Skip to main content
Erschienen in: Clinical Pharmacokinetics 7/2008

01.07.2008 | Review Article

Pharmacokinetic Comparison of the Potential Over-the-Counter Statins Simvastatin, Lovastatin, Fluvastatin and Pravastatin

verfasst von: Dr Pertti J. Neuvonen, Janne T. Backman, Mikko Niemi

Erschienen in: Clinical Pharmacokinetics | Ausgabe 7/2008

Einloggen, um Zugang zu erhalten

Abstract

HMG-CoA reductase inhibitors (statins) dose-dependently lower both the level of low-density lipoprotein cholesterol and risk of cardiovascular disease. In 2004, the UK approved a low-dose over-the-counter (OTC) simvastatin, but the US has rejected applications for non-prescription preparations of statins. The pharmacokinetics and interaction potentials of the possible OTC candidate statins simvastatin, lovastatin, fluvastatin and pravastatin are clearly different. Simvastatin and lovastatin are mainly metabolized by cytochrome P450 (CYP) 3A, fluvastatin is metabolized by CYP2C9, and pravastatin is excreted largely unchanged. Several cell membrane transporters can influence the disposition of statins, e.g. the organic anion transporting polypeptide (OATP) 1B1 enhances their hepatic uptake. The c.521T>C (p.Vall74Ala) genetic polymorphism of SLCO1B1 (encoding OATP1B1) considerably increases the plasma concentrations of simvastatin acid and moderately increases those of pravastatin but seems to have no significant effect on fluvastatin. Strong inhibitors of CYP3A (itraconazole, ritonavir) greatly (up to 20-fold) increase plasma concentrations of simvastatin, lovastatin and their active acid forms, thus enhancing the risk of myotoxicity. Weak or moderately potent CYP3A inhibitors such as verapamil, diltiazem and grapefruit juice can be used cautiously with low doses of simvastatin or lovastatin, but their concomitant use needs medical supervision. Potent inducers of CYP3A can greatly decrease plasma concentrations of simvastatin and simvastatin acid, and probably those of lovastatin and lovastatin acid. Although fluvastatin is metabolized by CYP2C9, its concentrations are changed less than 2-fold by inhibitors or inducers of CYP2C9. Pravastatin plasma concentrations are not significantly affected by any CYP inhibition and only slightly affected by inducers. Ciclosporin inhibits CYP3A, P-glycoprotein and OATP1B1. Gemfibrozil and its glucuronide inhibit CYP2C8 and OATP1B1. Ciclosporin and gemfibrozil increase plasma concentrations of statins and the risk of their myotoxicity, but fluvastatin seems to carry a smaller risk than other statins. Inhibitors of OATP1B1 may decrease the benefit-risk ratio of simvastatin, lovastatin and pravastatin by interfering with their (active acid forms) entry into hepatocytes. Understanding the differences in the pharmacokinetics and interaction potential of various statins helps in their selection for possible non-prescription status. On the pharmacokinetic basis, fluvastatin and pravastatin can be better choices than simvastatin or lovastatin for an OTC statin.
Literatur
1.
Zurück zum Zitat Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–9 Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–9
2.
Zurück zum Zitat Bays H. Statin safety: an overview and assessment of the data — 2005. Am J Cardiol 2006; 97 Suppl.: 6C–26CPubMedCrossRef Bays H. Statin safety: an overview and assessment of the data — 2005. Am J Cardiol 2006; 97 Suppl.: 6C–26CPubMedCrossRef
3.
Zurück zum Zitat Jones P, Kafonek S, Laurora I, et al. Comparative dose efficacy study of atorvastatin versus simvastatin, pravastatin, lovastatin, and fluvastatin in patients with hypercholesterolemia (the CURVES study). Am J Cardiol 1998; 81: 582–7PubMedCrossRef Jones P, Kafonek S, Laurora I, et al. Comparative dose efficacy study of atorvastatin versus simvastatin, pravastatin, lovastatin, and fluvastatin in patients with hypercholesterolemia (the CURVES study). Am J Cardiol 1998; 81: 582–7PubMedCrossRef
