 25: 544–51PubMed Chen TL, Kennedy MJ, Anderson LW, et al. Nonlinear pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide/aldophosphamide in patients with metastatic breast cancer receiving high-dose chemotherapy followed by autologous bone-marrow transplantation. Drug Metab Dispos 1997; 25: 544–51PubMed
41.
Zurück zum Zitat Anderson LW, Chen TL, Colvin OM, et al. Cyclophosphamide and 4-hydroxycyclophosphamide/aldophosphamide kinetics in patients receiving high dose chemotherapy. Clin Cancer Res 1996; 2: 1481–7PubMed Anderson LW, Chen TL, Colvin OM, et al. Cyclophosphamide and 4-hydroxycyclophosphamide/aldophosphamide kinetics in patients receiving high dose chemotherapy. Clin Cancer Res 1996; 2: 1481–7PubMed
42.
Zurück zum Zitat Blomgren H, Hallström M. Possible role of acrolein in 4-hydroxyperoxycyclophosphamide-induced cell damage in vitro. Methods Find Exp Clin Pharmacol 1991; 13: 11–4PubMed Blomgren H, Hallström M. Possible role of acrolein in 4-hydroxyperoxycyclophosphamide-induced cell damage in vitro. Methods Find Exp Clin Pharmacol 1991; 13: 11–4PubMed
43.
Zurück zum Zitat Crook TR, Souhami RL, Whyman GD, et al. Glutathione depletion as a determinant of sensitivity of human leukaemia cells to cyclophosphamide. Cancer Res 1986; 46: 5035–8PubMed Crook TR, Souhami RL, Whyman GD, et al. Glutathione depletion as a determinant of sensitivity of human leukaemia cells to cyclophosphamide. Cancer Res 1986; 46: 5035–8PubMed
44.
Zurück zum Zitat Alarcon RA. Studies on the in vivo formation of acrolein: 3-hydroxypropylmercapturic acid as an index of cyclophosphamide (NSC-26271) activation. Cancer Treat Rep 1976; 60: 327–35PubMed Alarcon RA. Studies on the in vivo formation of acrolein: 3-hydroxypropylmercapturic acid as an index of cyclophosphamide (NSC-26271) activation. Cancer Treat Rep 1976; 60: 327–35PubMed
45.
Zurück zum Zitat Gurtoo HL, Hipkens JH, Sharma SD. Role of glutathione in the metabolism-dependent toxicity and chemotherapy of cyclophosphamide. Cancer Res 1981; 41: 3584–91PubMed Gurtoo HL, Hipkens JH, Sharma SD. Role of glutathione in the metabolism-dependent toxicity and chemotherapy of cyclophosphamide. Cancer Res 1981; 41: 3584–91PubMed
46.
Zurück zum Zitat Lee FYF. Glutathione diminishes the anti-tumour activity of 4-hydroxyperoxycyclophosphamide by stabilizing its spontaneous breakdown to alkylating metabolites. Br J Cancer 1991; 63: 45–50PubMedCrossRef Lee FYF. Glutathione diminishes the anti-tumour activity of 4-hydroxyperoxycyclophosphamide by stabilizing its spontaneous breakdown to alkylating metabolites. Br J Cancer 1991; 63: 45–50PubMedCrossRef
47.
Zurück zum Zitat Richardson ME, Siemann DW. DNA damage in cyclophosphamide-resistant tumor cells: the role of glutathione. Cancer Res 1995; 55: 1691–5PubMed Richardson ME, Siemann DW. DNA damage in cyclophosphamide-resistant tumor cells: the role of glutathione. Cancer Res 1995; 55: 1691–5PubMed
48.
Zurück zum Zitat Dirven HA, Van Ommen B, Van Bladeren PJ. Involvement of human glutathione S-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione. Cancer Res 1994; 54: 6215–20PubMed Dirven HA, Van Ommen B, Van Bladeren PJ. Involvement of human glutathione S-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione. Cancer Res 1994; 54: 6215–20PubMed
49.
Zurück zum Zitat Peters RH, Jollow DJ, Stuart RK. Role of glutathione in the in vitro synergism between 4-hydroperoxy-cyclophosphamide and cisplatin in leukemia cell lines. Cancer Res 1991; 51: 2536–41PubMed Peters RH, Jollow DJ, Stuart RK. Role of glutathione in the in vitro synergism between 4-hydroperoxy-cyclophosphamide and cisplatin in leukemia cell lines. Cancer Res 1991; 51: 2536–41PubMed
50.
Zurück zum Zitat Crook TR, Souhami RL, McLean AEM. Cytotoxicity, DNA cross-linking, and single strand breaks induced by activated cyclophosphamide and acrolein in human leukemia cells. Cancer Res 1986; 46: 5029–34PubMed Crook TR, Souhami RL, McLean AEM. Cytotoxicity, DNA cross-linking, and single strand breaks induced by activated cyclophosphamide and acrolein in human leukemia cells. Cancer Res 1986; 46: 5029–34PubMed
51.
Zurück zum Zitat Marinello AJ, Gurtoo HL, Struck RF, et al. Denaturation of cytochrome P-450 by cyclophosphamide metabolites. Biochem Biophys Res Commun 1978; 83: 1347–53PubMedCrossRef Marinello AJ, Gurtoo HL, Struck RF, et al. Denaturation of cytochrome P-450 by cyclophosphamide metabolites. Biochem Biophys Res Commun 1978; 83: 1347–53PubMedCrossRef
52.
Zurück zum Zitat Bohnenstengel F, Hofmann U, Eichelbaum M, et al. Characterization of the cytochrome P450 involved in side-chain oxidation of cyclophosphamide in humans. Eur J Clin Pharmacol 1996; 51: 297–301PubMedCrossRef Bohnenstengel F, Hofmann U, Eichelbaum M, et al. Characterization of the cytochrome P450 involved in side-chain oxidation of cyclophosphamide in humans. Eur J Clin Pharmacol 1996; 51: 297–301PubMedCrossRef
53.
Zurück zum Zitat Boddy AV, Furtun Y, Sardas S, et al. Individual variation in the activation and inactivation of metabolic pathways of cyclophosphamide. J Natl Cancer Inst 1992; 84: 1744–8PubMedCrossRef Boddy AV, Furtun Y, Sardas S, et al. Individual variation in the activation and inactivation of metabolic pathways of cyclophosphamide. J Natl Cancer Inst 1992; 84: 1744–8PubMedCrossRef
54.
Zurück zum Zitat Busse D, Busch FW, Bohnenstengel F, et al. Dose escalation of cyclophosphamide in patients with breast cancer: consequences for pharmacokinetics and metabolism. J Clin Oncol 1997; 15: 1885–96PubMed Busse D, Busch FW, Bohnenstengel F, et al. Dose escalation of cyclophosphamide in patients with breast cancer: consequences for pharmacokinetics and metabolism. J Clin Oncol 1997; 15: 1885–96PubMed
55.
Zurück zum Zitat Busse D, Busch FW, Schweizer E, et al. Fractionated administration of high-dose cyclophosphamide: influence on dosedependent changes in pharmacokinetics and metabolism. Cancer Chemother Pharmacol 1999; 43: 263–8PubMedCrossRef Busse D, Busch FW, Schweizer E, et al. Fractionated administration of high-dose cyclophosphamide: influence on dosedependent changes in pharmacokinetics and metabolism. Cancer Chemother Pharmacol 1999; 43: 263–8PubMedCrossRef
56.
Zurück zum Zitat Joqueviel C, Martino R, Gilard V, et al. Urinary excretion of cyclophosphamide in humans, determined by phosphorous-31 nuclear magnetic resonance spectroscopy. Drug Metab Dispos 1998; 26: 418–28PubMed Joqueviel C, Martino R, Gilard V, et al. Urinary excretion of cyclophosphamide in humans, determined by phosphorous-31 nuclear magnetic resonance spectroscopy. Drug Metab Dispos 1998; 26: 418–28PubMed
57.
Zurück zum Zitat Ren S, Kalhorn TF, McDonald GB, et al. Pharmacokinetics of cyclophosphamide and its metabolites in bone marrow transplantation patients. Clin Pharmacol Ther 1998; 64: 289–301PubMedCrossRef Ren S, Kalhorn TF, McDonald GB, et al. Pharmacokinetics of cyclophosphamide and its metabolites in bone marrow transplantation patients. Clin Pharmacol Ther 1998; 64: 289–301PubMedCrossRef
58.
Zurück zum Zitat Tasso MJ, Boddy AV, Price L, et al. Pharmacokinetics and metabolism of cyclophosphamide in paediatric patients. Cancer Chemother Pharmacol 1992; 30: 207–11PubMedCrossRef Tasso MJ, Boddy AV, Price L, et al. Pharmacokinetics and metabolism of cyclophosphamide in paediatric patients. Cancer Chemother Pharmacol 1992; 30: 207–11PubMedCrossRef
59.
Zurück zum Zitat Yule SM, Boddy AV, Cole M, et al. Cyclophosphamide metabolism in children. Cancer Res 1995; 55: 803–9PubMed Yule SM, Boddy AV, Cole M, et al. Cyclophosphamide metabolism in children. Cancer Res 1995; 55: 803–9PubMed
60.
Zurück zum Zitat Borner K, Kisro J, Bruggemann SK, et al. Metabolism of ifosfamide to chloroacetaldehyde contributes to antitumor activity in vivo. Drug Metab Dispos 2000; 28: 573–6PubMed Borner K, Kisro J, Bruggemann SK, et al. Metabolism of ifosfamide to chloroacetaldehyde contributes to antitumor activity in vivo. Drug Metab Dispos 2000; 28: 573–6PubMed
61.
Zurück zum Zitat Bruggemann SK, Kisro J, Wagner T. Ifosfamide cytotoxicity on human tumor and renal cells: a role of chloroacetaldehyde in comparison to 4-hydroxyifosfamide. Cancer Res 1997; 57: 2676–80PubMed Bruggemann SK, Kisro J, Wagner T. Ifosfamide cytotoxicity on human tumor and renal cells: a role of chloroacetaldehyde in comparison to 4-hydroxyifosfamide. Cancer Res 1997; 57: 2676–80PubMed
62.
Zurück zum Zitat Lind MJ, McGown AT, Hadfield JA, et al. The effect of ifosfamide and its metabolites on intracellular glutathione levels in vitro and in vivo. Biochem Pharmacol 1989; 38: 1835–40PubMedCrossRef Lind MJ, McGown AT, Hadfield JA, et al. The effect of ifosfamide and its metabolites on intracellular glutathione levels in vitro and in vivo. Biochem Pharmacol 1989; 38: 1835–40PubMedCrossRef
63.
