Skip to main content
Erschienen in: Clinical Pharmacokinetics 9/2006

01.09.2006 | Review Article

Pharmacokinetic Considerations in the Treatment of CNS Tumours

verfasst von: Susannah Motl, Yanli Zhuang, Christopher M. Waters, Dr Clinton F. Stewart

Erschienen in: Clinical Pharmacokinetics | Ausgabe 9/2006

Einloggen, um Zugang zu erhalten

Abstract

Despite aggressive therapy, the majority of primary and metastatic brain tumour patients have a poor prognosis with brief survival periods. This is because of the different pharmacokinetic parameters of systemically administered chemotherapeutic agents between the brain and the rest of the body. Specifically, before systemically administered drugs can distribute into the CNS, they must cross two membrane barriers, the blood-brain barrier (BBB) and blood-cerebrospinal fluid (CSF) barrier (BCB). To some extent, these structures function to exclude xenobiotics, such as anticancer drugs, from the brain. An understanding of these unique barriers is essential to predict when and how systemically administered drugs will be transported to the brain. Specifically, factors such as physiological variables (e.g. blood flow), physicochemical properties of the drug (e.g. molecular weight), as well as influx and efflux transporter expression at the BBB and BCB (e.g. adenosine triphosphate-binding cassette transporters) determine what compounds reach the CNS. A large body of preclinical and clinical research exists regarding brain penetration of anticancer agents. In most cases, a surrogate endpoint (i.e. CSF to plasma area under the concentration-time curve [AUC] ratio) is used to describe how effectively agents can be transported into the CNS. Some agents, such as the topoisomerase I inhibitor, topotecan, have high CSF to plasma AUC ratios, making them valid therapeutic options for primary and metastatic brain tumours. In contrast, other agents like the oral tyrosine kinase inhibitor, imatinib, have a low CSF to plasma AUC ratio. Knowledge of these data can have important clinical implications. For example, it is now known that chronic myelogenous leukaemia patients treated with imatinib might need additional CNS prophylaxis. Since most anticancer agents have limited brain penetration, new pharmacological approaches are needed to enhance delivery into the brain. BBB disruption, regional administration of chemotherapy and transporter modulation are all currently being evaluated in an effort to improve therapeutic outcomes. Additionally, since many chemotherapeutic agents are metabolised by the cytochrome P450 3A enzyme system, minimising drug interactions by avoiding concomitant drug therapies that are also metabolised through this system may potentially enhance outcomes. Specifically, the use of non-enzyme-inducing antiepileptic drugs and curtailing nonessential corticosteroid use may have an impact.
Fußnoten
1
The use of trade names is for product identification purposes only and does not imply endorsement.
 
Literatur
2.
Zurück zum Zitat Parkin DM, Bray F, Ferlay J, et al. Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001; 94: 153–6PubMed Parkin DM, Bray F, Ferlay J, et al. Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001; 94: 153–6PubMed
5.
Zurück zum Zitat Baldwin RT, Preston-Martin S. Epidemiology of brain tumors in childhood: a review. Toxicol Appl Pharmacol 2004; 199: 118–31PubMed Baldwin RT, Preston-Martin S. Epidemiology of brain tumors in childhood: a review. Toxicol Appl Pharmacol 2004; 199: 118–31PubMed
6.
7.
Zurück zum Zitat Finlay JL, Zacharoulis S. The treatment of high grade gliomas and diffuse intrinsic pontine tumors of childhood and adolescence: a historical- and futuristic — perspective. J Neurooncol 2005; 75: 253–66PubMed Finlay JL, Zacharoulis S. The treatment of high grade gliomas and diffuse intrinsic pontine tumors of childhood and adolescence: a historical- and futuristic — perspective. J Neurooncol 2005; 75: 253–66PubMed
8.
Zurück zum Zitat Davson H, Segal MB. Physiology of the CSF and blood-brain barriers. Boca Raton (FL): CRC Press Inc., 1996 Davson H, Segal MB. Physiology of the CSF and blood-brain barriers. Boca Raton (FL): CRC Press Inc., 1996
9.
Zurück zum Zitat Zheng W, Aschner M, Ghersi-Egea JF. Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol 2003; 192: 1–11PubMed Zheng W, Aschner M, Ghersi-Egea JF. Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol 2003; 192: 1–11PubMed
10.
Zurück zum Zitat Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1977; 1: 409–17PubMed Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1977; 1: 409–17PubMed
11.
Zurück zum Zitat Pardridge WM, Oldendorf WH, Cancilla P, et al. Blood-brain barrier: interface between internal medicine and the brain. Ann Intern Med 1986; 105: 82–95PubMed Pardridge WM, Oldendorf WH, Cancilla P, et al. Blood-brain barrier: interface between internal medicine and the brain. Ann Intern Med 1986; 105: 82–95PubMed
12.
Zurück zum Zitat Abbott NJ. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 2005; 25: 5–23PubMed Abbott NJ. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 2005; 25: 5–23PubMed
13.
Zurück zum Zitat Loscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 2005; 6(8): 591–602PubMed Loscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 2005; 6(8): 591–602PubMed
14.
Zurück zum Zitat Vorbrodt AW, Dobrogowska DH. Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist’s view. Brain Res Brain Res Rev 2003; 42: 221–42PubMed Vorbrodt AW, Dobrogowska DH. Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist’s view. Brain Res Brain Res Rev 2003; 42: 221–42PubMed
15.
Zurück zum Zitat Kusuhara H, Sugiyama Y. Active efflux across the blood-brain barrier: role of the solute carrier family. NeuroRx 2005; 2: 73–85PubMed Kusuhara H, Sugiyama Y. Active efflux across the blood-brain barrier: role of the solute carrier family. NeuroRx 2005; 2: 73–85PubMed
16.
Zurück zum Zitat Ito K, Suzuki H, Horie T, et al. Apical/Basolateral surface expression of drug transporters and its role in vectorial drug transport. Pharm Res 2005; 22: 1559–77PubMed Ito K, Suzuki H, Horie T, et al. Apical/Basolateral surface expression of drug transporters and its role in vectorial drug transport. Pharm Res 2005; 22: 1559–77PubMed
17.
Zurück zum Zitat Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family 1. NeuroRx 2005; 2: 86–98PubMed Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family 1. NeuroRx 2005; 2: 86–98PubMed
18.
Zurück zum Zitat Schinkel AH, Smit JJ, van Tellingen O, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994; 77: 491–502PubMed Schinkel AH, Smit JJ, van Tellingen O, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994; 77: 491–502PubMed
19.
Zurück zum Zitat Loscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 2005; 76: 22–76PubMed Loscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 2005; 76: 22–76PubMed
20.
Zurück zum Zitat Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2005; 2: 3–14PubMed Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2005; 2: 3–14PubMed
21.
Zurück zum Zitat Johanson CE, Duncan JA, Stopa EG, et al. Enhanced prospects for drug delivery and brain targeting by the choroid plexus-CSF route. Pharm Res 2005; 22: 1011–37PubMed Johanson CE, Duncan JA, Stopa EG, et al. Enhanced prospects for drug delivery and brain targeting by the choroid plexus-CSF route. Pharm Res 2005; 22: 1011–37PubMed
22.
Zurück zum Zitat Redzic ZB, Segal MB. The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev 2004; 56: 1695–716PubMed Redzic ZB, Segal MB. The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev 2004; 56: 1695–716PubMed
23.
Zurück zum Zitat Strazielle N, Ghersi-Egea JF. Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol 2000; 59: 561–74PubMed Strazielle N, Ghersi-Egea JF. Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol 2000; 59: 561–74PubMed
24.
Zurück zum Zitat Keep RF, Jones HC. A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Brain Res Dev Brain Res 1990; 56: 47–53PubMed Keep RF, Jones HC. A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Brain Res Dev Brain Res 1990; 56: 47–53PubMed
25.
Zurück zum Zitat Miyan J, Nibayouni M, Zendah M. Development of the brain: a vital role for cerebrospinal fluid. Canadian J Physiol and Pharmacol 2003; 81: 317–28 Miyan J, Nibayouni M, Zendah M. Development of the brain: a vital role for cerebrospinal fluid. Canadian J Physiol and Pharmacol 2003; 81: 317–28
26.
Zurück zum Zitat De Lange EC, Danhof M. Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet 2002; 41: 691–703PubMed De Lange EC, Danhof M. Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet 2002; 41: 691–703PubMed
27.
Zurück zum Zitat Szmydynger-Chodobska J, Chodobski A, Johanson CE. Postnatal developmental changes in blood flow to choroid plexuses and cerebral cortex of the rat. Am J Physiol 1994; 266: R1488–92PubMed Szmydynger-Chodobska J, Chodobski A, Johanson CE. Postnatal developmental changes in blood flow to choroid plexuses and cerebral cortex of the rat. Am J Physiol 1994; 266: R1488–92PubMed
28.
Zurück zum Zitat Ghersi-Egea JF, Minn A, Siest G. A new aspect of the protective functions of the blood-brain barrier: activities of four drug-metabolizing enzymes in isolated rat brain microvessels. Life Sci 1988; 42: 2515–23PubMed Ghersi-Egea JF, Minn A, Siest G. A new aspect of the protective functions of the blood-brain barrier: activities of four drug-metabolizing enzymes in isolated rat brain microvessels. Life Sci 1988; 42: 2515–23PubMed
29.
Zurück zum Zitat Ghersi-Egea JF, Strazielle N. Brain drag delivery, drag metabolism, and multidrug resistance at the choroid plexus. Microsc Res Tech 2001; 52: 83–8PubMed Ghersi-Egea JF, Strazielle N. Brain drag delivery, drag metabolism, and multidrug resistance at the choroid plexus. Microsc Res Tech 2001; 52: 83–8PubMed
30.
Zurück zum Zitat Vajkoczy P, Menger MD. Vascular microenvironment in gliomas. J Neurooncol 2000; 50: 99–108PubMed Vajkoczy P, Menger MD. Vascular microenvironment in gliomas. J Neurooncol 2000; 50: 99–108PubMed
31.