4.
Zurück zum Zitat OTC statins: a bad decision for public health [editorial]. Lancet 2004; 363: 1659CrossRef OTC statins: a bad decision for public health [editorial]. Lancet 2004; 363: 1659CrossRef
5.
Zurück zum Zitat Gotto AM. Over-the-counter statins and cardiovascular disease prevention: perspectives, challenges, and opportunities. Clin Pharmacol Ther 2005; 78: 213–7PubMedCrossRef Gotto AM. Over-the-counter statins and cardiovascular disease prevention: perspectives, challenges, and opportunities. Clin Pharmacol Ther 2005; 78: 213–7PubMedCrossRef
6.
7.
Zurück zum Zitat Davidoff F. Primary prevention with over-the-counter statins: a cautionary tale. Clin Pharmacol Ther 2005; 78: 218–20PubMedCrossRef Davidoff F. Primary prevention with over-the-counter statins: a cautionary tale. Clin Pharmacol Ther 2005; 78: 218–20PubMedCrossRef
8.
Zurück zum Zitat Rashid S. Should cholesterol-lowering medications be available in Canada without a prescription. Can J Cardiol 2007; 23: 189–93PubMedCrossRef Rashid S. Should cholesterol-lowering medications be available in Canada without a prescription. Can J Cardiol 2007; 23: 189–93PubMedCrossRef
9.
Zurück zum Zitat Gotto AM. Is it appropriate to make statins available over the counter? Over-the-counter statins are worth considering in primary prevention of cardiovascular disease. Circulation 2006; 114: 1310–4PubMedCrossRef Gotto AM. Is it appropriate to make statins available over the counter? Over-the-counter statins are worth considering in primary prevention of cardiovascular disease. Circulation 2006; 114: 1310–4PubMedCrossRef
10.
Zurück zum Zitat Barter PJ, Rye KA. Is it appropriate to make statins available over the counter? The argument against the appropriateness of over-the-counter statins. Circulation 2006; 114: 1315–20PubMedCrossRef Barter PJ, Rye KA. Is it appropriate to make statins available over the counter? The argument against the appropriateness of over-the-counter statins. Circulation 2006; 114: 1315–20PubMedCrossRef
11.
Zurück zum Zitat Lennernäs H, Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors: similarities and differences. Clin Pharmacokinet 1997; 32: 403–25PubMedCrossRef Lennernäs H, Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors: similarities and differences. Clin Pharmacokinet 1997; 32: 403–25PubMedCrossRef
12.
Zurück zum Zitat Hamelin BA, Turgeon J. Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci 1998; 19: 26–37PubMedCrossRef Hamelin BA, Turgeon J. Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci 1998; 19: 26–37PubMedCrossRef
13.
Zurück zum Zitat Sirtori CR. Tissue selectivity of hydroxymethylglutaryl coenzyme A (HMG CoA) reductase inhibitors. Pharmacol Ther 1993; 60: 431–59PubMedCrossRef Sirtori CR. Tissue selectivity of hydroxymethylglutaryl coenzyme A (HMG CoA) reductase inhibitors. Pharmacol Ther 1993; 60: 431–59PubMedCrossRef
14.
Zurück zum Zitat Schectman G, Hiatt J. Dose-response characteristics of cholesterol-lowering drug therapies: implications for treatment. Ann Intern Med 1996; 125: 990–1000PubMed Schectman G, Hiatt J. Dose-response characteristics of cholesterol-lowering drug therapies: implications for treatment. Ann Intern Med 1996; 125: 990–1000PubMed
15.
Zurück zum Zitat Chen C, Mireles RJ, Campbell SD, et al. Differential interaction of 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos 2005; 33: 537–46PubMedCrossRef Chen C, Mireles RJ, Campbell SD, et al. Differential interaction of 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos 2005; 33: 537–46PubMedCrossRef
16.