Zurück zum Zitat Hohorst HJ, Ziemann A, Brock N. 4-Ketocyclophosphamide, a metabolite of cyclophosphamide: formation, chemical and biological properties. Arzneimittelforschung 1971; 21: 1254–7PubMed Hohorst HJ, Ziemann A, Brock N. 4-Ketocyclophosphamide, a metabolite of cyclophosphamide: formation, chemical and biological properties. Arzneimittelforschung 1971; 21: 1254–7PubMed
64.
Zurück zum Zitat Takamizawa A, Tochino Y, Hamashima Y, et al. Studies on cyclophosphamide metabolites and their related compounds: I. Chem Pharm Bull (Tokyo) 1972; 20: 1612–6CrossRef Takamizawa A, Tochino Y, Hamashima Y, et al. Studies on cyclophosphamide metabolites and their related compounds: I. Chem Pharm Bull (Tokyo) 1972; 20: 1612–6CrossRef
65.
Zurück zum Zitat Hill DL, Laster WR, Struck RF. Enzymatic metabolism of cyclophosphamide and nicotine and production of a toxic cyclophosphamide metabolite. Cancer Res 1972; 32: 658–65PubMed Hill DL, Laster WR, Struck RF. Enzymatic metabolism of cyclophosphamide and nicotine and production of a toxic cyclophosphamide metabolite. Cancer Res 1972; 32: 658–65PubMed
66.
Zurück zum Zitat Dockham PA, Lee MO, Sladek NE. Identification of human liver aldehyde dehydrogenases that catalyze the oxidation of aldophosphamide and retinaldehyde. Biochem Pharmacol 1992; 43: 2453–69PubMedCrossRef Dockham PA, Lee MO, Sladek NE. Identification of human liver aldehyde dehydrogenases that catalyze the oxidation of aldophosphamide and retinaldehyde. Biochem Pharmacol 1992; 43: 2453–69PubMedCrossRef
67.
Zurück zum Zitat Manthey CL, Sladek NE. Aldehyde dehydrogenase-catalyzed bioinactivation of cyclophosphamide. Prog Clin Biol Res 1989; 290: 49–63PubMed Manthey CL, Sladek NE. Aldehyde dehydrogenase-catalyzed bioinactivation of cyclophosphamide. Prog Clin Biol Res 1989; 290: 49–63PubMed
68.
Zurück zum Zitat Giorgianni F, Bridson PK, Sorrentino BP, et al. Inactivation of aldophosphamide by human aldehyde dehydrogenase isozyme 3. Biochem Pharmacol 2000; 60: 325–38PubMedCrossRef Giorgianni F, Bridson PK, Sorrentino BP, et al. Inactivation of aldophosphamide by human aldehyde dehydrogenase isozyme 3. Biochem Pharmacol 2000; 60: 325–38PubMedCrossRef
69.
Zurück zum Zitat Von Eitzen U, Meier-Tackmann D, Agarwal DP, et al. Detoxification of cyclophosphamide by human aldehyde dehydrogenase isozymes. Cancer Lett 1994; 76: 45–9CrossRef Von Eitzen U, Meier-Tackmann D, Agarwal DP, et al. Detoxification of cyclophosphamide by human aldehyde dehydrogenase isozymes. Cancer Lett 1994; 76: 45–9CrossRef
70.
Zurück zum Zitat Sladek NE. Aldehyde dehydrogenase-mediated cellular relative insensitivity to the oxazaphosphorines. Curr Pharm Des 1999; 5: 607–62PubMed Sladek NE. Aldehyde dehydrogenase-mediated cellular relative insensitivity to the oxazaphosphorines. Curr Pharm Des 1999; 5: 607–62PubMed
71.
Zurück zum Zitat Cox PJ, Phillips BJ, Thomas P. Studies on the selective action of cyclophosphamide (NSC-26271): inactivation of the hydroxylated metabolite by tissue-soluble enzymes. Cancer Treat Rep 1976; 60: 321–6PubMed Cox PJ, Phillips BJ, Thomas P. Studies on the selective action of cyclophosphamide (NSC-26271): inactivation of the hydroxylated metabolite by tissue-soluble enzymes. Cancer Treat Rep 1976; 60: 321–6PubMed
72.
Zurück zum Zitat Hilton J. Deoxyribonucleic acid crosslinking by 4-hydroxyperoxycyclophosphamide-sensitive and -resistant L1210 cells. Biochem Pharmacol 1984; 33: 1867–72PubMedCrossRef Hilton J. Deoxyribonucleic acid crosslinking by 4-hydroxyperoxycyclophosphamide-sensitive and -resistant L1210 cells. Biochem Pharmacol 1984; 33: 1867–72PubMedCrossRef
73.
Zurück zum Zitat Sladek NE, Landkamer GJ. Restoration of sensitivity to oxazaphosphorines by inhibitors of aldehyde dehydrogenase activity in cultured oxazaphsphorine-resistant L1 210 and crosslinking agent resistant P388 cell lines. Cancer Res 1985; 45: 1549–55PubMed Sladek NE, Landkamer GJ. Restoration of sensitivity to oxazaphosphorines by inhibitors of aldehyde dehydrogenase activity in cultured oxazaphsphorine-resistant L1 210 and crosslinking agent resistant P388 cell lines. Cancer Res 1985; 45: 1549–55PubMed
74.
Zurück zum Zitat Moreb J, Schweder M, Suresh A, et al. Overexpression of the human aldehyde dehydrogenase class I results in increased resistance to 4-hydroperoxycyclophosphamide. Cancer Gene Ther 1996; 3: 24–30PubMed Moreb J, Schweder M, Suresh A, et al. Overexpression of the human aldehyde dehydrogenase class I results in increased resistance to 4-hydroperoxycyclophosphamide. Cancer Gene Ther 1996; 3: 24–30PubMed
75.
Zurück zum Zitat Sreerama L, Sladek NE. Identification and characterization of a novel class 3 aldehyde dehydrogenase overexpressed in a human breast adenocarcinoma cell line exhibiting oxazaphosphorine-specific acquired resistance. Biochem Pharmacol 1993; 45: 2487–505PubMedCrossRef Sreerama L, Sladek NE. Identification and characterization of a novel class 3 aldehyde dehydrogenase overexpressed in a human breast adenocarcinoma cell line exhibiting oxazaphosphorine-specific acquired resistance. Biochem Pharmacol 1993; 45: 2487–505PubMedCrossRef
76.
Zurück zum Zitat Yoshida A, Dave V, Han H, et al. Enhanced transcription of the cytosolic ALDH gene in cyclophosphamide resistant human carcinoma cells. Adv Exp Med Biol 1993; 328: 63–72PubMedCrossRef Yoshida A, Dave V, Han H, et al. Enhanced transcription of the cytosolic ALDH gene in cyclophosphamide resistant human carcinoma cells. Adv Exp Med Biol 1993; 328: 63–72PubMedCrossRef
77.
Zurück zum Zitat Hilton J. Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia. Cancer Res 1984; 44: 5156–60PubMed Hilton J. Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia. Cancer Res 1984; 44: 5156–60PubMed
78.
Zurück zum Zitat Ren S, Kalhorn TF, Slattery JT. Inhibition of human aldehyde dehydrogenase 1 by the 4-hydroxycyclophosphamide degradation product acrolein. Drug Metab Dispos 1999; 27: 133–7PubMed Ren S, Kalhorn TF, Slattery JT. Inhibition of human aldehyde dehydrogenase 1 by the 4-hydroxycyclophosphamide degradation product acrolein. Drug Metab Dispos 1999; 27: 133–7PubMed
79.
Zurück zum Zitat Parekh HK, Sladek NE. NADPH-dependent enzyme-catalyzed reduction of aldophosphamide, the pivotal metabolite of cyclophosphamide. Biochem Pharmacol 1993; 46: 1043–52PubMedCrossRef Parekh HK, Sladek NE. NADPH-dependent enzyme-catalyzed reduction of aldophosphamide, the pivotal metabolite of cyclophosphamide. Biochem Pharmacol 1993; 46: 1043–52PubMedCrossRef
80.
Zurück zum Zitat Dockham PA, Sreerama L, Sladek NE. Relative contribution of human erythrocyte aldehyde dehydrogenase to the systemic detoxicication of oxazaphosphorines. Drug Metab Dispos 1997; 25: 1436–41PubMed Dockham PA, Sreerama L, Sladek NE. Relative contribution of human erythrocyte aldehyde dehydrogenase to the systemic detoxicication of oxazaphosphorines. Drug Metab Dispos 1997; 25: 1436–41PubMed
81.
Zurück zum Zitat Gamcsik MP, Dolan ME, Andersson BS, et al. Mechanisms of resistance to the toxicity of cyclophosphamide. Curr Pharm Des 1999; 5: 587–605PubMed Gamcsik MP, Dolan ME, Andersson BS, et al. Mechanisms of resistance to the toxicity of cyclophosphamide. Curr Pharm Des 1999; 5: 587–605PubMed
82.
Zurück zum Zitat D’Incaici M, Bonfanti M, Pifferi A, et al. The antitumour activity of alkylating agents is not correlated with the levels of glutathione, glutathione transferase and O6-alkylguanine-DNA-alkyltransferase of human tumour xenografts. Eur J Cancer 1998; 34: 1749–55CrossRef D’Incaici M, Bonfanti M, Pifferi A, et al. The antitumour activity of alkylating agents is not correlated with the levels of glutathione, glutathione transferase and O6-alkylguanine-DNA-alkyltransferase of human tumour xenografts. Eur J Cancer 1998; 34: 1749–55CrossRef
83.
Zurück zum Zitat Tanner B, Hengstler JG, Dietrich B, et al. Glutathione, glutathione S-transferase alpha and pi, and aldehyde dehydrogenase content in relationship to drug resistance in ovarian cancer. Gynecol Oncol 1997; 65: 54–62PubMedCrossRef Tanner B, Hengstler JG, Dietrich B, et al. Glutathione, glutathione S-transferase alpha and pi, and aldehyde dehydrogenase content in relationship to drug resistance in ovarian cancer. Gynecol Oncol 1997; 65: 54–62PubMedCrossRef
84.
Zurück zum Zitat Cheng X, Kigawa J, Minigawa Y, et al. Glutathione-S-transferase-pi expression and glutathione concentration in ovarian carcinoma before and after chemotherapy. Cancer 1997; 79: 521–7PubMedCrossRef Cheng X, Kigawa J, Minigawa Y, et al. Glutathione-S-transferase-pi expression and glutathione concentration in ovarian carcinoma before and after chemotherapy. Cancer 1997; 79: 521–7PubMedCrossRef
85.