Zurück zum Zitat Van VM, Kal HB, Taphoorn MJ, et al. Changes in blood-brain barrier permeability induced by radiotherapy: implications for timing of chemotherapy? Oncol Rep 2002; 9: 683–8 Van VM, Kal HB, Taphoorn MJ, et al. Changes in blood-brain barrier permeability induced by radiotherapy: implications for timing of chemotherapy? Oncol Rep 2002; 9: 683–8
32.
Zurück zum Zitat Kemper EM, Boogerd W, Thuis I, et al. Modulation of the blood-brain barrier in oncology: therapeutic opportunities for the treatment of brain tumours? Cancer Treat Rev 2004; 30: 415–23PubMed Kemper EM, Boogerd W, Thuis I, et al. Modulation of the blood-brain barrier in oncology: therapeutic opportunities for the treatment of brain tumours? Cancer Treat Rev 2004; 30: 415–23PubMed
33.
Zurück zum Zitat Dukic SF, Kaltenbach ML, Heurtaux T, et al. Influence of C6 and CNS1 brain tumors on methotrexate pharmacokinetics in plasma and brain tissue. J Neurooncol 2004; 67: 131–8PubMed Dukic SF, Kaltenbach ML, Heurtaux T, et al. Influence of C6 and CNS1 brain tumors on methotrexate pharmacokinetics in plasma and brain tissue. J Neurooncol 2004; 67: 131–8PubMed
34.
Zurück zum Zitat Devineni D, Klein-Szanto A, Gallo JM. In vivo microdialysis to characterize drag transport in brain tumors: analysis of methotrexate uptake in rat glioma-2 (RG-2)-bearing rats. Cancer Chemother Pharmacol 1996; 38: 499–507PubMed Devineni D, Klein-Szanto A, Gallo JM. In vivo microdialysis to characterize drag transport in brain tumors: analysis of methotrexate uptake in rat glioma-2 (RG-2)-bearing rats. Cancer Chemother Pharmacol 1996; 38: 499–507PubMed
35.
Zurück zum Zitat Pardridge WM. Drag delivery to the brain. J Cereb Blood Flow Metab 1997; 17: 713–31PubMed Pardridge WM. Drag delivery to the brain. J Cereb Blood Flow Metab 1997; 17: 713–31PubMed
36.
Zurück zum Zitat Fischer H, Gottschlich R, Seelig A. Blood-brain barrier permeation: molecular parameters governing passive diffusion. J Membr Biol 1998; 165: 201–11PubMed Fischer H, Gottschlich R, Seelig A. Blood-brain barrier permeation: molecular parameters governing passive diffusion. J Membr Biol 1998; 165: 201–11PubMed
37.
Zurück zum Zitat Lipinski CA. Drag-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2000; 44: 235–49PubMed Lipinski CA. Drag-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2000; 44: 235–49PubMed
38.
Zurück zum Zitat Martin I. Prediction of blood-brain barrier penetration: are we missing the point? Drag Discov Today 2004; 9: 161–2 Martin I. Prediction of blood-brain barrier penetration: are we missing the point? Drag Discov Today 2004; 9: 161–2
39.
Zurück zum Zitat Kusuhara H, Sugiyama Y. Efflux transport systems for organic anions and cations at the blood-CSF barrier. Adv Drag Deliv Rev 2004; 56: 1741–63 Kusuhara H, Sugiyama Y. Efflux transport systems for organic anions and cations at the blood-CSF barrier. Adv Drag Deliv Rev 2004; 56: 1741–63
40.
Zurück zum Zitat Rao VV, Dahlheimer JL, Bardgett ME, et al. Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebros-pinal-fluid drug-permeability barrier. Proc Natl Acad Sci U S A 1999; 96: 3900–5PubMed Rao VV, Dahlheimer JL, Bardgett ME, et al. Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebros-pinal-fluid drug-permeability barrier. Proc Natl Acad Sci U S A 1999; 96: 3900–5PubMed
41.
Zurück zum Zitat Andersson U, Malmer B, Bergenheim AT, et al. Heterogeneity in the expression of markers for drag resistance in brain tumors. Clin Neuropathol 2004; 23: 21–7PubMed Andersson U, Malmer B, Bergenheim AT, et al. Heterogeneity in the expression of markers for drag resistance in brain tumors. Clin Neuropathol 2004; 23: 21–7PubMed
42.
Zurück zum Zitat Sawada T, Kato Y, Sakayori N, et al. Expression of the multidrug-resistance P-glycoprotein (Pgp, MDR-1) by endothelial cells of the neovasculature in central nervous system tumors. Brain Tumor Pathol 1999; 16: 23–7PubMed Sawada T, Kato Y, Sakayori N, et al. Expression of the multidrug-resistance P-glycoprotein (Pgp, MDR-1) by endothelial cells of the neovasculature in central nervous system tumors. Brain Tumor Pathol 1999; 16: 23–7PubMed
43.
Zurück zum Zitat Toth K, Vaughan MM, Peress NS, et al. MDR1 P-glycoprotein is expressed by endothelial cells of newly formed capillaries in human gliomas but is not expressed in the neovasculature of other primary tumors. Am J Pathol 1996; 149: 853–8PubMed Toth K, Vaughan MM, Peress NS, et al. MDR1 P-glycoprotein is expressed by endothelial cells of newly formed capillaries in human gliomas but is not expressed in the neovasculature of other primary tumors. Am J Pathol 1996; 149: 853–8PubMed
44.
Zurück zum Zitat Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002; 2: 48–58PubMed Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002; 2: 48–58PubMed
45.
Zurück zum Zitat Egorin MJ, Kaplan RS, Salcman M, et al. Cyclophosphamide plasma and cerebrospinal fluid kinetics with and without dimethyl sulfoxide. Clin Pharmacol Ther 1982; 32: 122–8PubMed Egorin MJ, Kaplan RS, Salcman M, et al. Cyclophosphamide plasma and cerebrospinal fluid kinetics with and without dimethyl sulfoxide. Clin Pharmacol Ther 1982; 32: 122–8PubMed
46.
Zurück zum Zitat Yule SM, Price L, Pearson AD, et al. Cyclophosphamide and ifosfamide metabolites in the cerebrospinal fluid of children. Clin Cancer Res 1997; 3: 1985–92PubMed Yule SM, Price L, Pearson AD, et al. Cyclophosphamide and ifosfamide metabolites in the cerebrospinal fluid of children. Clin Cancer Res 1997; 3: 1985–92PubMed
47.
Zurück zum Zitat Kaijser GP, De KJ, Bult A, et al. Pharmacokinetics of ifosfamide and some metabolites in children. Anticancer Res 1998; 18: 1941–9PubMed Kaijser GP, De KJ, Bult A, et al. Pharmacokinetics of ifosfamide and some metabolites in children. Anticancer Res 1998; 18: 1941–9PubMed
48.
Zurück zum Zitat Ninane J, Baurain R, De KJ, et al. Alkylating activity in serum, urine, and CSF following high-dose ifosfamide in children. Cancer Chemother Pharmacol 1989; 24 Suppl. 1: S2–6PubMed Ninane J, Baurain R, De KJ, et al. Alkylating activity in serum, urine, and CSF following high-dose ifosfamide in children. Cancer Chemother Pharmacol 1989; 24 Suppl. 1: S2–6PubMed
49.
Zurück zum Zitat Freeman AI, Wang JJ, Sinks LF. High-dose methotrexate in acute lymphocytic leukemia. Cancer Treat Rep 1977; 61: 727–31PubMed Freeman AI, Wang JJ, Sinks LF. High-dose methotrexate in acute lymphocytic leukemia. Cancer Treat Rep 1977; 61: 727–31PubMed
50.
Zurück zum Zitat Gilchrist NL, Caldwell J, Watson ID, et al. Comparison of serum and cerebrospinal fluid levels of methotrexate in man during high-dose chemotherapy for aggressive non-Hodgkin’s lymphoma. Cancer Chemother Pharmacol 1985; 15: 290–4PubMed Gilchrist NL, Caldwell J, Watson ID, et al. Comparison of serum and cerebrospinal fluid levels of methotrexate in man during high-dose chemotherapy for aggressive non-Hodgkin’s lymphoma. Cancer Chemother Pharmacol 1985; 15: 290–4PubMed
51.
Zurück zum Zitat Evans WE, Hutson PR, Stewart CF, et al. Methotrexate cerebrospinal fluid and serum concentrations after intermediatedose methotrexate infusion. Clin Pharmacol Ther 1983; 33: 301–7PubMed Evans WE, Hutson PR, Stewart CF, et al. Methotrexate cerebrospinal fluid and serum concentrations after intermediatedose methotrexate infusion. Clin Pharmacol Ther 1983; 33: 301–7PubMed
52.
Zurück zum Zitat Morse M, Savitch J, Balis F, et al. Altered central nervous system pharmacology of methotrexate in childhood leukemia: another sign of meningeal relapse. J Clin Oncol 1985; 3: 19–24PubMed Morse M, Savitch J, Balis F, et al. Altered central nervous system pharmacology of methotrexate in childhood leukemia: another sign of meningeal relapse. J Clin Oncol 1985; 3: 19–24PubMed
53.
Zurück zum Zitat Reid JM, Pendergrass TW, Krailo MD, et al. Plasma pharmacokinetics and cerebrospinal fluid concentrations of idarubicin and idarubicinol in pediatric leukemia patients: a Childrens Cancer Study Group report. Cancer Res 1990; 50: 6525–8PubMed Reid JM, Pendergrass TW, Krailo MD, et al. Plasma pharmacokinetics and cerebrospinal fluid concentrations of idarubicin and idarubicinol in pediatric leukemia patients: a Childrens Cancer Study Group report. Cancer Res 1990; 50: 6525–8PubMed
54.
Zurück zum Zitat Dreyer ZE, Kadota RP, Stewart CF, et al. Phase 2 study of idarubicin in pediatric brain tumors: Pediatric Oncology Group study POG 9237. Neuro-oncol 2003; 5: 261–7PubMed Dreyer ZE, Kadota RP, Stewart CF, et al. Phase 2 study of idarubicin in pediatric brain tumors: Pediatric Oncology Group study POG 9237. Neuro-oncol 2003; 5: 261–7PubMed
55.