Zurück zum Zitat Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther 2006; 112: 71–105PubMedCrossRef Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther 2006; 112: 71–105PubMedCrossRef
17.
Zurück zum Zitat Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther 2006; 80: 565–81PubMedCrossRef Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther 2006; 80: 565–81PubMedCrossRef
18.
Zurück zum Zitat Scripture CD, Pieper JA. Clinical pharmacokinetics of fluvastatin. Clin Pharmacokinet 2001; 40: 263–81PubMedCrossRef Scripture CD, Pieper JA. Clinical pharmacokinetics of fluvastatin. Clin Pharmacokinet 2001; 40: 263–81PubMedCrossRef
19.
Zurück zum Zitat Schachter M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol 2005; 19: 117–26PubMedCrossRef Schachter M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol 2005; 19: 117–26PubMedCrossRef
20.
Zurück zum Zitat Singhvi SM, Pan HY, Morrison RA, et al. Disposition of pravastatin sodium, a tissue-selective HMG-CoA reductase inhibitor, in healthy subjects. Br J Clin Pharmacol 1990; 29: 239–43PubMedCrossRef Singhvi SM, Pan HY, Morrison RA, et al. Disposition of pravastatin sodium, a tissue-selective HMG-CoA reductase inhibitor, in healthy subjects. Br J Clin Pharmacol 1990; 29: 239–43PubMedCrossRef
21.
Zurück zum Zitat Hatanaka T. Clinical pharmacokinetics of pravastatin: mechanisms of pharmacokinetic events. Clin Pharmacokinet 2000; 39: 397–412PubMedCrossRef Hatanaka T. Clinical pharmacokinetics of pravastatin: mechanisms of pharmacokinetic events. Clin Pharmacokinet 2000; 39: 397–412PubMedCrossRef
22.
Zurück zum Zitat Neuvonen PJ, Kantola T, Kivistö KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 1998; 63: 332–41PubMedCrossRef Neuvonen PJ, Kantola T, Kivistö KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 1998; 63: 332–41PubMedCrossRef
23.
Zurück zum Zitat Kivistö KT, Kantola T, Neuvonen PJ. Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin. Br J Clin Pharmacol 1998; 46: 49–53PubMedCrossRef Kivistö KT, Kantola T, Neuvonen PJ. Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin. Br J Clin Pharmacol 1998; 46: 49–53PubMedCrossRef
24.
Zurück zum Zitat Niemi M, Pasanen MK, Neuvonen PJ. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not of fluvastatin. Clin Pharmacol Ther 2006; 80: 356–66PubMedCrossRef Niemi M, Pasanen MK, Neuvonen PJ. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not of fluvastatin. Clin Pharmacol Ther 2006; 80: 356–66PubMedCrossRef
25.
Zurück zum Zitat Pasanen MK, Neuvonen M, Neuvonen PJ, et al. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics 2006; 16: 873–9PubMedCrossRef Pasanen MK, Neuvonen M, Neuvonen PJ, et al. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics 2006; 16: 873–9PubMedCrossRef
26.
Zurück zum Zitat Kirchheiner J, Kudlicz D, Meisel C, et al. Influence of CYP2C9 polymorphisms on the pharmacokinetics and cholesterol-lowering activity of (−)-3S,5R-fluvastatin and (+)-3R,5S-fluvastatin in healthy volunteers. Clin Pharmacol Ther 2003; 74: 186–94PubMedCrossRef Kirchheiner J, Kudlicz D, Meisel C, et al. Influence of CYP2C9 polymorphisms on the pharmacokinetics and cholesterol-lowering activity of (−)-3S,5R-fluvastatin and (+)-3R,5S-fluvastatin in healthy volunteers. Clin Pharmacol Ther 2003; 74: 186–94PubMedCrossRef
27.
Zurück zum Zitat Kim KA, Park PW, Lee OJ, et al. Effect of polymorphic CYP3A5 genotype on the single-dose simvastatin pharmacokinetics in healthy subjects. J Clin Pharmacol 2007; 47: 87–93PubMedCrossRef Kim KA, Park PW, Lee OJ, et al. Effect of polymorphic CYP3A5 genotype on the single-dose simvastatin pharmacokinetics in healthy subjects. J Clin Pharmacol 2007; 47: 87–93PubMedCrossRef
28.