Zurück zum Zitat Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 1994; 54: 4313–20PubMed Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 1994; 54: 4313–20PubMed
86.
Zurück zum Zitat Jardine I, Fenselau C, Appier M, et al. Quantitation by gas chromatography-chemical ionization mass spectrometry of cyclophosphamide, phosphoramide mustard, and nornitrogen mustard in the plasma and urine of patients receiving cyclophosphamide therapy. Cancer Res 1978; 38: 408–15PubMed Jardine I, Fenselau C, Appier M, et al. Quantitation by gas chromatography-chemical ionization mass spectrometry of cyclophosphamide, phosphoramide mustard, and nornitrogen mustard in the plasma and urine of patients receiving cyclophosphamide therapy. Cancer Res 1978; 38: 408–15PubMed
87.
Zurück zum Zitat Yule SM, Pearson ADJ, Boddy AV, et al. Reproducibility of methods relating to cyclophosphamide studies [response]. J Natl Cancer Inst 1993; 85: 1250CrossRef Yule SM, Pearson ADJ, Boddy AV, et al. Reproducibility of methods relating to cyclophosphamide studies [response]. J Natl Cancer Inst 1993; 85: 1250CrossRef
88.
Zurück zum Zitat Ludeman SM, Ho CK, Boal JH, et al. Carboxyphosphamide: NMR studies of its stability and cell membrane permeability. Drug Metab Dipos 1992; 20: 337–8 Ludeman SM, Ho CK, Boal JH, et al. Carboxyphosphamide: NMR studies of its stability and cell membrane permeability. Drug Metab Dipos 1992; 20: 337–8
89.
Zurück zum Zitat Bagley CM, Bostick FW, DeVita VT. Clinical pharmacology of cyclophosphamide. Cancer Res 1973; 33: 226–33PubMed Bagley CM, Bostick FW, DeVita VT. Clinical pharmacology of cyclophosphamide. Cancer Res 1973; 33: 226–33PubMed
90.
Zurück zum Zitat Milsted RAV, Jarman M. Metabolism of high doses of cyclophosphamide. Cancer Chemother Pharmacol 1982; 8: 311–3PubMedCrossRef Milsted RAV, Jarman M. Metabolism of high doses of cyclophosphamide. Cancer Chemother Pharmacol 1982; 8: 311–3PubMedCrossRef
91.
Zurück zum Zitat Mouridsen HT, Faber O, Skovsted L. The biotransformation of cyclophosphamide in man: analysis of the variation in normal subjects. Acta Pharmacol Toxicol 1974; 35: 98–106CrossRef Mouridsen HT, Faber O, Skovsted L. The biotransformation of cyclophosphamide in man: analysis of the variation in normal subjects. Acta Pharmacol Toxicol 1974; 35: 98–106CrossRef
92.
Zurück zum Zitat Sladek NE, Priest J, Doeden D, et al. Plasma half-life and urinary excretion of cyclophosphamide in children. Cancer Treat Rep 1980; 64: 1061–6PubMed Sladek NE, Priest J, Doeden D, et al. Plasma half-life and urinary excretion of cyclophosphamide in children. Cancer Treat Rep 1980; 64: 1061–6PubMed
93.
Zurück zum Zitat Hadidi AHFA, Coulter CEA, Idle JR. Phenotypically deficient urinary elimination of carboxyphoshamide after cyclophosphamide administration to cancer patients. Cancer Res 1988; 48: 5167–71PubMed Hadidi AHFA, Coulter CEA, Idle JR. Phenotypically deficient urinary elimination of carboxyphoshamide after cyclophosphamide administration to cancer patients. Cancer Res 1988; 48: 5167–71PubMed
94.
Zurück zum Zitat Jarman M, Milsted RAV, Smyth JF, et al. Comparative metabolism of 2-[bis(2-chloroethyl)amino]tetrahydro-2H-1,3,2-oxazaphosphorine-2-oxide (cyclophosphamide) and its enantiomers in humans. Cancer Res 1979; 39: 2762–7PubMed Jarman M, Milsted RAV, Smyth JF, et al. Comparative metabolism of 2-[bis(2-chloroethyl)amino]tetrahydro-2H-1,3,2-oxazaphosphorine-2-oxide (cyclophosphamide) and its enantiomers in humans. Cancer Res 1979; 39: 2762–7PubMed
95.
Zurück zum Zitat Chan KK, Hong PS, Tutsch K, et al. Clinical pharmacokinetics of cyclophosphamide and metabolites with and without SR-2508. Cancer Res 1994; 54: 6421–9PubMed Chan KK, Hong PS, Tutsch K, et al. Clinical pharmacokinetics of cyclophosphamide and metabolites with and without SR-2508. Cancer Res 1994; 54: 6421–9PubMed
96.
Zurück zum Zitat Bailey H, Mulcahy RT, Tutsch KD, et al. A phase I study of SR-2508 and cyclophosphamide administered by intravenous injection. Cancer Res 1991; 51: 1099–104PubMed Bailey H, Mulcahy RT, Tutsch KD, et al. A phase I study of SR-2508 and cyclophosphamide administered by intravenous injection. Cancer Res 1991; 51: 1099–104PubMed
97.
Zurück zum Zitat Chen TL, Passos-Coelho JL, Noe DA, et al. Nonlinear pharmacokinetics of cyclophosphamide in patients with metastatic breast cancer receiving high-dose chemotherapy followed by autologous bone marrow transplantation. Cancer Res 1995; 55: 810–6PubMed Chen TL, Passos-Coelho JL, Noe DA, et al. Nonlinear pharmacokinetics of cyclophosphamide in patients with metastatic breast cancer receiving high-dose chemotherapy followed by autologous bone marrow transplantation. Cancer Res 1995; 55: 810–6PubMed
98.
Zurück zum Zitat Cohen JL, Jao JY, Jusko WJ. Pharmacokinetics of cyclophosphamide in man. Br J Pharmacol 1971; 43: 677–80PubMedCrossRef Cohen JL, Jao JY, Jusko WJ. Pharmacokinetics of cyclophosphamide in man. Br J Pharmacol 1971; 43: 677–80PubMedCrossRef
99.
Zurück zum Zitat Fasola G, Lo Greco P, Calori E, et al. Pharmacokinetics of highdose cyclophosphamide for bone marrow transplantation. Haematologica 1991; 76: 120–5PubMed Fasola G, Lo Greco P, Calori E, et al. Pharmacokinetics of highdose cyclophosphamide for bone marrow transplantation. Haematologica 1991; 76: 120–5PubMed
100.
Zurück zum Zitat Fuks JZ, Egorin MJ, Aisner J, et al. Cyclophosphamide of dimethylsulfoxide in the treatment of squamous carcinoma of the lung. Cancer Chemother Pharmacol 1981; 6: 117–20PubMedCrossRef Fuks JZ, Egorin MJ, Aisner J, et al. Cyclophosphamide of dimethylsulfoxide in the treatment of squamous carcinoma of the lung. Cancer Chemother Pharmacol 1981; 6: 117–20PubMedCrossRef
101.
Zurück zum Zitat Haubitz M, Bohnenstengel F, Brunkhorst R, et al. Cyclophosphamide pharmacokinetics and dose requirements in patients with renal insufficiency. Kidney Int 2002; 61: 1495–501PubMedCrossRef Haubitz M, Bohnenstengel F, Brunkhorst R, et al. Cyclophosphamide pharmacokinetics and dose requirements in patients with renal insufficiency. Kidney Int 2002; 61: 1495–501PubMedCrossRef
102.
Zurück zum Zitat Jao JY, Jusko WJ, Cohen JL. Phenobarbital effects on cyclophosphamide pharmacokinetics in man. Cancer Res 1972; 32: 2761–4PubMed Jao JY, Jusko WJ, Cohen JL. Phenobarbital effects on cyclophosphamide pharmacokinetics in man. Cancer Res 1972; 32: 2761–4PubMed
103.
Zurück zum Zitat Juma FD, Rogers HJ, Trounce JR. Pharmacokinetics of cyclophosphamide and alkylating activity in man after intravenous and oral administration. Br J Clin Pharmacol 1979; 8: 209–17PubMedCrossRef Juma FD, Rogers HJ, Trounce JR. Pharmacokinetics of cyclophosphamide and alkylating activity in man after intravenous and oral administration. Br J Clin Pharmacol 1979; 8: 209–17PubMedCrossRef
104.
Zurück zum Zitat Mouridsen HT, Jacobsen E. Pharmacokinetics of cyclophosphamide in renal failure. Acta Pharmacol Toxicol 1975; 36: 409–14CrossRef Mouridsen HT, Jacobsen E. Pharmacokinetics of cyclophosphamide in renal failure. Acta Pharmacol Toxicol 1975; 36: 409–14CrossRef
105.
Zurück zum Zitat Mouridsen HT, Faber O, Skovsted L. The metabolism of cyclophosphamide: dose dependency and the effect of long-term treatment with cyclophosphamide. Cancer 1976; 37: 665–70PubMedCrossRef Mouridsen HT, Faber O, Skovsted L. The metabolism of cyclophosphamide: dose dependency and the effect of long-term treatment with cyclophosphamide. Cancer 1976; 37: 665–70PubMedCrossRef
106.
Zurück zum Zitat Schuler U, Ehninger G, Wagner T. Repeated high-dose cyclophosphamide administration in bone marrow transplantation: exposure to activated metabolites. Cancer Chemother Pharmacol 1987; 20: 248–52PubMedCrossRef Schuler U, Ehninger G, Wagner T. Repeated high-dose cyclophosphamide administration in bone marrow transplantation: exposure to activated metabolites. Cancer Chemother Pharmacol 1987; 20: 248–52PubMedCrossRef
107.
Zurück zum Zitat Tchekmedyian NS, Egorin MJ, Cohen BE, et al. Phase I clinical and pharmacokinetic study of cyclophosphamide administered by five-day continuous intravenous infusion. Cancer Chemother Pharmacol 1986; 18: 33–8PubMedCrossRef Tchekmedyian NS, Egorin MJ, Cohen BE, et al. Phase I clinical and pharmacokinetic study of cyclophosphamide administered by five-day continuous intravenous infusion. Cancer Chemother Pharmacol 1986; 18: 33–8PubMedCrossRef
108.