Zurück zum Zitat von Holst H, Knochenhauer E, Blomgren H, et al. Uptake of adriamycin in tumour and surrounding brain tissue in patients with malignant gliomas. Acta Neurochir (Wien) 1990; 104: 13–6 von Holst H, Knochenhauer E, Blomgren H, et al. Uptake of adriamycin in tumour and surrounding brain tissue in patients with malignant gliomas. Acta Neurochir (Wien) 1990; 104: 13–6
56.
Zurück zum Zitat Baker SD, Heideman RL, Crom WR, et al. Cerebrospinal fluid pharmacokinetics and penetration of continuous infusion topotecan in children with central nervous system tumors. Cancer Chemother Pharmacol 1996; 37: 195–202PubMed Baker SD, Heideman RL, Crom WR, et al. Cerebrospinal fluid pharmacokinetics and penetration of continuous infusion topotecan in children with central nervous system tumors. Cancer Chemother Pharmacol 1996; 37: 195–202PubMed
57.
Zurück zum Zitat Stewart CF, Iacono LC, Chintagumpala M, et al. Results of a phase II upfront window of pharmacokinetically guided topotecan in high-risk medulloblastoma and supratentorial primitive neuroectodermal tumor. J Clin Oncol 2004; 22: 3357–65PubMed Stewart CF, Iacono LC, Chintagumpala M, et al. Results of a phase II upfront window of pharmacokinetically guided topotecan in high-risk medulloblastoma and supratentorial primitive neuroectodermal tumor. J Clin Oncol 2004; 22: 3357–65PubMed
58.
Zurück zum Zitat Ostermann S, Csajka C, Buclin T, et al. Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res 2004; 10: 3728–36PubMed Ostermann S, Csajka C, Buclin T, et al. Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res 2004; 10: 3728–36PubMed
59.
Zurück zum Zitat Jackson Jr DV, Sethi VS, Spurr CL, et al. Pharmacokinetics of vincristine in the cerebrospinal fluid of humans. Cancer Res 1981; 41: 1466–8PubMed Jackson Jr DV, Sethi VS, Spurr CL, et al. Pharmacokinetics of vincristine in the cerebrospinal fluid of humans. Cancer Res 1981; 41: 1466–8PubMed
60.
Zurück zum Zitat Kellie SJ, Barbaric D, Koopmans P, et al. Cerebrospinal fluid concentrations of vincristine after bolus intravenous dosing: a surrogate marker of brain penetration. Cancer 2002; 94: 1815–20PubMed Kellie SJ, Barbaric D, Koopmans P, et al. Cerebrospinal fluid concentrations of vincristine after bolus intravenous dosing: a surrogate marker of brain penetration. Cancer 2002; 94: 1815–20PubMed
61.
Zurück zum Zitat Pfeifer H, Wassmann B, Hofmann WK, et al. Risk and prognosis of central nervous system leukemia in patients with Philadelphia chromosome-positive acute leukemias treated with imatinib mesylate. Clin Cancer Res 2003; 9: 4674–81PubMed Pfeifer H, Wassmann B, Hofmann WK, et al. Risk and prognosis of central nervous system leukemia in patients with Philadelphia chromosome-positive acute leukemias treated with imatinib mesylate. Clin Cancer Res 2003; 9: 4674–81PubMed
62.
Zurück zum Zitat Leis JF, Stepan DE, Curtin PT, et al. Central nervous system failure in patients with chronic myelogenous leukemia lymphoid blast crisis and Philadelphia chromosome positive acute lymphoblastic leukemia treated with imatinib (STI-571). Leuk Lymphoma 2004; 45: 695–8PubMed Leis JF, Stepan DE, Curtin PT, et al. Central nervous system failure in patients with chronic myelogenous leukemia lymphoid blast crisis and Philadelphia chromosome positive acute lymphoblastic leukemia treated with imatinib (STI-571). Leuk Lymphoma 2004; 45: 695–8PubMed
63.
Zurück zum Zitat Arndt CA, Balis FM, McCully CL, et al. Cerebrospinal fluid penetration of active metabolites of cyclophosphamide and ifosfamide in rhesus monkeys. Cancer Res 1988; 48: 2113–5PubMed Arndt CA, Balis FM, McCully CL, et al. Cerebrospinal fluid penetration of active metabolites of cyclophosphamide and ifosfamide in rhesus monkeys. Cancer Res 1988; 48: 2113–5PubMed
64.
Zurück zum Zitat Creaven PJ, Allen LM, Alford DA, et al. Clinical pharmacology of isophosphamide. Clin Pharmacol Ther 1974; 16: 77–86PubMed Creaven PJ, Allen LM, Alford DA, et al. Clinical pharmacology of isophosphamide. Clin Pharmacol Ther 1974; 16: 77–86PubMed
65.
Zurück zum Zitat Genka S, Deutsch J, Stahle PL, et al. Brain and plasma pharmacokinetics and anticancer activities of cyclophosphamide and phosphoramide mustard in the rat. Cancer Chemother Pharmacol 1990; 27: 1–7PubMed Genka S, Deutsch J, Stahle PL, et al. Brain and plasma pharmacokinetics and anticancer activities of cyclophosphamide and phosphoramide mustard in the rat. Cancer Chemother Pharmacol 1990; 27: 1–7PubMed
66.
Zurück zum Zitat Neuwelt EA, Barnett PA, Frenkel EP. Chemotherapeutic agent permeability to normal brain and delivery to avian sarcoma virus-induced brain tumors in the rodent: observations on problems of drug delivery. Neurosurgery 1984; 14: 154–60PubMed Neuwelt EA, Barnett PA, Frenkel EP. Chemotherapeutic agent permeability to normal brain and delivery to avian sarcoma virus-induced brain tumors in the rodent: observations on problems of drug delivery. Neurosurgery 1984; 14: 154–60PubMed
67.
Zurück zum Zitat Arndt CA, Colvin OM, Balis FM, et al. Intrathecal administration of 4-hydroperoxycyclophosphamide in rhesus monkeys. Cancer Res 1987; 47: 5932–4PubMed Arndt CA, Colvin OM, Balis FM, et al. Intrathecal administration of 4-hydroperoxycyclophosphamide in rhesus monkeys. Cancer Res 1987; 47: 5932–4PubMed
68.
Zurück zum Zitat Nicolao P, Giometto B. Neurological toxicity of ifosfamide. Oncology 2003; 65 Suppl. 2: 11–6PubMed Nicolao P, Giometto B. Neurological toxicity of ifosfamide. Oncology 2003; 65 Suppl. 2: 11–6PubMed
69.
Zurück zum Zitat Chabner BA, Young RC. Threshold methotrexate concentration for in vivo inhibition of DNA synthesis in normal and tumorous target tissues. J Clin Invest 1973; 52: 1804–11PubMed Chabner BA, Young RC. Threshold methotrexate concentration for in vivo inhibition of DNA synthesis in normal and tumorous target tissues. J Clin Invest 1973; 52: 1804–11PubMed
70.
Zurück zum Zitat Wang F, Jiang X, Lu W. Profiles of methotrexate in blood and CSF following intranasal and intravenous administration to rats. Int J Pharm 2003; 263: 1–7PubMed Wang F, Jiang X, Lu W. Profiles of methotrexate in blood and CSF following intranasal and intravenous administration to rats. Int J Pharm 2003; 263: 1–7PubMed
71.
Zurück zum Zitat Neuwelt EA, Barnett PA, Bigner DD, et al. Effects of adrenal cortical steroids and osmotic blood-brain barrier opening on methotrexate delivery to gliomas in the rodent: the factor of the blood-brain barrier. Proc Natl Acad Sci U S A 1982; 79: 4420–3PubMed Neuwelt EA, Barnett PA, Bigner DD, et al. Effects of adrenal cortical steroids and osmotic blood-brain barrier opening on methotrexate delivery to gliomas in the rodent: the factor of the blood-brain barrier. Proc Natl Acad Sci U S A 1982; 79: 4420–3PubMed
72.
Zurück zum Zitat Dukic SF, Heurtaux T, Kaltenbach ML, et al. Influence of schedule of administration on methotrexate penetration in brain tumours. Eur J Cancer 2000; 36: 1578–84PubMed Dukic SF, Heurtaux T, Kaltenbach ML, et al. Influence of schedule of administration on methotrexate penetration in brain tumours. Eur J Cancer 2000; 36: 1578–84PubMed
73.
Zurück zum Zitat Ramu A, Fusner JE, Blaschke T, et al. Probenecid inhibition of methotrexate-cerebrospinal fluid pharmacokinetics in dogs. Cancer Treat Rep 1978; 62: 1465–70PubMed Ramu A, Fusner JE, Blaschke T, et al. Probenecid inhibition of methotrexate-cerebrospinal fluid pharmacokinetics in dogs. Cancer Treat Rep 1978; 62: 1465–70PubMed
74.
Zurück zum Zitat Poplack DG, Bleyer WA, Wood JH, et al. A primate model for study of methotrexate pharmacokinetics in the central nervous system. Cancer Res 1977; 37: 1982–5PubMed Poplack DG, Bleyer WA, Wood JH, et al. A primate model for study of methotrexate pharmacokinetics in the central nervous system. Cancer Res 1977; 37: 1982–5PubMed
75.
Zurück zum Zitat Shapiro WR, Young DF, Mehta BM. Methotrexate: distribution in cerebrospinal fluid after intravenous, ventricular and lumbar injections. N Engl J Med 1975; 293: 161–6PubMed Shapiro WR, Young DF, Mehta BM. Methotrexate: distribution in cerebrospinal fluid after intravenous, ventricular and lumbar injections. N Engl J Med 1975; 293: 161–6PubMed
76.