Zurück zum Zitat Wagner T, Heydrich D, Bartels H, et al. Effect of damaged liver parenchyma, renal insufficiency and hemodialysis on the pharmacokinetics of cyclophosphamide and its activated metabolites [in German]. Arzneimitelforschung 1980; 30: 1588–92 Wagner T, Heydrich D, Bartels H, et al. Effect of damaged liver parenchyma, renal insufficiency and hemodialysis on the pharmacokinetics of cyclophosphamide and its activated metabolites [in German]. Arzneimitelforschung 1980; 30: 1588–92
109.
Zurück zum Zitat Baumann F, Lorenz C, Jaehde U, et al. Determination of cyclophosphamide and its metabolites in human plasma by high-performance liquid chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl 1999; 729: 297–305PubMedCrossRef Baumann F, Lorenz C, Jaehde U, et al. Determination of cyclophosphamide and its metabolites in human plasma by high-performance liquid chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl 1999; 729: 297–305PubMedCrossRef
110.
Zurück zum Zitat Friedman OM, Boger E. Colorimetric estimation of nitrogen mustards in aqueous media. Anal Chem 1961; 33: 906–10CrossRef Friedman OM, Boger E. Colorimetric estimation of nitrogen mustards in aqueous media. Anal Chem 1961; 33: 906–10CrossRef
111.
Zurück zum Zitat Hadidi AHFA, Idle JR. Combined thin-layer chromatographyphotography-densitometry for the quantification of cyclophosphamide and its four principal urinary metabolites. J Chromatogr 1988; 427: 121–30PubMedCrossRef Hadidi AHFA, Idle JR. Combined thin-layer chromatographyphotography-densitometry for the quantification of cyclophosphamide and its four principal urinary metabolites. J Chromatogr 1988; 427: 121–30PubMedCrossRef
112.
Zurück zum Zitat Hong PS, Srigritsanapol A, Chan KK. Pharmacokinetics of 4-hydroxycylophosphamide and metabolites in the rat. Drug Metab Dispos 1991; 19: 1–7PubMed Hong PS, Srigritsanapol A, Chan KK. Pharmacokinetics of 4-hydroxycylophosphamide and metabolites in the rat. Drug Metab Dispos 1991; 19: 1–7PubMed
113.
Zurück zum Zitat Borch RF, Millard JA. The mechanism of activation of 4-hydroxycyclophosphamide. J Med Chem 1987; 30: 427–31PubMedCrossRef Borch RF, Millard JA. The mechanism of activation of 4-hydroxycyclophosphamide. J Med Chem 1987; 30: 427–31PubMedCrossRef
114.
Zurück zum Zitat Sladek NE, Powers JF, Grage GM. Half-life of oxazaphosphorines in biological fluids. Drug Metab Dispos 1984; 12: 553–9PubMed Sladek NE, Powers JF, Grage GM. Half-life of oxazaphosphorines in biological fluids. Drug Metab Dispos 1984; 12: 553–9PubMed
115.
Zurück zum Zitat Huitema ADR, Tibben MM, Kerbush T, et al. High-performance liquid Chromatographic determination of the stabilized cyclophosphamide metabolite 4-hydroxycyclophosphamide in plasma and red blood cells. J Liq Chromatogr Rel Technol 2000; 23: 1725–44CrossRef Huitema ADR, Tibben MM, Kerbush T, et al. High-performance liquid Chromatographic determination of the stabilized cyclophosphamide metabolite 4-hydroxycyclophosphamide in plasma and red blood cells. J Liq Chromatogr Rel Technol 2000; 23: 1725–44CrossRef
116.
Zurück zum Zitat Baumann F, Preiss R. Cyclophosphamide and related anticancer drugs. J Chromatogr B Biomed Sci Appl 2001; 764: 173–92PubMedCrossRef Baumann F, Preiss R. Cyclophosphamide and related anticancer drugs. J Chromatogr B Biomed Sci Appl 2001; 764: 173–92PubMedCrossRef
117.
Zurück zum Zitat Malet-Martino M, Gilard V, Martino R. The analysis of cyclophosphamide and its metabolites. Curr Pharm Des 1999; 5: 561–86PubMed Malet-Martino M, Gilard V, Martino R. The analysis of cyclophosphamide and its metabolites. Curr Pharm Des 1999; 5: 561–86PubMed
118.
Zurück zum Zitat Kalhorn TF, Ren S, Howald WN, et al. Analysis of cyclophosphamide and five metabolites from human plasma using liquid chromatography-mass spectrometry and gas chromatographynitrogen-phosphorus detection. J Chromatogr B Biomed Sci Appl 1999; 732: 287–98PubMedCrossRef Kalhorn TF, Ren S, Howald WN, et al. Analysis of cyclophosphamide and five metabolites from human plasma using liquid chromatography-mass spectrometry and gas chromatographynitrogen-phosphorus detection. J Chromatogr B Biomed Sci Appl 1999; 732: 287–98PubMedCrossRef
119.
Zurück zum Zitat Sadagopan N, Cohen L, Roberts B, et al. Liquid chromatography-tandem mass spectrometric quantitation of cyclophosphamide and its hydroxy metabolite in plasma and tissue for determination of tissue distribution. J Chromatogr B Biomed Sci Appl 2001; 759: 277–84PubMedCrossRef Sadagopan N, Cohen L, Roberts B, et al. Liquid chromatography-tandem mass spectrometric quantitation of cyclophosphamide and its hydroxy metabolite in plasma and tissue for determination of tissue distribution. J Chromatogr B Biomed Sci Appl 2001; 759: 277–84PubMedCrossRef
120.
Zurück zum Zitat de Jonge ME, Van Dam SM, Hillebrand MJX, et al. Simultaneous quantification of cyclophosphamide, 4-hydroxycyclophosphamide, N,N′,N″-triethylenethiophosphoramide (thiotepa) and N,N′,N″-triethylenephosphoramide (tepa) in human plasma by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-MS/MS). J Mass Spectrom 2004; 39: 262–71PubMedCrossRef de Jonge ME, Van Dam SM, Hillebrand MJX, et al. Simultaneous quantification of cyclophosphamide, 4-hydroxycyclophosphamide, N,N′,N″-triethylenethiophosphoramide (thiotepa) and N,N′,N″-triethylenephosphoramide (tepa) in human plasma by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-MS/MS). J Mass Spectrom 2004; 39: 262–71PubMedCrossRef
121.
Zurück zum Zitat Ayash LJ, Wright JE, Tretyakov O, et al. Cyclophosphamide pharmacokinetics: correlation with cardiac toxicity and tumor response. J Clin Oncol 1992; 10: 995–1000PubMed Ayash LJ, Wright JE, Tretyakov O, et al. Cyclophosphamide pharmacokinetics: correlation with cardiac toxicity and tumor response. J Clin Oncol 1992; 10: 995–1000PubMed
122.
Zurück zum Zitat Azagra P, Perez-Ruizo JJ, Alberala V, et al. Populationpharmacokinetics study of high-dose cyclophosphamide in a program of high dose chemotherapy and peripheral blood stem cell transplantation in high risk breast cancer patients. Proc Am Soc Clin Oncol 1998; 17: 81 Azagra P, Perez-Ruizo JJ, Alberala V, et al. Populationpharmacokinetics study of high-dose cyclophosphamide in a program of high dose chemotherapy and peripheral blood stem cell transplantation in high risk breast cancer patients. Proc Am Soc Clin Oncol 1998; 17: 81
123.
Zurück zum Zitat Batey MA, Wright JG, Azzabi A, et al. Population pharmacokinetics of adjuvant cyclophosphamide, methotrexate and 5-fluorouracil (CMF). Eur J Cancer 2002; 38: 1081–9PubMedCrossRef Batey MA, Wright JG, Azzabi A, et al. Population pharmacokinetics of adjuvant cyclophosphamide, methotrexate and 5-fluorouracil (CMF). Eur J Cancer 2002; 38: 1081–9PubMedCrossRef
124.
Zurück zum Zitat Belfayol L, Guillevin L, Louchahi K, et al. Pharmacokinetics of cyclophosphamide in patients with systemic necrotizing angiitis. Fundam Clin Pharmacol 1994; 8: 458–62PubMedCrossRef Belfayol L, Guillevin L, Louchahi K, et al. Pharmacokinetics of cyclophosphamide in patients with systemic necrotizing angiitis. Fundam Clin Pharmacol 1994; 8: 458–62PubMedCrossRef
125.
Zurück zum Zitat Belfayol-Pisanté L, Guillevin L, Tod M, et al. Pharmacokinetics of cyclophosphamide (CP) and 4-OH-CP/aldophosphamide in systemic vasculitis. Fundam Clin Pharmacol 2000; 14: 415–21PubMedCrossRef Belfayol-Pisanté L, Guillevin L, Tod M, et al. Pharmacokinetics of cyclophosphamide (CP) and 4-OH-CP/aldophosphamide in systemic vasculitis. Fundam Clin Pharmacol 2000; 14: 415–21PubMedCrossRef
126.
Zurück zum Zitat Bramwell V, Calvert RT, Edwards G, et al. The disposition of cyclophosphamide in a group of myeloma patients. Cancer Chemother Pharmacol 1979; 3: 253–9PubMedCrossRef Bramwell V, Calvert RT, Edwards G, et al. The disposition of cyclophosphamide in a group of myeloma patients. Cancer Chemother Pharmacol 1979; 3: 253–9PubMedCrossRef
127.
Zurück zum Zitat de Jonge ME, Huitema ADR, Rodenhuis S, et al. Integrated population pharmacokinetic model of both cyclophosphamide and thiotepa suggesting a mutual drug-drug interaction. J Pharmacokinet Pharmacodyn 2004; 31: 135–56PubMedCrossRef de Jonge ME, Huitema ADR, Rodenhuis S, et al. Integrated population pharmacokinetic model of both cyclophosphamide and thiotepa suggesting a mutual drug-drug interaction. J Pharmacokinet Pharmacodyn 2004; 31: 135–56PubMedCrossRef
128.
Zurück zum Zitat de Jonge ME, Huitema ADR, Van Dam SM, et al. Population pharmacokinetics of cyclophosphamide and its metabolites 4-hydroxycyclophosphamide, phosphoramide mustard and 2-dechloroethylcyclophosphamide in a high-dose combination with thiotepa and carboplatin. Ther Drug Monit. In press de Jonge ME, Huitema ADR, Van Dam SM, et al. Population pharmacokinetics of cyclophosphamide and its metabolites 4-hydroxycyclophosphamide, phosphoramide mustard and 2-dechloroethylcyclophosphamide in a high-dose combination with thiotepa and carboplatin. Ther Drug Monit. In press
129.
Zurück zum Zitat D’Incaici M, Bolis G, Facchinetti T, et al. Decreased half life of cyclophosphamide in patients under continual treatment. Eur J Cancer 1979; 15: 7–10 D’Incaici M, Bolis G, Facchinetti T, et al. Decreased half life of cyclophosphamide in patients under continual treatment. Eur J Cancer 1979; 15: 7–10
130.
Zurück zum Zitat Edwards G, Calvert RT, Crowther D, et al. Repeated investigations of cyclophosphamide disposition in myeloma patients receiving intermittent chemotherapy. Br J Clin Parmacol 1980; 10: 281–5CrossRef Edwards G, Calvert RT, Crowther D, et al. Repeated investigations of cyclophosphamide disposition in myeloma patients receiving intermittent chemotherapy. Br J Clin Parmacol 1980; 10: 281–5CrossRef
131.
Zurück zum Zitat Egorin MJ, Forrest A, Belani CP, et al. A limited sampling strategy for cyclophosphamide pharmacokinetics. Cancer Res 1989; 49: 3129–33PubMed Egorin MJ, Forrest A, Belani CP, et al. A limited sampling strategy for cyclophosphamide pharmacokinetics. Cancer Res 1989; 49: 3129–33PubMed
132.
Zurück zum Zitat Faber OK, Mouridsen HT, Skovsted L. The biotransformation of cyclophosphamide in man: influence of prednisone. Acta Pharmacol Toxicol (Copenh) 1974; 35: 195–200CrossRef Faber OK, Mouridsen HT, Skovsted L. The biotransformation of cyclophosphamide in man: influence of prednisone. Acta Pharmacol Toxicol (Copenh) 1974; 35: 195–200CrossRef
133.
Zurück zum Zitat Gheuens E, Slee PH, De Bruijn EA. Bioavailability of cyclophosphamide in the CMF regimen. Onkologie 1990; 13: 203–6PubMedCrossRef Gheuens E, Slee PH, De Bruijn EA. Bioavailability of cyclophosphamide in the CMF regimen. Onkologie 1990; 13: 203–6PubMedCrossRef
134.
Zurück zum Zitat Graham MI, Shaw IC, Souhami RL, et al. Decreased plasma half-life of cyclophosphamide during repeated high-dose administration. Cancer Chemother Pharmacol 1983; 10: 192–3PubMedCrossRef Graham MI, Shaw IC, Souhami RL, et al. Decreased plasma half-life of cyclophosphamide during repeated high-dose administration. Cancer Chemother Pharmacol 1983; 10: 192–3PubMedCrossRef
135.
Zurück zum Zitat Hassan M, Svensson USH, Ljungman P, et al. A mechanismbased pharmacokinetic-enzyme model for cyclophosphamide autoinduction in breast cancer patients. Br J Clin Pharmacol 1999; 48: 669–77PubMedCrossRef Hassan M, Svensson USH, Ljungman P, et al. A mechanismbased pharmacokinetic-enzyme model for cyclophosphamide autoinduction in breast cancer patients. Br J Clin Pharmacol 1999; 48: 669–77PubMedCrossRef
136.
Zurück zum Zitat Hassan M, Ljungman P, Ringdén O, et al. The effect of busulphan on the pharmacokinetics of cyclophosphamide and its 4-hydroxy metabolite: time interval influence on therapeutic efficacy and therapy-related toxicity. Bone Marrow Transplant 2000; 25: 915–24PubMedCrossRef Hassan M, Ljungman P, Ringdén O, et al. The effect of busulphan on the pharmacokinetics of cyclophosphamide and its 4-hydroxy metabolite: time interval influence on therapeutic efficacy and therapy-related toxicity. Bone Marrow Transplant 2000; 25: 915–24PubMedCrossRef
137.
Zurück zum Zitat Honjo I, Suou T, Hirayama C. Hepatotoxicity of cyclophosphamide in man: pharmacokinetic analysis. Res Commun Chem Pathol Pharmacol 1988; 61: 149–65PubMed Honjo I, Suou T, Hirayama C. Hepatotoxicity of cyclophosphamide in man: pharmacokinetic analysis. Res Commun Chem Pathol Pharmacol 1988; 61: 149–65PubMed
138.
Zurück zum Zitat Huitema ADR, Mathôt RAA, Tibben MM, et al. A mechanismbased pharmacokinetic model for the cytochrome P450 drug-drug interaction between cyclophosphamide and thioTEPA and the autoinduction of cyclophosphamide. J Pharmacokinet Pharmacodyn 2001; 28: 211–30PubMedCrossRef Huitema ADR, Mathôt RAA, Tibben MM, et al. A mechanismbased pharmacokinetic model for the cytochrome P450 drug-drug interaction between cyclophosphamide and thioTEPA and the autoinduction of cyclophosphamide. J Pharmacokinet Pharmacodyn 2001; 28: 211–30PubMedCrossRef
139.
Zurück zum Zitat Juma FD, Rogers HJ, Trounce JR. The kinetics of salivary elimination of cyclophosphamide in man. Br J Clin Pharmacol 1979; 8: 455–8PubMedCrossRef Juma FD, Rogers HJ, Trounce JR. The kinetics of salivary elimination of cyclophosphamide in man. Br J Clin Pharmacol 1979; 8: 455–8PubMedCrossRef
140.
Zurück zum Zitat Juma FD, Rogers HJ, Trounce JR. The pharmacokinetics of cyclophosphamide, phosphoramide mustard and nor-nitrogen mustard studied by gas chromatography in patients receiving cyclophosphamide therapy. Br J Clin Pharmacol 1980; 10: 327–35PubMed Juma FD, Rogers HJ, Trounce JR. The pharmacokinetics of cyclophosphamide, phosphoramide mustard and nor-nitrogen mustard studied by gas chromatography in patients receiving cyclophosphamide therapy. Br J Clin Pharmacol 1980; 10: 327–35PubMed
141.
Zurück zum Zitat Juma FD, Rogers HJ, Trounce JR. Effect of renal insufficiency on the pharmacokinetics of cyclophosphamide and some of its metabolites. Eur J Clin Pharmacol 1981; 19: 443–51PubMedCrossRef Juma FD, Rogers HJ, Trounce JR. Effect of renal insufficiency on the pharmacokinetics of cyclophosphamide and some of its metabolites. Eur J Clin Pharmacol 1981; 19: 443–51PubMedCrossRef
142.
Zurück zum Zitat Juma F, Ogada T. Pharmacokinetics of cyclophosphamide in Kenyan Africans. Br J Clin Pharmacol 1983; 16: 61–3PubMedCrossRef Juma F, Ogada T. Pharmacokinetics of cyclophosphamide in Kenyan Africans. Br J Clin Pharmacol 1983; 16: 61–3PubMedCrossRef
143.
Zurück zum Zitat Juma FD, Koech DK, Rasili EG, et al. Pharmacokinetics of cyclophosphamide in Kenyan African children with lymphoma. Br J Clin Pharmacol 1984; 18: 106–7PubMedCrossRef Juma FD, Koech DK, Rasili EG, et al. Pharmacokinetics of cyclophosphamide in Kenyan African children with lymphoma. Br J Clin Pharmacol 1984; 18: 106–7PubMedCrossRef
144.
Zurück zum Zitat Juma FD. Effect of liver failure on the pharmacokinetics of cyclophosphamide. Eur J Clin Pharmacol 1984; 26: 591–3PubMedCrossRef Juma FD. Effect of liver failure on the pharmacokinetics of cyclophosphamide. Eur J Clin Pharmacol 1984; 26: 591–3PubMedCrossRef
145.
Zurück zum Zitat Moore MJ, Hardy RW, Thiessen JJ, et al. Rapid development of enhanced clearance after high-dose cyclophosphamide. Clin Pharmacol Ther 1988; 44: 622–8PubMedCrossRef Moore MJ, Hardy RW, Thiessen JJ, et al. Rapid development of enhanced clearance after high-dose cyclophosphamide. Clin Pharmacol Ther 1988; 44: 622–8PubMedCrossRef
146.
Zurück zum Zitat Moore MJ, Ehrlichman C, Thiessen JJ, et al. Variability in the pharmacokinetics of cyclophosphamide, methotrexate and 5-fluorouracil in women receiving adjuvant treatment for breast cancer. Cancer Chemother Pharmacol 1994; 33: 472–6PubMedCrossRef Moore MJ, Ehrlichman C, Thiessen JJ, et al. Variability in the pharmacokinetics of cyclophosphamide, methotrexate and 5-fluorouracil in women receiving adjuvant treatment for breast cancer. Cancer Chemother Pharmacol 1994; 33: 472–6PubMedCrossRef
147.
Zurück zum Zitat Mouridsen HT, Witten PL, Frederiksen PL, et al. Studies on the correlation between the rate of biotransformation and haematological toxicity of cyclophosphamide. Acta Pharmacol Toxicol 1978; 43: 328–30CrossRef Mouridsen HT, Witten PL, Frederiksen PL, et al. Studies on the correlation between the rate of biotransformation and haematological toxicity of cyclophosphamide. Acta Pharmacol Toxicol 1978; 43: 328–30CrossRef
148.
Zurück zum Zitat Petros WP, Broadwater G, Berry D, et al. Association of highdose cyclophosphamide, cisplatin, and carmustine pharmacokinetics with survival, toxicity, and dosing weight in patients with primary breast cancer. Clin Cancer Res 2002; 8: 698–705PubMed Petros WP, Broadwater G, Berry D, et al. Association of highdose cyclophosphamide, cisplatin, and carmustine pharmacokinetics with survival, toxicity, and dosing weight in patients with primary breast cancer. Clin Cancer Res 2002; 8: 698–705PubMed
149.
Zurück zum Zitat Powis G, Reece P, Ahmann DL, et al. Effect of body weight on the pharmacokinetics of cyclophosphamide in breast cancer patients. Cancer Chemother Pharmacol 1987; 20: 219–22PubMedCrossRef Powis G, Reece P, Ahmann DL, et al. Effect of body weight on the pharmacokinetics of cyclophosphamide in breast cancer patients. Cancer Chemother Pharmacol 1987; 20: 219–22PubMedCrossRef
150.
Zurück zum Zitat Schuler U, Waidelich P, Kolb H, et al. Pharmacokinetics and metabolism of cyclophosphamide administered after total body irradiation of bone marrow transplant recipients. Eur J Clin Pharmacol 1991; 40: 521–3PubMedCrossRef Schuler U, Waidelich P, Kolb H, et al. Pharmacokinetics and metabolism of cyclophosphamide administered after total body irradiation of bone marrow transplant recipients. Eur J Clin Pharmacol 1991; 40: 521–3PubMedCrossRef
151.