Zurück zum Zitat Stephens RL, Williamson SK, Jackson WL. Methotrexate cerebrospinal fluid pharmacokinetics in a patient with lymphoma treated with methotrexate, bleomycin, doxorubicin, cyclophosphamide, vincristine, and dexamethasone. Am J Med 1986; 81: 718–20PubMed Stephens RL, Williamson SK, Jackson WL. Methotrexate cerebrospinal fluid pharmacokinetics in a patient with lymphoma treated with methotrexate, bleomycin, doxorubicin, cyclophosphamide, vincristine, and dexamethasone. Am J Med 1986; 81: 718–20PubMed
77.
Zurück zum Zitat Tejada F, Zubrod CG. Vincristine effect on methotrexate cerebrospinal fluid concentration. Cancer Treat Rep 1979; 63: 143–5PubMed Tejada F, Zubrod CG. Vincristine effect on methotrexate cerebrospinal fluid concentration. Cancer Treat Rep 1979; 63: 143–5PubMed
78.
Zurück zum Zitat Bode U, Magrath IT, Bleyer WA, et al. Active transport of methotrexate from cerebrospinal fluid in humans. Cancer Res 1980; 40: 2184–7PubMed Bode U, Magrath IT, Bleyer WA, et al. Active transport of methotrexate from cerebrospinal fluid in humans. Cancer Res 1980; 40: 2184–7PubMed
79.
Zurück zum Zitat Tubiana N, Lena N, Barbet J, et al. Methotrexate-vindesine association in leukemia: pharmacokinetic study. Med Oncol Tumor Pharmacother 1985; 2: 99–102PubMed Tubiana N, Lena N, Barbet J, et al. Methotrexate-vindesine association in leukemia: pharmacokinetic study. Med Oncol Tumor Pharmacother 1985; 2: 99–102PubMed
80.
Zurück zum Zitat Steiniger SC, Kreuter J, Khalansky AS, et al. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 2004; 109: 759–67PubMed Steiniger SC, Kreuter J, Khalansky AS, et al. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 2004; 109: 759–67PubMed
81.
Zurück zum Zitat Ohnishi T, Tamai I, Sakanaka K, et al. In vivo and in vitro evidence for ATP-dependency of P-glycoprotein-mediated efflux of doxorubicin at the blood-brain barrier. Biochem Pharmacol 1995; 49: 1541–4PubMed Ohnishi T, Tamai I, Sakanaka K, et al. In vivo and in vitro evidence for ATP-dependency of P-glycoprotein-mediated efflux of doxorubicin at the blood-brain barrier. Biochem Pharmacol 1995; 49: 1541–4PubMed
82.
Zurück zum Zitat Berg SL, Reid J, Godwin K, et al. Pharmacokinetics and cerebrospinal fluid penetration of daunorubicin, idarubicin, and their metabolites in the nonhuman primate model. J Pediatr Hematol Oncol 1999; 21: 26–30PubMed Berg SL, Reid J, Godwin K, et al. Pharmacokinetics and cerebrospinal fluid penetration of daunorubicin, idarubicin, and their metabolites in the nonhuman primate model. J Pediatr Hematol Oncol 1999; 21: 26–30PubMed
83.
Zurück zum Zitat Bigotte L, Olsson Y. Distribution and toxic effects of intravenously injected epirubicin on the central nervous system of the mouse. Brain 1989; 112(Pt 2): 457–69PubMed Bigotte L, Olsson Y. Distribution and toxic effects of intravenously injected epirubicin on the central nervous system of the mouse. Brain 1989; 112(Pt 2): 457–69PubMed
84.
Zurück zum Zitat Warren KE, Patel MC, McCully CM, et al. Effect of P-glycoprotein modulation with cyclosporin A on cerebrospinal fluid penetration of doxorubicin in non-human primates. Cancer Chemother Pharmacol 2000; 45: 207–12PubMed Warren KE, Patel MC, McCully CM, et al. Effect of P-glycoprotein modulation with cyclosporin A on cerebrospinal fluid penetration of doxorubicin in non-human primates. Cancer Chemother Pharmacol 2000; 45: 207–12PubMed
85.
Zurück zum Zitat Siegal T, Horowitz A, Gabizon A. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J Neurosurg 1995; 83: 1029–37PubMed Siegal T, Horowitz A, Gabizon A. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J Neurosurg 1995; 83: 1029–37PubMed
86.
Zurück zum Zitat Fundaro A, Cavalli R, Bargoni A, et al. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.V. administration to rats. Pharmacol Res 2000; 42: 337–43PubMed Fundaro A, Cavalli R, Bargoni A, et al. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.V. administration to rats. Pharmacol Res 2000; 42: 337–43PubMed
87.
Zurück zum Zitat Primeau AJ, Rendon A, Hedley D, et al. The distribution of the anticancer drug doxorubicin in relation to blood vessels in solid tumors. Clin Cancer Res 2005; 11: 8782–8PubMed Primeau AJ, Rendon A, Hedley D, et al. The distribution of the anticancer drug doxorubicin in relation to blood vessels in solid tumors. Clin Cancer Res 2005; 11: 8782–8PubMed
88.
Zurück zum Zitat Morikawa N, Takeyama M, Mori T, et al. Pharmacokinetics of pirarubicin in plasma and cerebrospinal fluid. Ann Pharmacother 1998; 32: 269PubMed Morikawa N, Takeyama M, Mori T, et al. Pharmacokinetics of pirarubicin in plasma and cerebrospinal fluid. Ann Pharmacother 1998; 32: 269PubMed
89.
Zurück zum Zitat Koukourakis MI, Koukouraki S, Fezoulidis I, et al. High intratumoural accumulation of stealth liposomal doxorubicin (Caelyx) in glioblastomas and in metastatic brain tumours. Br J Cancer 2000; 83: 1281–6PubMed Koukourakis MI, Koukouraki S, Fezoulidis I, et al. High intratumoural accumulation of stealth liposomal doxorubicin (Caelyx) in glioblastomas and in metastatic brain tumours. Br J Cancer 2000; 83: 1281–6PubMed
90.
Zurück zum Zitat Zucchetti M, Boiardi A, Silvani A, et al. Distribution of daunorubicin and daunorubicinol in human glioma tumors after administration of liposomal daunorubicin. Cancer Chemother Pharmacol 1999; 44: 173–6PubMed Zucchetti M, Boiardi A, Silvani A, et al. Distribution of daunorubicin and daunorubicinol in human glioma tumors after administration of liposomal daunorubicin. Cancer Chemother Pharmacol 1999; 44: 173–6PubMed
91.
Zurück zum Zitat El-Gizawy SA, Hedaya MA. Comparative brain tissue distribution of camptothecin and topotecan in the rat. Cancer Chemother Pharmacol 1999; 43: 364–70PubMed El-Gizawy SA, Hedaya MA. Comparative brain tissue distribution of camptothecin and topotecan in the rat. Cancer Chemother Pharmacol 1999; 43: 364–70PubMed
92.
Zurück zum Zitat Straathof CS, van den Bent MJ, Loos WJ, et al. The accumulation of topotecan in 9L glioma and in brain parenchyma with and without dexamethasone administration. J Neurooncol 1999; 42: 117–22PubMed Straathof CS, van den Bent MJ, Loos WJ, et al. The accumulation of topotecan in 9L glioma and in brain parenchyma with and without dexamethasone administration. J Neurooncol 1999; 42: 117–22PubMed
93.
Zurück zum Zitat Blaney SM, Cole DE, Balis FM, et al. Plasma and cerebrospinal fluid pharmacokinetic study of topotecan in nonhuman primates. Cancer Res 1993; 53: 725–7PubMed Blaney SM, Cole DE, Balis FM, et al. Plasma and cerebrospinal fluid pharmacokinetic study of topotecan in nonhuman primates. Cancer Res 1993; 53: 725–7PubMed
94.
Zurück zum Zitat Sung C, Blaney SM, Cole DE, et al. A pharmacokinetic model of topotecan clearance from plasma and cerebrospinal fluid. Cancer Res 1994; 54: 5118–22PubMed Sung C, Blaney SM, Cole DE, et al. A pharmacokinetic model of topotecan clearance from plasma and cerebrospinal fluid. Cancer Res 1994; 54: 5118–22PubMed
95.
Zurück zum Zitat Zamboni WC, Gajjar AJ, Mandrell TD, et al. A four-hour topotecan infusion achieves cytotoxic exposure throughout the neuraxis in the nonhuman primate model: implications for treatment of children with metastatic medulloblastoma. Clin Cancer Res 1998; 4: 2537–44PubMed Zamboni WC, Gajjar AJ, Mandrell TD, et al. A four-hour topotecan infusion achieves cytotoxic exposure throughout the neuraxis in the nonhuman primate model: implications for treatment of children with metastatic medulloblastoma. Clin Cancer Res 1998; 4: 2537–44PubMed
96.
Zurück zum Zitat Leggas M, Adachi M, Scheffer GL, et al. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol Cell Biol 2004; 24: 7612–21PubMed Leggas M, Adachi M, Scheffer GL, et al. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol Cell Biol 2004; 24: 7612–21PubMed
97.
Zurück zum Zitat Blaney SM, Takimoto C, Murry DJ, et al. Plasma and cerebrospinal fluid pharmacokinetics of 9-aminocamptothecin (9-AC), irinotecan (CPT-11), and SN-38 in nonhuman primates. Cancer Chemother Pharmacol 1998; 41: 464–8PubMed Blaney SM, Takimoto C, Murry DJ, et al. Plasma and cerebrospinal fluid pharmacokinetics of 9-aminocamptothecin (9-AC), irinotecan (CPT-11), and SN-38 in nonhuman primates. Cancer Chemother Pharmacol 1998; 41: 464–8PubMed
98.
Zurück zum Zitat Stewart CF, Gajjar AJ, Heideman RL, et al. Penetration of topotecan into cerebrospinal fluid after intravenous injection. Ontologie 1998; 21: 22–4 Stewart CF, Gajjar AJ, Heideman RL, et al. Penetration of topotecan into cerebrospinal fluid after intravenous injection. Ontologie 1998; 21: 22–4
99.