Zurück zum Zitat Sladek NE, Doeden D, Powers JF, et al. Plasma concentrations of 4-hydroxycyclophosphamide and phosphoramide mustard in patients repeatedly given high doses of cyclophosphamide in preparation for bone marrow transplantation. Cancer Treat Rep 1984; 68: 1247–54PubMed Sladek NE, Doeden D, Powers JF, et al. Plasma concentrations of 4-hydroxycyclophosphamide and phosphoramide mustard in patients repeatedly given high doses of cyclophosphamide in preparation for bone marrow transplantation. Cancer Treat Rep 1984; 68: 1247–54PubMed
152.
Zurück zum Zitat Slattery JT, Kalhorn TF, McDonald GB, et al. Conditioning regimen-dependent disposition of cyclophosphamide and hydroxycyclophosphamide in human marrow transplantation patients. J Clin Oncol 1996; 14: 1484–94PubMed Slattery JT, Kalhorn TF, McDonald GB, et al. Conditioning regimen-dependent disposition of cyclophosphamide and hydroxycyclophosphamide in human marrow transplantation patients. J Clin Oncol 1996; 14: 1484–94PubMed
153.
Zurück zum Zitat Wilde S, Jetter A, Zaigier M, et al. Population pharmacokinetics of cyclophosphamide, doxorubicin and etoposide in 30 patients with BEACOPP chemotherapy. Int J Clin Pharmacol Ther 2002; 40: 586–8PubMed Wilde S, Jetter A, Zaigier M, et al. Population pharmacokinetics of cyclophosphamide, doxorubicin and etoposide in 30 patients with BEACOPP chemotherapy. Int J Clin Pharmacol Ther 2002; 40: 586–8PubMed
154.
Zurück zum Zitat Wilkinson PM, O’Neill PA, Thatcher N, et al. Pharmacokinetics of high-dose cyclophosphamide in patients with metastatic bronchogenic carcinoma. Cancer Chemother Pharmacol 1983; 11: 196–9PubMedCrossRef Wilkinson PM, O’Neill PA, Thatcher N, et al. Pharmacokinetics of high-dose cyclophosphamide in patients with metastatic bronchogenic carcinoma. Cancer Chemother Pharmacol 1983; 11: 196–9PubMedCrossRef
155.
Zurück zum Zitat Williams ML, Wainer IW, Granvil CP, et al. Pharmacokinetics of (R)- and (S)-cyclophosphamide and their dechloroethylated metabolites in cancer patients. Chirality 1999; 11: 301–8PubMedCrossRef Williams ML, Wainer IW, Granvil CP, et al. Pharmacokinetics of (R)- and (S)-cyclophosphamide and their dechloroethylated metabolites in cancer patients. Chirality 1999; 11: 301–8PubMedCrossRef
156.
Zurück zum Zitat Yule SM, Boddy AV, Cole M, et al. Cyclophosphamide pharmacokinetics in children. Br J Clin Pharmacol 1996; 41: 13–9PubMedCrossRef Yule SM, Boddy AV, Cole M, et al. Cyclophosphamide pharmacokinetics in children. Br J Clin Pharmacol 1996; 41: 13–9PubMedCrossRef
157.
Zurück zum Zitat Yule SM, Price L, Cole M, et al. Cyclophosphamide metabolism in children with Fanconi’s anaemia. Bone Marrow Transplant 1999; 24: 123–8PubMedCrossRef Yule SM, Price L, Cole M, et al. Cyclophosphamide metabolism in children with Fanconi’s anaemia. Bone Marrow Transplant 1999; 24: 123–8PubMedCrossRef
158.
Zurück zum Zitat Yule SM, Price L, Cole M, et al. Cyclophosphamide metabolism in children following a 1-h and a 24-h infusion. Cancer Chemother Pharmacol 2001; 47: 222–8PubMedCrossRef Yule SM, Price L, Cole M, et al. Cyclophosphamide metabolism in children following a 1-h and a 24-h infusion. Cancer Chemother Pharmacol 2001; 47: 222–8PubMedCrossRef
159.
Zurück zum Zitat Yule SM, Price L, McMahon AD, et al. Cyclophosphamide metabolism in children with non-Hodgkin’s lymphoma. Clin Cancer Res 2004; 10: 455–60PubMedCrossRef Yule SM, Price L, McMahon AD, et al. Cyclophosphamide metabolism in children with non-Hodgkin’s lymphoma. Clin Cancer Res 2004; 10: 455–60PubMedCrossRef
160.
Zurück zum Zitat Struck RF, Alberts DS, Home K, et al. Plasma pharmacokinetics of cyclophosphamide and its cytotoxic metabolites after intravenous versus oral administration in a randomized, crossover trial. Cancer Res 1987; 47: 2723–6PubMed Struck RF, Alberts DS, Home K, et al. Plasma pharmacokinetics of cyclophosphamide and its cytotoxic metabolites after intravenous versus oral administration in a randomized, crossover trial. Cancer Res 1987; 47: 2723–6PubMed
161.
Zurück zum Zitat Sandström M, Freijs A, Larsson R, et al. Lack of relationship between systemic exposure for the component drugs of the fluorouracil, epirubicin, and 4-hydroxycyclophosphamide regimen in breast cancer patients. J Clin Oncol 1996; 14: 1581–8PubMed Sandström M, Freijs A, Larsson R, et al. Lack of relationship between systemic exposure for the component drugs of the fluorouracil, epirubicin, and 4-hydroxycyclophosphamide regimen in breast cancer patients. J Clin Oncol 1996; 14: 1581–8PubMed
162.
Zurück zum Zitat McDonald GB, Slattery JT, Bouvier ME, et al. Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoietic stem cell transplantation. Blood 2003; 101: 2043–8PubMedCrossRef McDonald GB, Slattery JT, Bouvier ME, et al. Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoietic stem cell transplantation. Blood 2003; 101: 2043–8PubMedCrossRef
163.
Zurück zum Zitat Motzer RJ, Gulati SC, Tong WP, et al. Phase I trial with pharmacokinetic analyses of high-dose carboplatin, etoposide, and cyclophosphamide with autologous bone marrow transplantation in patients with refractory germ cell tumors. Cancer Res 1993; 53: 3730–5PubMed Motzer RJ, Gulati SC, Tong WP, et al. Phase I trial with pharmacokinetic analyses of high-dose carboplatin, etoposide, and cyclophosphamide with autologous bone marrow transplantation in patients with refractory germ cell tumors. Cancer Res 1993; 53: 3730–5PubMed
164.
Zurück zum Zitat Williams ML, Wainer IW, Embree L, et al. Enantioselective induction of cyclophosphamide metabolism by phenytoin. Chirality 1999; 11: 569–74PubMedCrossRef Williams ML, Wainer IW, Embree L, et al. Enantioselective induction of cyclophosphamide metabolism by phenytoin. Chirality 1999; 11: 569–74PubMedCrossRef
165.
Zurück zum Zitat Wagner T, Feneberg K. Pharmacokinetics and bioavailability of cyclophosphamide from oral formulations. Arzneimittelforschung 1984; 34: 313–6PubMed Wagner T, Feneberg K. Pharmacokinetics and bioavailability of cyclophosphamide from oral formulations. Arzneimittelforschung 1984; 34: 313–6PubMed
166.
Zurück zum Zitat Yule SM, Price L, Pearson ADJ, et al. Cyclophosphamide and ifosfamide metabolites in the cerebrospinal fluid in children. Clin Cancer Res 1997; 3: 1985–92PubMed Yule SM, Price L, Pearson ADJ, et al. Cyclophosphamide and ifosfamide metabolites in the cerebrospinal fluid in children. Clin Cancer Res 1997; 3: 1985–92PubMed
167.
Zurück zum Zitat Gervot L, Rochat B, Gautier JC, et al. Human CYP2B6: expression, inducibility and catalytic activities. Pharmacogenetics 1999; 9: 295–306PubMedCrossRef Gervot L, Rochat B, Gautier JC, et al. Human CYP2B6: expression, inducibility and catalytic activities. Pharmacogenetics 1999; 9: 295–306PubMedCrossRef
168.
Zurück zum Zitat Lindley C, Hamilton G, McCune JS, et al. The effect of cyclophosphamide with and without dexamethasone on cytochrome P450 3A4 and 2B6 in human hepatocytes. Drug Metab Dispos 2002; 30: 814–21PubMedCrossRef Lindley C, Hamilton G, McCune JS, et al. The effect of cyclophosphamide with and without dexamethasone on cytochrome P450 3A4 and 2B6 in human hepatocytes. Drug Metab Dispos 2002; 30: 814–21PubMedCrossRef
169.
Zurück zum Zitat Martin H, Sarsat JP, De Waziers I, et al. Induction of cytochrome P450 2B6 and 3A4 expression by phenobarbital and cyclophosphamide in cultured human liver slices. Pharm Res 2003; 20: 557–68PubMedCrossRef Martin H, Sarsat JP, De Waziers I, et al. Induction of cytochrome P450 2B6 and 3A4 expression by phenobarbital and cyclophosphamide in cultured human liver slices. Pharm Res 2003; 20: 557–68PubMedCrossRef
170.
Zurück zum Zitat Xie HJ, Lundgren S, Broberg U, et al. Effect of cyclophosphamide on gene expression of cytochrome P450 and β-actin in the HL-60 cell line. Eur J Pharmacol 2002; 449: 197–205PubMedCrossRef Xie HJ, Lundgren S, Broberg U, et al. Effect of cyclophosphamide on gene expression of cytochrome P450 and β-actin in the HL-60 cell line. Eur J Pharmacol 2002; 449: 197–205PubMedCrossRef
171.
Zurück zum Zitat Nieto Y, Xu X, Cagnoni PJ, et al. Nonpredictable pharmacokinetic behaviour of high-dose cyclophosphamide in combination with cisplatin and 1,3-bis(2-chloroethyl)-1-nitrosurea. Clin Cancer Res 1999; 5: 747–51PubMed Nieto Y, Xu X, Cagnoni PJ, et al. Nonpredictable pharmacokinetic behaviour of high-dose cyclophosphamide in combination with cisplatin and 1,3-bis(2-chloroethyl)-1-nitrosurea. Clin Cancer Res 1999; 5: 747–51PubMed
172.