Zurück zum Zitat Zamboni WC, Luftner DI, Egorin MJ, et al. The effect of increasing topotecan infusion from 30 minutes to 4 hours on the duration of exposure in cerebrospinal fluid. Ann Oncol 2001; 12: 119–22PubMed Zamboni WC, Luftner DI, Egorin MJ, et al. The effect of increasing topotecan infusion from 30 minutes to 4 hours on the duration of exposure in cerebrospinal fluid. Ann Oncol 2001; 12: 119–22PubMed
100.
Zurück zum Zitat Broniscer A, Chintagumpala M, Fouladi M, et al. Temozolomide after radiotherapy for newly diagnosed high-grade glioma and unfavorable low-grade glioma in children. J. Neurooncol 2005; 76(3): 313–9 Broniscer A, Chintagumpala M, Fouladi M, et al. Temozolomide after radiotherapy for newly diagnosed high-grade glioma and unfavorable low-grade glioma in children. J. Neurooncol 2005; 76(3): 313–9
101.
Zurück zum Zitat Friedman HS, Petros WP, Friedman AH, et al. Irinotecan therapy in adults with recurrent or progressive malignant glioma. J Clin Oncol 1999; 17: 1516–25PubMed Friedman HS, Petros WP, Friedman AH, et al. Irinotecan therapy in adults with recurrent or progressive malignant glioma. J Clin Oncol 1999; 17: 1516–25PubMed
102.
Zurück zum Zitat Patel M, McCully C, Godwin K, et al. Plasma and cerebrospinal fluid pharmacokinetics of intravenous temozolomide in non-human primates. J Neurooncol 2003; 61: 203–7PubMed Patel M, McCully C, Godwin K, et al. Plasma and cerebrospinal fluid pharmacokinetics of intravenous temozolomide in non-human primates. J Neurooncol 2003; 61: 203–7PubMed
103.
Zurück zum Zitat Reyderman L, Statkevich P, Thonoor CM, et al. Disposition and pharmacokinetics of temozolomide in rat. Xenobiotica 2004; 34: 487–500PubMed Reyderman L, Statkevich P, Thonoor CM, et al. Disposition and pharmacokinetics of temozolomide in rat. Xenobiotica 2004; 34: 487–500PubMed
104.
Zurück zum Zitat Agarwala SS, Kirkwood JM, Gore M, et al. Temozolomide for the treatment of brain metastases associated with metastatic melanoma: a phase II study. J Clin Oncol 2004; 22: 2101–7PubMed Agarwala SS, Kirkwood JM, Gore M, et al. Temozolomide for the treatment of brain metastases associated with metastatic melanoma: a phase II study. J Clin Oncol 2004; 22: 2101–7PubMed
105.
Zurück zum Zitat Christodoulou C, Bafaloukos D, Linardou H, et al. Temozolomide (TMZ) combined with cisplatin (CDDP) in patients with brain metastases from solid tumors: a Hellenic Cooperative Oncology Group (HeCOG) Phase II study. J Neurooncol 2005; 71: 61–5PubMed Christodoulou C, Bafaloukos D, Linardou H, et al. Temozolomide (TMZ) combined with cisplatin (CDDP) in patients with brain metastases from solid tumors: a Hellenic Cooperative Oncology Group (HeCOG) Phase II study. J Neurooncol 2005; 71: 61–5PubMed
106.
Zurück zum Zitat Rutkowski S, Bode U, Deinlein F, et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med 2005; 352: 978–86PubMed Rutkowski S, Bode U, Deinlein F, et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med 2005; 352: 978–86PubMed
107.
Zurück zum Zitat Jackson Jr DV, Castle MC, Poplack DG, et al. Pharmacokinetics of vincristine in the cerebrospinal fluid of subhuman primates. Cancer Res 1980; 40: 722–4PubMed Jackson Jr DV, Castle MC, Poplack DG, et al. Pharmacokinetics of vincristine in the cerebrospinal fluid of subhuman primates. Cancer Res 1980; 40: 722–4PubMed
108.
Zurück zum Zitat Greig NH, Soncrant TT, Shetty HU, et al. Brain uptake and anticancer activities of vincristine and vinblastine are restricted by their low cerebrovascular permeability and binding to plasma constituents in rat. Cancer Chemother Pharmacol 1990; 26: 263–8PubMed Greig NH, Soncrant TT, Shetty HU, et al. Brain uptake and anticancer activities of vincristine and vinblastine are restricted by their low cerebrovascular permeability and binding to plasma constituents in rat. Cancer Chemother Pharmacol 1990; 26: 263–8PubMed
109.
Zurück zum Zitat Cisternino S, Rousselle C, Debray M, et al. In vivo saturation of the transport of vinblastine and colchicine by P-glycoprotein at the rat blood-brain barrier. Pharm Res 2003; 20: 1607–11PubMed Cisternino S, Rousselle C, Debray M, et al. In vivo saturation of the transport of vinblastine and colchicine by P-glycoprotein at the rat blood-brain barrier. Pharm Res 2003; 20: 1607–11PubMed
110.
Zurück zum Zitat Arboix M, Paz OG, Colombo T, et al. Multidrug resistance-reversing agents increase vinblastine distribution in normal tissues expressing the P-glycoprotein but do not enhance drug penetration in brain and testis. J Pharmacol Exp Ther 1997; 281: 1226–30PubMed Arboix M, Paz OG, Colombo T, et al. Multidrug resistance-reversing agents increase vinblastine distribution in normal tissues expressing the P-glycoprotein but do not enhance drug penetration in brain and testis. J Pharmacol Exp Ther 1997; 281: 1226–30PubMed
111.
Zurück zum Zitat Castle MC, Margileth DA, Oliverio VT. Distribution and excretion of (3H)vincristine in the rat and the dog. Cancer Res 1976; 36: 3684–9PubMed Castle MC, Margileth DA, Oliverio VT. Distribution and excretion of (3H)vincristine in the rat and the dog. Cancer Res 1976; 36: 3684–9PubMed
112.
Zurück zum Zitat el Dareer SM, White VM, Chen FP, et al. Distribution and metabolism of vincristine in mice, rats, dogs, and monkeys. Cancer Treat Rep 1977; 61: 1269–77PubMed el Dareer SM, White VM, Chen FP, et al. Distribution and metabolism of vincristine in mice, rats, dogs, and monkeys. Cancer Treat Rep 1977; 61: 1269–77PubMed
113.
Zurück zum Zitat Mitsunaga Y, Takanaga H, Matsuo H, et al. Effect of bioflavonoids on vincristine transport across blood-brain barrier. Eur J Pharmacol 2000; 395: 193–201PubMed Mitsunaga Y, Takanaga H, Matsuo H, et al. Effect of bioflavonoids on vincristine transport across blood-brain barrier. Eur J Pharmacol 2000; 395: 193–201PubMed
114.
Zurück zum Zitat Boyle FM, Eller SL, Grossman SA. Penetration of intra-arterially administered vincristine in experimental brain tumor. Neuro-oncol 2004; 6: 300–5PubMed Boyle FM, Eller SL, Grossman SA. Penetration of intra-arterially administered vincristine in experimental brain tumor. Neuro-oncol 2004; 6: 300–5PubMed
115.
Zurück zum Zitat Stewart DJ, Lu K, Benjamin RS, et al. Concentration of vinblastine in human intracerebral tumor and other tissues. J Neurooncol 1983; 1: 139–44PubMed Stewart DJ, Lu K, Benjamin RS, et al. Concentration of vinblastine in human intracerebral tumor and other tissues. J Neurooncol 1983; 1: 139–44PubMed
116.
Zurück zum Zitat Marcucci G, Perrotti D, Caligiuri MA. Understanding the molecular basis of imatinib mesylate therapy in chronic myelogenous leukemia and the related mechanisms of resistance. Commentaryre: A. N. Mohamed, et al: the effect of imatinib mesylate on patients with Philadelphia chromosome-positive chronic myeloid leukemia with secondary chromosomal aberrations. Clin Cancer Res 9: 1333–1337, 2003. Clin Cancer Res 2003; 9: 1248–52 Marcucci G, Perrotti D, Caligiuri MA. Understanding the molecular basis of imatinib mesylate therapy in chronic myelogenous leukemia and the related mechanisms of resistance. Commentaryre: A. N. Mohamed, et al: the effect of imatinib mesylate on patients with Philadelphia chromosome-positive chronic myeloid leukemia with secondary chromosomal aberrations. Clin Cancer Res 9: 1333–1337, 2003. Clin Cancer Res 2003; 9: 1248–52
117.
Zurück zum Zitat Wolff NC, Richardson JA, Egorin M, et al. The CNS is a sanctuary for leukemic cells in mice receiving imatinib mesylate for Bcr/Abl-induced leukemia. Blood 2003; 101: 5010–3PubMed Wolff NC, Richardson JA, Egorin M, et al. The CNS is a sanctuary for leukemic cells in mice receiving imatinib mesylate for Bcr/Abl-induced leukemia. Blood 2003; 101: 5010–3PubMed
118.
Zurück zum Zitat Neville K, Parise RA, Thompson P, et al. Plasma and cerebrospinal fluid pharmacokinetics of imatinib after administration to nonhuman primates. Clin Cancer Res 2004; 10: 2525–9PubMed Neville K, Parise RA, Thompson P, et al. Plasma and cerebrospinal fluid pharmacokinetics of imatinib after administration to nonhuman primates. Clin Cancer Res 2004; 10: 2525–9PubMed
119.
Zurück zum Zitat Dai H, Marbach P, Lemaire M, et al. Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J Pharmacol Exp Ther 2003; 304: 1085–92PubMed Dai H, Marbach P, Lemaire M, et al. Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J Pharmacol Exp Ther 2003; 304: 1085–92PubMed
120.
Zurück zum Zitat Petzer AL, Gunsilius E, Hayes M, et al. Low concentrations of STI571 in the cerebrospinal fluid: a case report. Br J Haematol 2002; 117: 623–5PubMed Petzer AL, Gunsilius E, Hayes M, et al. Low concentrations of STI571 in the cerebrospinal fluid: a case report. Br J Haematol 2002; 117: 623–5PubMed
121.