Zurück zum Zitat Van Der Wall E, Beijnen JH, Rodenhuis S. High-dose chemotherapy for solid tumors. Cancer Treat Rev 1995; 21: 105–32PubMedCrossRef Van Der Wall E, Beijnen JH, Rodenhuis S. High-dose chemotherapy for solid tumors. Cancer Treat Rev 1995; 21: 105–32PubMedCrossRef
173.
Zurück zum Zitat Brock N, Gross R, Hohorst HJ, et al. Activation of cyclophosphamide in man and animals. Cancer 1971; 27: 1512–29PubMedCrossRef Brock N, Gross R, Hohorst HJ, et al. Activation of cyclophosphamide in man and animals. Cancer 1971; 27: 1512–29PubMedCrossRef
174.
Zurück zum Zitat Hortobagyi GN. What is the role of high-dose chemotherapy in the era of targeted therapies? J Clin Oncol 2004; 22: 2263–6PubMedCrossRef Hortobagyi GN. What is the role of high-dose chemotherapy in the era of targeted therapies? J Clin Oncol 2004; 22: 2263–6PubMedCrossRef
175.
Zurück zum Zitat Yu LJ, Drewes P, Gustafsson K, et al. In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity. J Pharmacol Exp Ther 1999; 288: 928–37PubMed Yu LJ, Drewes P, Gustafsson K, et al. In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity. J Pharmacol Exp Ther 1999; 288: 928–37PubMed
176.
Zurück zum Zitat Faber OK, Mouridsen HT, Skovsted L. The effect of chloramphenicol and sulphaphenazole on the biotransformation of cyclophosphamide in man. Br J Clin Pharmacol 1975; 2: 281–5PubMedCrossRef Faber OK, Mouridsen HT, Skovsted L. The effect of chloramphenicol and sulphaphenazole on the biotransformation of cyclophosphamide in man. Br J Clin Pharmacol 1975; 2: 281–5PubMedCrossRef
177.
Zurück zum Zitat Carlens S, Ringden O, Aschan J, et al. Risk factors in bone marrow transplant recipients with leukaemia: increased relapse risk in patients treated with ciprofloxacin for gut decontamination. Clin Transplant 1998; 12: 84–92PubMed Carlens S, Ringden O, Aschan J, et al. Risk factors in bone marrow transplant recipients with leukaemia: increased relapse risk in patients treated with ciprofloxacin for gut decontamination. Clin Transplant 1998; 12: 84–92PubMed
178.
Zurück zum Zitat Yule SM, Walker D, Cole M, et al. The effect of fluconazole on cyclophosphamide metabolism in children. Drug Metab Dispos 1999; 27: 417–21PubMed Yule SM, Walker D, Cole M, et al. The effect of fluconazole on cyclophosphamide metabolism in children. Drug Metab Dispos 1999; 27: 417–21PubMed
179.
Zurück zum Zitat Marr KA, Leisenring W, Crippa F, et al. Cyclophosphamide metabolism is affected by azole antifungals. Blood 2004; 103: 1557–9PubMedCrossRef Marr KA, Leisenring W, Crippa F, et al. Cyclophosphamide metabolism is affected by azole antifungals. Blood 2004; 103: 1557–9PubMedCrossRef
180.
Zurück zum Zitat Huitema ADR, Kerbusch T, Tibben MM, et al. Reduction of cyclophosphamide-bioactivation by thiotepa: critical sequence-dependency in high-dose chemotherapy regimens. Cancer Chemother Pharmacol 2000; 46: 119–27PubMedCrossRef Huitema ADR, Kerbusch T, Tibben MM, et al. Reduction of cyclophosphamide-bioactivation by thiotepa: critical sequence-dependency in high-dose chemotherapy regimens. Cancer Chemother Pharmacol 2000; 46: 119–27PubMedCrossRef
181.
Zurück zum Zitat Rae JM, Soukhova NV, Flockhart DA, et al. Triethylenethiophosphoramide is a specific inhibitor of cytochrome P450 2B6: implications for cyclophosphamide metabolism. Drug Metab Dispos 2002; 30: 525–30PubMedCrossRef Rae JM, Soukhova NV, Flockhart DA, et al. Triethylenethiophosphoramide is a specific inhibitor of cytochrome P450 2B6: implications for cyclophosphamide metabolism. Drug Metab Dispos 2002; 30: 525–30PubMedCrossRef
182.
Zurück zum Zitat Gilbert CJ, Petros WP, Vredenburgh J, et al. Pharmacokinetic interaction between ondansetron and cyclophosphamide during high-dose chemotherapy for breast cancer. Cancer Chemother Pharmacol 1998; 42: 497–503PubMedCrossRef Gilbert CJ, Petros WP, Vredenburgh J, et al. Pharmacokinetic interaction between ondansetron and cyclophosphamide during high-dose chemotherapy for breast cancer. Cancer Chemother Pharmacol 1998; 42: 497–503PubMedCrossRef
183.
Zurück zum Zitat Cagnoni PJ, Matthes S, Day TC, et al. Modification of the pharmacokinetics of high-dose cyclophosphamide and cisplatin by antiemetics. Bone Marrow Transplant 1999; 24: 1–4PubMedCrossRef Cagnoni PJ, Matthes S, Day TC, et al. Modification of the pharmacokinetics of high-dose cyclophosphamide and cisplatin by antiemetics. Bone Marrow Transplant 1999; 24: 1–4PubMedCrossRef
184.
Zurück zum Zitat de Jonge ME, Huitema ADR, Van Dam SM, et al. Significant induction of cyclophosphamide and thiotepa metabolism by phenytoin. Cancer Chemother Pharmacol 2005; 55(5): 507–10PubMedCrossRef de Jonge ME, Huitema ADR, Van Dam SM, et al. Significant induction of cyclophosphamide and thiotepa metabolism by phenytoin. Cancer Chemother Pharmacol 2005; 55(5): 507–10PubMedCrossRef
185.
Zurück zum Zitat Ren S, Slattery JT. Inhibition of carboxyethylphosphoramide mustard formation from 4-hydroxycyclophosphamide by carmustine. AAPS PharmSci 1999; 1: E 14CrossRef Ren S, Slattery JT. Inhibition of carboxyethylphosphoramide mustard formation from 4-hydroxycyclophosphamide by carmustine. AAPS PharmSci 1999; 1: E 14CrossRef
186.
Zurück zum Zitat Ayash LJ, Hunt M, Antman K, et al. Hepatic venoocclusive disease in autologous bone marrow transplantation of solid tumors and lymphomas. J Clin Oncol 1990; 8: 1699–706PubMed Ayash LJ, Hunt M, Antman K, et al. Hepatic venoocclusive disease in autologous bone marrow transplantation of solid tumors and lymphomas. J Clin Oncol 1990; 8: 1699–706PubMed
187.
Zurück zum Zitat Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414–23PubMed Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414–23PubMed
188.
Zurück zum Zitat Forrester LM, Henderson CJ, Glancey MJ, et al. Relative expression of cytochrome P450 isoenzymes in human liver and association with the metabolism of drugs and xenobiotics. Biochem J 1992; 281: 359–68PubMed Forrester LM, Henderson CJ, Glancey MJ, et al. Relative expression of cytochrome P450 isoenzymes in human liver and association with the metabolism of drugs and xenobiotics. Biochem J 1992; 281: 359–68PubMed
189.
Zurück zum Zitat Yoshida A. Molecular genetics of human aldehyde dehydrogenase. Pharmacogenetics 1992; 2: 139–47PubMedCrossRef Yoshida A. Molecular genetics of human aldehyde dehydrogenase. Pharmacogenetics 1992; 2: 139–47PubMedCrossRef
190.
Zurück zum Zitat Yoshida A, Davé V, Ward RJ, et al. Cytosolic aldehyde dehydrogenase (ALDH1) variants found in alcohol flushers. Ann Hum Genet 1989; 53: 1–7PubMedCrossRef Yoshida A, Davé V, Ward RJ, et al. Cytosolic aldehyde dehydrogenase (ALDH1) variants found in alcohol flushers. Ann Hum Genet 1989; 53: 1–7PubMedCrossRef
191.
Zurück zum Zitat Vasiliou V, Pappa A. Polymorphisms of human aldehyde dehydrogenases: consequences for drug metabolism and disease. Pharmacology 2000; 61: 192–8PubMedCrossRef Vasiliou V, Pappa A. Polymorphisms of human aldehyde dehydrogenases: consequences for drug metabolism and disease. Pharmacology 2000; 61: 192–8PubMedCrossRef
192.
Zurück zum Zitat Vesell ES. Genetic and environmental factors affecting drug disposition in man. Clin Pharmacol Ther 1977; 22: 659–79PubMed Vesell ES. Genetic and environmental factors affecting drug disposition in man. Clin Pharmacol Ther 1977; 22: 659–79PubMed
193.
Zurück zum Zitat Fraiser LH, Kanekal S, Kehrer JP. Cyclophosphamide toxicity: characterizing and avoiding the problem. Drugs 1991; 42: 781–95PubMedCrossRef Fraiser LH, Kanekal S, Kehrer JP. Cyclophosphamide toxicity: characterizing and avoiding the problem. Drugs 1991; 42: 781–95PubMedCrossRef
194.
Zurück zum Zitat Langford CA. Complications of cyclophosphamide therapy. Eur Arch Otorhinolaryngol 1997; 254: 65–72PubMedCrossRef Langford CA. Complications of cyclophosphamide therapy. Eur Arch Otorhinolaryngol 1997; 254: 65–72PubMedCrossRef
195.
Zurück zum Zitat Watson NA, Notley RG. Urological complications of cyclophosphamide. Br J Urol 1973; 45: 606–9PubMedCrossRef Watson NA, Notley RG. Urological complications of cyclophosphamide. Br J Urol 1973; 45: 606–9PubMedCrossRef
196.
Zurück zum Zitat Hunt KK. Post-cyclophosphamide pneumonitis. N Engl J Med 1972; 287: 668–9PubMed Hunt KK. Post-cyclophosphamide pneumonitis. N Engl J Med 1972; 287: 668–9PubMed
197.
Zurück zum Zitat DeFronzo RA, Braine H, Colvin M, et al. Water intoxication in men after cyclophosphamide therapy: time course and relation to drug activation. Ann Intern Med 1973; 78: 861–9PubMed DeFronzo RA, Braine H, Colvin M, et al. Water intoxication in men after cyclophosphamide therapy: time course and relation to drug activation. Ann Intern Med 1973; 78: 861–9PubMed
198.