Zurück zum Zitat Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–7PubMed Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–7PubMed
122.
Zurück zum Zitat Takayama N, Sato N, O’Brien SG, et al. Imatinib mesylate has limited activity against the central nervous system involvement of Philadelphia chromosome-positive acute lymphoblastic leukaemia due to poor penetration into cerebrospinal fluid. Br J Haematol 2002; 119: 106–8PubMed Takayama N, Sato N, O’Brien SG, et al. Imatinib mesylate has limited activity against the central nervous system involvement of Philadelphia chromosome-positive acute lymphoblastic leukaemia due to poor penetration into cerebrospinal fluid. Br J Haematol 2002; 119: 106–8PubMed
123.
Zurück zum Zitat Bornhauser M, Jenke A, Freiberg-Richter J, et al. CNS blast crisis of chronic myelogenous leukemia in a patient with a major cytogenetic response in bone marrow associated with low levels of imatinib mesylate and its N-desmethylated metabolite in cerebral spinal fluid. Ann Hematol 2004; 83: 401–2PubMed Bornhauser M, Jenke A, Freiberg-Richter J, et al. CNS blast crisis of chronic myelogenous leukemia in a patient with a major cytogenetic response in bone marrow associated with low levels of imatinib mesylate and its N-desmethylated metabolite in cerebral spinal fluid. Ann Hematol 2004; 83: 401–2PubMed
124.
Zurück zum Zitat le Coutre P, Kreuzer KA, Pursche S, et al. Pharmacokinetics and cellular uptake of imatinib and its main metabolite CGP74588. Cancer Chemother Pharmacol 2004; 53: 313–23PubMed le Coutre P, Kreuzer KA, Pursche S, et al. Pharmacokinetics and cellular uptake of imatinib and its main metabolite CGP74588. Cancer Chemother Pharmacol 2004; 53: 313–23PubMed
125.
Zurück zum Zitat Strong JM, Collins JM, Lester C, et al. Pharmacokinetics of intraventricular and intravenous N,N′,N′’-triethylenethiophosphoramide (thiotepa) in rhesus monkeys and humans. Cancer Res 1986; 46: 6101–4PubMed Strong JM, Collins JM, Lester C, et al. Pharmacokinetics of intraventricular and intravenous N,N′,N′’-triethylenethiophosphoramide (thiotepa) in rhesus monkeys and humans. Cancer Res 1986; 46: 6101–4PubMed
126.
Zurück zum Zitat Heideman RL, Cole DE, Balis F, et al. Phase I and pharmacokinetic evaluation of thiotepa in the cerebrospinal fluid and plasma of pediatric patients: evidence for dose-dependent plasma clearance of thiotepa. Cancer Res 1989; 49: 736–41PubMed Heideman RL, Cole DE, Balis F, et al. Phase I and pharmacokinetic evaluation of thiotepa in the cerebrospinal fluid and plasma of pediatric patients: evidence for dose-dependent plasma clearance of thiotepa. Cancer Res 1989; 49: 736–41PubMed
127.
Zurück zum Zitat Hassan M, Ehrsson H, Smedmyr B, et al. Cerebrospinal fluid and plasma concentrations of busulfan during high-dose therapy. Bone Marrow Transplant 1989; 4: 113–4PubMed Hassan M, Ehrsson H, Smedmyr B, et al. Cerebrospinal fluid and plasma concentrations of busulfan during high-dose therapy. Bone Marrow Transplant 1989; 4: 113–4PubMed
128.
Zurück zum Zitat Lopez JA, Nassif E, Vannicola P, et al. Central nervous system pharmacokinetics of high-dose cytosine arabinoside. J Neurooncol 1985; 3: 119–24PubMed Lopez JA, Nassif E, Vannicola P, et al. Central nervous system pharmacokinetics of high-dose cytosine arabinoside. J Neurooncol 1985; 3: 119–24PubMed
129.
Zurück zum Zitat Zimm S, Collins JM, Miser J, et al. Cytosine arabinoside cerebrospinal fluid kinetics. Clin Pharmacol Ther 1984; 35: 826–30PubMed Zimm S, Collins JM, Miser J, et al. Cytosine arabinoside cerebrospinal fluid kinetics. Clin Pharmacol Ther 1984; 35: 826–30PubMed
130.
Zurück zum Zitat van Prooijen HC, Punt K, Muus P. Cerebrospinal fluid concentrations of cytosine arabinoside during intravenous therapy with intermediate dose: a preliminary report. Br J Haematol 1985; 59: 188–90PubMed van Prooijen HC, Punt K, Muus P. Cerebrospinal fluid concentrations of cytosine arabinoside during intravenous therapy with intermediate dose: a preliminary report. Br J Haematol 1985; 59: 188–90PubMed
131.
Zurück zum Zitat Lopez JA, Beardsley GP, Krikorian JG, et al. Cerebrospinal fluid and plasma pharmacokinetics of high doses of 1-beta-Darabinofuranosylcytosine in nonhuman primates. Cancer Res 1983; 43: 5190–3PubMed Lopez JA, Beardsley GP, Krikorian JG, et al. Cerebrospinal fluid and plasma pharmacokinetics of high doses of 1-beta-Darabinofuranosylcytosine in nonhuman primates. Cancer Res 1983; 43: 5190–3PubMed
132.
Zurück zum Zitat Brunner V, Houyau P, Chatelut E, et al. Cerebrospinal fluid concentrations of carboplatin in a patient without blood-brain barrier disruption. Cancer Chemother Pharmacol 1995; 35: 352–3PubMed Brunner V, Houyau P, Chatelut E, et al. Cerebrospinal fluid concentrations of carboplatin in a patient without blood-brain barrier disruption. Cancer Chemother Pharmacol 1995; 35: 352–3PubMed
133.
Zurück zum Zitat Hande KR, Wedlund PJ, Noone RM, et al. Pharmacokinetics of high-dose etoposide (VP-16-213) administered to cancer patients. Cancer Res 1984; 44: 379–82PubMed Hande KR, Wedlund PJ, Noone RM, et al. Pharmacokinetics of high-dose etoposide (VP-16-213) administered to cancer patients. Cancer Res 1984; 44: 379–82PubMed
134.
Zurück zum Zitat Fleischhack G, Jaehde U, Bode U. Pharmacokinetics following intraventricular administration of chemotherapy in patients with neoplastic meningitis. Clin Pharmacokinet 2005; 44: 1–31PubMed Fleischhack G, Jaehde U, Bode U. Pharmacokinetics following intraventricular administration of chemotherapy in patients with neoplastic meningitis. Clin Pharmacokinet 2005; 44: 1–31PubMed
135.
Zurück zum Zitat Chamberlain MC. Neoplastic meningitis. J Clin Oncol 2005; 23: 3605–13PubMed Chamberlain MC. Neoplastic meningitis. J Clin Oncol 2005; 23: 3605–13PubMed
136.
Zurück zum Zitat Prados MD, Schold Jr SC, Fine HA, et al. A randomized, double-blind, placebo-controlled, phase 2 study of RMP-7 in combination with carboplatin administered intravenously for the treatment of recurrent malignant glioma. Neuro-oncol 2003; 5: 96–103PubMed Prados MD, Schold Jr SC, Fine HA, et al. A randomized, double-blind, placebo-controlled, phase 2 study of RMP-7 in combination with carboplatin administered intravenously for the treatment of recurrent malignant glioma. Neuro-oncol 2003; 5: 96–103PubMed
137.
Zurück zum Zitat Kemper EM, Verheij M, Boogerd W, et al. Improved penetration of docetaxel into the brain by co-administration of inhibitors of P-glycoprotein. Eur J Cancer 2004; 40: 1269–74PubMed Kemper EM, Verheij M, Boogerd W, et al. Improved penetration of docetaxel into the brain by co-administration of inhibitors of P-glycoprotein. Eur J Cancer 2004; 40: 1269–74PubMed
138.
Zurück zum Zitat Holzmayer TA, Hilsenbeck S, Von Hoff DD, et al. Clinical correlates of MDR1 (P-glycoprotein) gene expression in ovarian and small-cell lung carcinomas. J Natl Cancer Inst 1992; 84: 1486–91PubMed Holzmayer TA, Hilsenbeck S, Von Hoff DD, et al. Clinical correlates of MDR1 (P-glycoprotein) gene expression in ovarian and small-cell lung carcinomas. J Natl Cancer Inst 1992; 84: 1486–91PubMed
139.
Zurück zum Zitat Hsia TC, Lin CC, Wang JJ, et al. Relationship between chemotherapy response of small cell lung cancer and P-glycoprotein or multidrug resistance-related protein expression. Lung 2002; 180: 173–9PubMed Hsia TC, Lin CC, Wang JJ, et al. Relationship between chemotherapy response of small cell lung cancer and P-glycoprotein or multidrug resistance-related protein expression. Lung 2002; 180: 173–9PubMed
140.
Zurück zum Zitat Wood P, Burgess R, MacGregor A, et al. P-glycoprotein expression on acute myeloid leukaemia blast cells at diagnosis predicts response to chemotherapy and survival. Br J Haematol 1994; 87: 509–14PubMed Wood P, Burgess R, MacGregor A, et al. P-glycoprotein expression on acute myeloid leukaemia blast cells at diagnosis predicts response to chemotherapy and survival. Br J Haematol 1994; 87: 509–14PubMed
141.
Zurück zum Zitat Tan B, Piwnica-Worms D, Ratner L. Multidrug resistance transporters and modulation. Curr Opin Oncol 2000; 12: 450–8PubMed Tan B, Piwnica-Worms D, Ratner L. Multidrug resistance transporters and modulation. Curr Opin Oncol 2000; 12: 450–8PubMed
142.
Zurück zum Zitat Ferry DR, Traunecker H, Kerr DJ. Clinical trials of P-glycoprotein reversal in solid tumours. Eur J Cancer 1996; 32A: 1070–81PubMed Ferry DR, Traunecker H, Kerr DJ. Clinical trials of P-glycoprotein reversal in solid tumours. Eur J Cancer 1996; 32A: 1070–81PubMed
143.
Zurück zum Zitat Liscovitch M, Lavie Y. Cancer multidrug resistance: a review of recent drug discovery research. IDrugs 2002; 5: 349–55PubMed Liscovitch M, Lavie Y. Cancer multidrug resistance: a review of recent drug discovery research. IDrugs 2002; 5: 349–55PubMed
144.
Zurück zum Zitat Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 2000; 11: 265–83PubMed Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 2000; 11: 265–83PubMed
145.
Zurück zum Zitat Zhang S, Wang X, Sagawa K, et al. Flavonoids chrysin and benzoflavone, potent breast cancer resistance protein inhibitors, have no significant effect on topotecan pharmacokinetics in rats or mdr1a/1b (-/-) mice. Drug Metab Dispos 2005; 33: 341–8PubMed Zhang S, Wang X, Sagawa K, et al. Flavonoids chrysin and benzoflavone, potent breast cancer resistance protein inhibitors, have no significant effect on topotecan pharmacokinetics in rats or mdr1a/1b (-/-) mice. Drug Metab Dispos 2005; 33: 341–8PubMed
146.
Zurück zum Zitat Planting AS, Sonneveld P, et al. A phase I and pharmacologic study of the MDR converter GF120918 in combination with doxorubicin in patients with advanced solid tumors. Cancer Chemother Pharmacol 2005; 55: 91–9PubMed Planting AS, Sonneveld P, et al. A phase I and pharmacologic study of the MDR converter GF120918 in combination with doxorubicin in patients with advanced solid tumors. Cancer Chemother Pharmacol 2005; 55: 91–9PubMed
147.
Zurück zum Zitat Malingre MM, Beijnen JH, Rosing H, et al. Co-administration of GF120918 significantly increases the systemic exposure to oral paclitaxel in cancer patients. Br J Cancer 2001; 84: 42–7PubMed Malingre MM, Beijnen JH, Rosing H, et al. Co-administration of GF120918 significantly increases the systemic exposure to oral paclitaxel in cancer patients. Br J Cancer 2001; 84: 42–7PubMed
148.
Zurück zum Zitat Sandler A, Gordon M, de Alwis DP, et al. A Phase I trial of a potent P-glycoprotein inhibitor, zosuquidar trihydrochloride (LY335979), administered intravenously in combination with doxorubicin in patients with advanced malignancy. Clin Cancer Res 2004; 10: 3265–72PubMed Sandler A, Gordon M, de Alwis DP, et al. A Phase I trial of a potent P-glycoprotein inhibitor, zosuquidar trihydrochloride (LY335979), administered intravenously in combination with doxorubicin in patients with advanced malignancy. Clin Cancer Res 2004; 10: 3265–72PubMed
149.
Zurück zum Zitat Le LH, Moore MJ, Siu LL, et al. Phase I study of the multidrug resistance inhibitor zosuquidar administered in combination with vinorelbine in patients with advanced solid tumours. Cancer Chemother Pharmacol 2005; 56: 154–60PubMed Le LH, Moore MJ, Siu LL, et al. Phase I study of the multidrug resistance inhibitor zosuquidar administered in combination with vinorelbine in patients with advanced solid tumours. Cancer Chemother Pharmacol 2005; 56: 154–60PubMed
150.
Zurück zum Zitat Gruber A, Bjorkholm M, Brinch L, et al. A phase I/II study of the MDR modulator Valspodar (PSC 833) combined with daunorubicin and cytarabine in patients with relapsed and primary refractory acute myeloid leukemia. Leuk Res 2003; 27: 323–8PubMed Gruber A, Bjorkholm M, Brinch L, et al. A phase I/II study of the MDR modulator Valspodar (PSC 833) combined with daunorubicin and cytarabine in patients with relapsed and primary refractory acute myeloid leukemia. Leuk Res 2003; 27: 323–8PubMed
151.
Zurück zum Zitat Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 2003; 10: 159–65PubMed Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 2003; 10: 159–65PubMed
152.
Zurück zum Zitat Mayer U, Wagenaar E, Dorobek B, et al. Full blockade of intestinal P-glycoprotein and extensive inhibition of blood-brain barrier P-glycoprotein by oral treatment of mice with PSC833. J Clin Invest 1997; 100: 2430–6PubMed Mayer U, Wagenaar E, Dorobek B, et al. Full blockade of intestinal P-glycoprotein and extensive inhibition of blood-brain barrier P-glycoprotein by oral treatment of mice with PSC833. J Clin Invest 1997; 100: 2430–6PubMed
153.
Zurück zum Zitat Ward KW, Azzarano LM. Preclinical pharmacokinetic properties of the P-glycoprotein inhibitor GF120918A (HCl salt of GF120918, 9, 10-dihydro-5-methoxy-9-oxo-N-[4-[2-(l,2,3,4-tetrahydro-6,7-dimethoxy-2-i soquinolinyl)ethyl]phenyl]-4-acridine-carboxamide) in the mouse, rat, dog, and monkey. J Pharmacol Exp Ther 2004; 310: 703–9PubMed Ward KW, Azzarano LM. Preclinical pharmacokinetic properties of the P-glycoprotein inhibitor GF120918A (HCl salt of GF120918, 9, 10-dihydro-5-methoxy-9-oxo-N-[4-[2-(l,2,3,4-tetrahydro-6,7-dimethoxy-2-i soquinolinyl)ethyl]phenyl]-4-acridine-carboxamide) in the mouse, rat, dog, and monkey. J Pharmacol Exp Ther 2004; 310: 703–9PubMed
154.
Zurück zum Zitat Wallstab A, Koester M, Bohme M, et al. Selective inhibition of MDR1 P-glycoprotein-mediated transport by the acridone carboxamide derivative GG918. Br J Cancer 1999; 79: 1053–60PubMed Wallstab A, Koester M, Bohme M, et al. Selective inhibition of MDR1 P-glycoprotein-mediated transport by the acridone carboxamide derivative GG918. Br J Cancer 1999; 79: 1053–60PubMed
155.
Zurück zum Zitat Breedveld P, Pluim D, Cipriani G, et al. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 2005; 65: 2577–82PubMed Breedveld P, Pluim D, Cipriani G, et al. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 2005; 65: 2577–82PubMed
156.
Zurück zum Zitat Salarna NN, Kelly EJ, Bui T, et al. The impact of pharmacologic and genetic knockout of P-glycoprotein on nelfinavir levels in the brain and other tissues in mice. J Pharm Sci 2005; 94: 1216–25 Salarna NN, Kelly EJ, Bui T, et al. The impact of pharmacologic and genetic knockout of P-glycoprotein on nelfinavir levels in the brain and other tissues in mice. J Pharm Sci 2005; 94: 1216–25
157.
Zurück zum Zitat Kemper EM, van Zandbergen AE, Cleypool C, et al. Increased penetration of paclitaxel into the brain by inhibition of P-Glycoprotein. Clin Cancer Res 2003; 9: 2849–55PubMed Kemper EM, van Zandbergen AE, Cleypool C, et al. Increased penetration of paclitaxel into the brain by inhibition of P-Glycoprotein. Clin Cancer Res 2003; 9: 2849–55PubMed
158.
Zurück zum Zitat Barraud de LS, Comets E, Gautrand C, et al. Cerebral uptake of mefloquine enantiomers with and without the P-gp inhibitor elacridar (GF1210918) in mice. Br J Pharmacol 2004; 141: 1214–22 Barraud de LS, Comets E, Gautrand C, et al. Cerebral uptake of mefloquine enantiomers with and without the P-gp inhibitor elacridar (GF1210918) in mice. Br J Pharmacol 2004; 141: 1214–22
159.
Zurück zum Zitat Kemper EM, Cleypool C, Boogerd W, et al. The influence of the P-glycoprotein inhibitor zosuquidar trihydrochloride (LY335979) on the brain penetration of paclitaxel in mice. Cancer Chemother Pharmacol 2004; 53: 173–8PubMed Kemper EM, Cleypool C, Boogerd W, et al. The influence of the P-glycoprotein inhibitor zosuquidar trihydrochloride (LY335979) on the brain penetration of paclitaxel in mice. Cancer Chemother Pharmacol 2004; 53: 173–8PubMed
160.
Zurück zum Zitat Edwards JE, Brouwer KR, McNamara PJ. GF120918, a P-glycoprotein modulator, increases the concentration of unbound amprenavir in the central nervous system in rats. Antimicrob Agents Chemother 2002; 46: 2284–6PubMed Edwards JE, Brouwer KR, McNamara PJ. GF120918, a P-glycoprotein modulator, increases the concentration of unbound amprenavir in the central nervous system in rats. Antimicrob Agents Chemother 2002; 46: 2284–6PubMed
161.
Zurück zum Zitat Savolainen J, Edwards JE, Morgan ME, et al. Effects of a P-glycoprotein inhibitor on brain and plasma concentrations of anti-human immunodeficiency virus drugs administered in combination in rats. Drug Metab Dispos 2002; 30: 479–82PubMed Savolainen J, Edwards JE, Morgan ME, et al. Effects of a P-glycoprotein inhibitor on brain and plasma concentrations of anti-human immunodeficiency virus drugs administered in combination in rats. Drug Metab Dispos 2002; 30: 479–82PubMed
162.
Zurück zum Zitat Polli JW, Jarrett JL, Studenberg SD, et al. Role of P-glycoprotein on the CNS disposition of amprenavir (141W94), an HIV protease inhibitor. Pharm Res 1999; 16: 1206–12PubMed Polli JW, Jarrett JL, Studenberg SD, et al. Role of P-glycoprotein on the CNS disposition of amprenavir (141W94), an HIV protease inhibitor. Pharm Res 1999; 16: 1206–12PubMed
163.
Zurück zum Zitat Letrent SP, Pollack GM, Brouwer KR, et al. Effects of a potent and specific P-glycoprotein inhibitor on the blood-brain barrier distribution and antinociceptive effect of morphine in the rat. Drug Metab Dispos 1999; 27: 827–34PubMed Letrent SP, Pollack GM, Brouwer KR, et al. Effects of a potent and specific P-glycoprotein inhibitor on the blood-brain barrier distribution and antinociceptive effect of morphine in the rat. Drug Metab Dispos 1999; 27: 827–34PubMed
164.