Zurück zum Zitat Bergsagel DE, Robertson GL, Hasselback R. Effect of cyclophosphamide on advanced lung cell cancer and haematological toxicity of large, intermittent intravenous doses. CMAJ 1968; 98: 532–8 Bergsagel DE, Robertson GL, Hasselback R. Effect of cyclophosphamide on advanced lung cell cancer and haematological toxicity of large, intermittent intravenous doses. CMAJ 1968; 98: 532–8
199.
Zurück zum Zitat Letendre L, Hoagland HC, Gertz MA. Hemorraghic cystitis complicating bone marrow transplantation. Mayo Clin Proc 1992; 67: 128–30PubMedCrossRef Letendre L, Hoagland HC, Gertz MA. Hemorraghic cystitis complicating bone marrow transplantation. Mayo Clin Proc 1992; 67: 128–30PubMedCrossRef
200.
Zurück zum Zitat Brugieres L, Hartmann O, Travagli JP, et al. Hemorrhagic cystitis following high-dose chemotherapy and bone marrow transplantation in children with malignancies: incidence, clinical course and outcome. J Clin Oncol 1989; 7: 194–9PubMed Brugieres L, Hartmann O, Travagli JP, et al. Hemorrhagic cystitis following high-dose chemotherapy and bone marrow transplantation in children with malignancies: incidence, clinical course and outcome. J Clin Oncol 1989; 7: 194–9PubMed
201.
Zurück zum Zitat Brock N, Stekar J, Pohl J, et al. Acrolein, the causative factor of urotoxic side-effects of cyclophosphamide, ifosfamide, trofosfamide and sufosfamide. Arzneimforschung 1979; 29: 659–61 Brock N, Stekar J, Pohl J, et al. Acrolein, the causative factor of urotoxic side-effects of cyclophosphamide, ifosfamide, trofosfamide and sufosfamide. Arzneimforschung 1979; 29: 659–61
202.
Zurück zum Zitat Cox PJ. Cyclophosphamide cystitis: identification of acrolein as the causative agent. Biochem Pharmacol 1979; 28: 2045–9PubMedCrossRef Cox PJ. Cyclophosphamide cystitis: identification of acrolein as the causative agent. Biochem Pharmacol 1979; 28: 2045–9PubMedCrossRef
203.
Zurück zum Zitat Manz I, Dietrich I, Przybylski M, et al. Identification and quantification of metabolite conjugates of activated cyclophosphamide and ifosfamide with mesna in urine by ion-pair extraction and fast atom bombardment mass spectrometry. Biomed Mass Spectrom 1985; 12: 545–53PubMedCrossRef Manz I, Dietrich I, Przybylski M, et al. Identification and quantification of metabolite conjugates of activated cyclophosphamide and ifosfamide with mesna in urine by ion-pair extraction and fast atom bombardment mass spectrometry. Biomed Mass Spectrom 1985; 12: 545–53PubMedCrossRef
204.
Zurück zum Zitat Shepherd JD, Pringle LE, Barnett MJ, et al. Mesna versus hyperhydration for the prevention of cyclophosphamide-induced hemorrhagic cystitis in bone marrow transplantation. J Clin Oncol 1991; 9: 2016–20PubMed Shepherd JD, Pringle LE, Barnett MJ, et al. Mesna versus hyperhydration for the prevention of cyclophosphamide-induced hemorrhagic cystitis in bone marrow transplantation. J Clin Oncol 1991; 9: 2016–20PubMed
205.
Zurück zum Zitat Vose JM, Reed EC, Pippert GC, et al. Mesna compared with continuous bladder irrigation as uroprotection during highdose chemotherapy and transplantation: a randomized trial. J Clin Oncol 1993; 11: 1306–10PubMed Vose JM, Reed EC, Pippert GC, et al. Mesna compared with continuous bladder irrigation as uroprotection during highdose chemotherapy and transplantation: a randomized trial. J Clin Oncol 1993; 11: 1306–10PubMed
206.
Zurück zum Zitat McDonald GB, Hinds MS, Fisher LD, et al. Veno-occlusive disease of the liver and multiorgan failure after bone marrow transplantation: a cohort study of 355 patients. Ann Intern Med 1993; 118: 255–67PubMed McDonald GB, Hinds MS, Fisher LD, et al. Veno-occlusive disease of the liver and multiorgan failure after bone marrow transplantation: a cohort study of 355 patients. Ann Intern Med 1993; 118: 255–67PubMed
207.
Zurück zum Zitat Nevill TJ, Barnett MJ, Klingemann HG, et al. Regimen-related toxicity of a busulphan-cyclophosphamide conditioning regimen in 70 patients undergoing allogeneic bone marrow transplantation. J Clin Oncol 1991; 9: 1224–32PubMed Nevill TJ, Barnett MJ, Klingemann HG, et al. Regimen-related toxicity of a busulphan-cyclophosphamide conditioning regimen in 70 patients undergoing allogeneic bone marrow transplantation. J Clin Oncol 1991; 9: 1224–32PubMed
208.
Zurück zum Zitat Rees KR, Tarlow MJ. The hepatotoxic action of allyl formate. Biochem J 1967; 104: 757–61PubMed Rees KR, Tarlow MJ. The hepatotoxic action of allyl formate. Biochem J 1967; 104: 757–61PubMed
209.
Zurück zum Zitat DeLeve LD. Cellular target of cyclophosphamide toxicity in the murine liver: role of glutathione and site of metabolic activation. Hepatology 1996; 24: 830–7PubMedCrossRef DeLeve LD. Cellular target of cyclophosphamide toxicity in the murine liver: role of glutathione and site of metabolic activation. Hepatology 1996; 24: 830–7PubMedCrossRef
210.
Zurück zum Zitat Scott TR, Kirsch RE. Inhibition of rat liver glutathione S-transferase isoenzymes by acrolein. Biochem Int 1988; 16: 439–42PubMed Scott TR, Kirsch RE. Inhibition of rat liver glutathione S-transferase isoenzymes by acrolein. Biochem Int 1988; 16: 439–42PubMed
211.
Zurück zum Zitat Goldberg MA, Antin JH, Guinan EC, et al. Cyclophosphamide cardiotoxicity: an analysis of dosing as a risk factor. Blood 1986; 68: 1114–8PubMed Goldberg MA, Antin JH, Guinan EC, et al. Cyclophosphamide cardiotoxicity: an analysis of dosing as a risk factor. Blood 1986; 68: 1114–8PubMed
212.
Zurück zum Zitat Gottdiender JS, Appelbaum FR, Ferrans VJ, et al. Cardiotoxicity associated with high-dose cyclophosphamide therapy. Arch Intern Med 1981; 141: 758–63CrossRef Gottdiender JS, Appelbaum FR, Ferrans VJ, et al. Cardiotoxicity associated with high-dose cyclophosphamide therapy. Arch Intern Med 1981; 141: 758–63CrossRef
213.
Zurück zum Zitat Braverman AC, Antin JH, Plappert MT, et al. Cyclophosphamide cardiotoxicity in bone marrow transplantation: a prospective evaluation of new drug dosing regimens. J Clin Oncol 1991; 9: 1215–23PubMed Braverman AC, Antin JH, Plappert MT, et al. Cyclophosphamide cardiotoxicity in bone marrow transplantation: a prospective evaluation of new drug dosing regimens. J Clin Oncol 1991; 9: 1215–23PubMed
214.
Zurück zum Zitat Levine ES, Friedman HS, Griffith OW, et al. Cardiac cell toxicity induced by 4-hydroxyperoxycyclophosphamide is modulated by glutathione. Cardiovasc Res 1993; 27: 1248–53PubMedCrossRef Levine ES, Friedman HS, Griffith OW, et al. Cardiac cell toxicity induced by 4-hydroxyperoxycyclophosphamide is modulated by glutathione. Cardiovasc Res 1993; 27: 1248–53PubMedCrossRef
215.
Zurück zum Zitat Friedman HS, Colvin OM, Aisaka K, et al. Glutathione protects cardiac and skeletal muscle from cyclophosphamide-induced toxicity. Cancer Res 1990; 50: 2455–62PubMed Friedman HS, Colvin OM, Aisaka K, et al. Glutathione protects cardiac and skeletal muscle from cyclophosphamide-induced toxicity. Cancer Res 1990; 50: 2455–62PubMed
216.
Zurück zum Zitat Anthony LB, Long QC, Nickel L, et al. Limited sampling model predicts cyclophosphamide area under the curve but not cyclophosphamide metabolite exposure [abstract]. Proc Ass Clin Oncol 1990; 9: 70 Anthony LB, Long QC, Nickel L, et al. Limited sampling model predicts cyclophosphamide area under the curve but not cyclophosphamide metabolite exposure [abstract]. Proc Ass Clin Oncol 1990; 9: 70
217.
Zurück zum Zitat Huitema ADR, Spaander M, Mathôt RAA, et al. Relationship between exposure and toxicity in high-dose chemotherapy with cyclophosphamide, thioTEPA and carboplatin. Ann Oncol 2002; 13: 374–84PubMedCrossRef Huitema ADR, Spaander M, Mathôt RAA, et al. Relationship between exposure and toxicity in high-dose chemotherapy with cyclophosphamide, thioTEPA and carboplatin. Ann Oncol 2002; 13: 374–84PubMedCrossRef
218.
Zurück zum Zitat Zucchetti M, Zambetti M, Hartley JM, et al. Lack of bone marrow toxicity of high-dose cyclophosphamide associated with inefficient drug metabolism. Ann Oncol 1993; 4: 895–7PubMed Zucchetti M, Zambetti M, Hartley JM, et al. Lack of bone marrow toxicity of high-dose cyclophosphamide associated with inefficient drug metabolism. Ann Oncol 1993; 4: 895–7PubMed
219.
Zurück zum Zitat de Jonge ME, Huitema ADR, Van Dam SM, et al. Pharmacokinetically guided dosing of cyclophosphamide, thiotepa and carboplatin in high dose chemotherapy [abstract]. Proc Am Soc Clin Oncol 2003; 22: 140 de Jonge ME, Huitema ADR, Van Dam SM, et al. Pharmacokinetically guided dosing of cyclophosphamide, thiotepa and carboplatin in high dose chemotherapy [abstract]. Proc Am Soc Clin Oncol 2003; 22: 140
Metadaten
Titel
Clinical Pharmacokinetics of Cyclophosphamide
verfasst von
Dr Milly E. de Jonge
Alwin D. R. Huitema
Sjoerd Rodenhuis
Jos H. Beijnen
Publikationsdatum
01.11.2005
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 11/2005
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200544110-00003

Weitere Artikel der Ausgabe 11/2005

Clinical Pharmacokinetics 11/2005 Zur Ausgabe