Zurück zum Zitat Dantzig AH, Law KL, Cao J, et al. Reversal of multidrug resistance by the P-glycoprotein modulator, LY335979, from the bench to the clinic. Curr Med Chem 2001; 8: 39–50PubMed Dantzig AH, Law KL, Cao J, et al. Reversal of multidrug resistance by the P-glycoprotein modulator, LY335979, from the bench to the clinic. Curr Med Chem 2001; 8: 39–50PubMed
165.
Zurück zum Zitat Choo EF, Leake B, Wandel C, et al. Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos 2000; 28: 655–60PubMed Choo EF, Leake B, Wandel C, et al. Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos 2000; 28: 655–60PubMed
166.
Zurück zum Zitat Peer D, Margalit R. Fluoxetine and reversal of multidrug resistance. Cancer Lett. Epub 2005 Jul 11 Peer D, Margalit R. Fluoxetine and reversal of multidrug resistance. Cancer Lett. Epub 2005 Jul 11
167.
Zurück zum Zitat Nakamura Y, Oka M, Soda H, et al. Gefitinib (“Iressa”, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Res 2005; 65: 1541–6PubMed Nakamura Y, Oka M, Soda H, et al. Gefitinib (“Iressa”, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Res 2005; 65: 1541–6PubMed
168.
Zurück zum Zitat Yanase K, Tsukahara S, Asada S, et al. Gefitinib reverses breast cancer resistance protein-mediated drug resistance. Mol Cancer Ther 2004; 3: 1119–25PubMed Yanase K, Tsukahara S, Asada S, et al. Gefitinib reverses breast cancer resistance protein-mediated drug resistance. Mol Cancer Ther 2004; 3: 1119–25PubMed
169.
Zurück zum Zitat Kitazaki T, Oka M, Nakamura Y, et al. Gefitinib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung Cancer 2005; 49: 337–43PubMed Kitazaki T, Oka M, Nakamura Y, et al. Gefitinib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung Cancer 2005; 49: 337–43PubMed
170.
Zurück zum Zitat Stewart CF, Leggas M, Schuetz JD, et al. Gefitinib enhances the antitumor activity and oral bioavailability of irinotecan in mice. Cancer Res 2004; 64: 7491–9PubMed Stewart CF, Leggas M, Schuetz JD, et al. Gefitinib enhances the antitumor activity and oral bioavailability of irinotecan in mice. Cancer Res 2004; 64: 7491–9PubMed
171.
Zurück zum Zitat Breedveld P, Beijnen JH, Schellens JH. Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol Sci 2006 Jan; 27(1): 17–24PubMed Breedveld P, Beijnen JH, Schellens JH. Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol Sci 2006 Jan; 27(1): 17–24PubMed
172.
Zurück zum Zitat Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Human drug metabolism and the cytochromes P450: application and relevance of in vitro models. J Clin Pharmacol 2001; 41: 1149–79PubMed Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Human drug metabolism and the cytochromes P450: application and relevance of in vitro models. J Clin Pharmacol 2001; 41: 1149–79PubMed
173.
Zurück zum Zitat Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286: 487–91PubMed Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286: 487–91PubMed
174.
Zurück zum Zitat Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med 2005; 352: 2211–21PubMed Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med 2005; 352: 2211–21PubMed
175.
Zurück zum Zitat Vecht CJ, Wagner GL, Wilms EB. Interactions between antiepileptic and chemotherapeutic drugs. Lancet Neurol 2003; 2: 404–9PubMed Vecht CJ, Wagner GL, Wilms EB. Interactions between antiepileptic and chemotherapeutic drugs. Lancet Neurol 2003; 2: 404–9PubMed
176.
Zurück zum Zitat Fetell MR, Grossman SA, Fisher JD, et al. Preirradiation paclitaxel in glioblastoma multiforme: efficacy, pharmacology, and drug interactions: new approaches to brain tumor therapy central nervous system consortium. J Clin Oncol 1997; 15: 3121–8PubMed Fetell MR, Grossman SA, Fisher JD, et al. Preirradiation paclitaxel in glioblastoma multiforme: efficacy, pharmacology, and drug interactions: new approaches to brain tumor therapy central nervous system consortium. J Clin Oncol 1997; 15: 3121–8PubMed
177.
Zurück zum Zitat Baker DK, Relling MV, Pui CH, et al. Increased teniposide clearance with concomitant anticonvulsant therapy. J Clin Oncol 1992; 10: 311–5PubMed Baker DK, Relling MV, Pui CH, et al. Increased teniposide clearance with concomitant anticonvulsant therapy. J Clin Oncol 1992; 10: 311–5PubMed
178.
Zurück zum Zitat Mross K, Bewermeier P, Kruger W, et al. Pharmacokinetics of undiluted or diluted high-dose etoposide with or without busulfan administered to patients with hematologic malignancies. J Clin Oncol 1994; 12: 1468–74PubMed Mross K, Bewermeier P, Kruger W, et al. Pharmacokinetics of undiluted or diluted high-dose etoposide with or without busulfan administered to patients with hematologic malignancies. J Clin Oncol 1994; 12: 1468–74PubMed
179.
Zurück zum Zitat Grossman SA, Hochberg F, Fisher J, et al. Increased 9-aminocamptothecin dose requirements in patients on anticonvulsants. NABTT CNS Consortium. The New Approaches to Brain Tumor Therapy. Cancer Chemother. Pharmacol 1998; 42: 118–26 Grossman SA, Hochberg F, Fisher J, et al. Increased 9-aminocamptothecin dose requirements in patients on anticonvulsants. NABTT CNS Consortium. The New Approaches to Brain Tumor Therapy. Cancer Chemother. Pharmacol 1998; 42: 118–26
180.
Zurück zum Zitat Zamboni WC, Gajjar AJ, Heideman RL, et al. Phenytoin alters the disposition of topotecan and N-desmethyl topotecan in a patient with medulloblastoma. Clin Cancer Res 1998; 4: 783–9PubMed Zamboni WC, Gajjar AJ, Heideman RL, et al. Phenytoin alters the disposition of topotecan and N-desmethyl topotecan in a patient with medulloblastoma. Clin Cancer Res 1998; 4: 783–9PubMed
181.
Zurück zum Zitat Murry DJ, Cherrick I, Salama V, et al. Influence of phenytoin on the disposition of irinotecan: a case report. J Pediatr Hematol Oncol 2002; 24: 130–3PubMed Murry DJ, Cherrick I, Salama V, et al. Influence of phenytoin on the disposition of irinotecan: a case report. J Pediatr Hematol Oncol 2002; 24: 130–3PubMed
182.
Zurück zum Zitat Crews KR, Stewart CF, Jones-Wallace D, et al. Altered irinotecan pharmacokinetics in pediatric high-grade glioma patients receiving enzyme-inducing anticonvulsant therapy. Clin Cancer Res 2002; 8: 2202–9PubMed Crews KR, Stewart CF, Jones-Wallace D, et al. Altered irinotecan pharmacokinetics in pediatric high-grade glioma patients receiving enzyme-inducing anticonvulsant therapy. Clin Cancer Res 2002; 8: 2202–9PubMed
183.
Zurück zum Zitat Gajjar A, Chintagumpala MM, Bowers DC, et al. Effect of intrapatient dosage escalation of irinotecan on its pharmacokinetics in pediatric patients who have high-grade gliomas and receive enzyme-inducing anticonvulsant therapy. Cancer 2003; 97: 2374–80PubMed Gajjar A, Chintagumpala MM, Bowers DC, et al. Effect of intrapatient dosage escalation of irinotecan on its pharmacokinetics in pediatric patients who have high-grade gliomas and receive enzyme-inducing anticonvulsant therapy. Cancer 2003; 97: 2374–80PubMed
184.
Zurück zum Zitat Villikka K, Rivisto KT, Maenpaa H, et al. Cytochrome P450-inducing antiepileptics increase the clearance of vincristine in patients with brain tumors. Clin Pharmacol Ther 1999; 66: 589–93PubMed Villikka K, Rivisto KT, Maenpaa H, et al. Cytochrome P450-inducing antiepileptics increase the clearance of vincristine in patients with brain tumors. Clin Pharmacol Ther 1999; 66: 589–93PubMed
185.
Zurück zum Zitat Saini SP, Sonoda J, Xu L, et al. A novel constitutive androstane receptor-mediated and CYP3A-independent pathway of bile acid detoxification. Mol Pharmacol 2004; 65: 292–300PubMed Saini SP, Sonoda J, Xu L, et al. A novel constitutive androstane receptor-mediated and CYP3A-independent pathway of bile acid detoxification. Mol Pharmacol 2004; 65: 292–300PubMed
186.
Zurück zum Zitat Goodwin B, Moore JT. CAR: detailing new models. Trends Pharmacol Sci 2004; 25: 437–41PubMed Goodwin B, Moore JT. CAR: detailing new models. Trends Pharmacol Sci 2004; 25: 437–41PubMed
187.
Zurück zum Zitat Oberndorfer S, Piribauer M, Marosi C, et al. P450 enzyme inducing and non-enzyme inducing antiepileptics in glioblastoma patients treated with standard chemotherapy. J Neurooncol 2005; 72: 255–60PubMed Oberndorfer S, Piribauer M, Marosi C, et al. P450 enzyme inducing and non-enzyme inducing antiepileptics in glioblastoma patients treated with standard chemotherapy. J Neurooncol 2005; 72: 255–60PubMed
Metadaten
Titel
Pharmacokinetic Considerations in the Treatment of CNS Tumours
verfasst von
Susannah Motl
Yanli Zhuang
Christopher M. Waters
Dr Clinton F. Stewart
Publikationsdatum
01.09.2006
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 9/2006
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200645090-00002

Weitere Artikel der Ausgabe 9/2006

Clinical Pharmacokinetics 9/2006 Zur Ausgabe