Zurück zum Zitat Lilja JJ, Kivistö KT, Neuvonen PJ. Grapefruit-simvastatin interaction: effect on serum concentrations of simvastatin, simvastatin acid and HMG-CoA reductase inhibitors. Clin Pharmacol Ther 1998; 64: 477–83PubMedCrossRef Lilja JJ, Kivistö KT, Neuvonen PJ. Grapefruit-simvastatin interaction: effect on serum concentrations of simvastatin, simvastatin acid and HMG-CoA reductase inhibitors. Clin Pharmacol Ther 1998; 64: 477–83PubMedCrossRef
29.
Zurück zum Zitat Kantola T, Kivistö KT, Neuvonen PJ. Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 1998; 64: 177–82PubMedCrossRef Kantola T, Kivistö KT, Neuvonen PJ. Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 1998; 64: 177–82PubMedCrossRef
30.
Zurück zum Zitat Lilja JJ, Neuvonen M, Neuvonen PJ. Effects of regular consumption of grapefruit juice on the pharmacokinetics of simvastatin. Br J Clin Pharmacol 2004; 58: 56–60PubMedCrossRef Lilja JJ, Neuvonen M, Neuvonen PJ. Effects of regular consumption of grapefruit juice on the pharmacokinetics of simvastatin. Br J Clin Pharmacol 2004; 58: 56–60PubMedCrossRef
31.
Zurück zum Zitat Lilja JJ, Kivistö KT, Neuvonen PJ. Duration of effect of grapefruit juice on the pharmacokinetics of the CYP 3A4 substrate simvastatin. Clin Pharmacol Ther 2000; 68: 384–90PubMedCrossRef Lilja JJ, Kivistö KT, Neuvonen PJ. Duration of effect of grapefruit juice on the pharmacokinetics of the CYP 3A4 substrate simvastatin. Clin Pharmacol Ther 2000; 68: 384–90PubMedCrossRef
32.
Zurück zum Zitat Kantola T, Backman JT, Niemi M, et al. Effect of fluconazole on plasma fluvastatin and pravastatin concentrations. Eur J Clin Pharmacol 2000; 56: 225–9PubMedCrossRef Kantola T, Backman JT, Niemi M, et al. Effect of fluconazole on plasma fluvastatin and pravastatin concentrations. Eur J Clin Pharmacol 2000; 56: 225–9PubMedCrossRef
33.
Zurück zum Zitat Backman JT, Kyrklund C, Kivistö KT. Plasma concentrations of active simvastatin acid are increased by gemfibrozil. Clin Pharmacol Ther 2000; 68: 122–9PubMedCrossRef Backman JT, Kyrklund C, Kivistö KT. Plasma concentrations of active simvastatin acid are increased by gemfibrozil. Clin Pharmacol Ther 2000; 68: 122–9PubMedCrossRef
34.
Zurück zum Zitat Kyrklund C, Backman JT, Kivistö KT, et al. Plasma concentrations of active lovastatin acid are markedly increased by gemfibrozil but not by bezafibrate. Clin Pharmacol Ther 2001; 69: 340–5PubMedCrossRef Kyrklund C, Backman JT, Kivistö KT, et al. Plasma concentrations of active lovastatin acid are markedly increased by gemfibrozil but not by bezafibrate. Clin Pharmacol Ther 2001; 69: 340–5PubMedCrossRef
35.
Zurück zum Zitat Kyrklund C, Backman JT, Kivistö KT, et al. Rifampin greatly reduces plasma simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 2000; 68: 592–7PubMedCrossRef Kyrklund C, Backman JT, Kivistö KT, et al. Rifampin greatly reduces plasma simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 2000; 68: 592–7PubMedCrossRef
36.
Zurück zum Zitat Kyrklund C, Backman JT, Neuvonen M, et al. Effect of rifampicin on pravastatin pharmacokinetics in healthy subjects. Br J Clin Pharmacol 2004; 57: 181–7PubMedCrossRef Kyrklund C, Backman JT, Neuvonen M, et al. Effect of rifampicin on pravastatin pharmacokinetics in healthy subjects. Br J Clin Pharmacol 2004; 57: 181–7PubMedCrossRef
37.
Zurück zum Zitat Kyrklund C, Backman JT, Neuvonen M, et al. Gemfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance. Clin Pharmacol Ther 2003; 73: 538–44PubMedCrossRef Kyrklund C, Backman JT, Neuvonen M, et al. Gemfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance. Clin Pharmacol Ther 2003; 73: 538–44PubMedCrossRef
38.
Zurück zum Zitat Prueksaritanont T, Gorham LM, Ma B, et al. In vitro metabolism of simvastatin in humans [SBT] identification of metabolizing enzymes and effect of the drug on hepatic P450s. Drug Metab Dispos 1997; 25: 1191–9PubMed Prueksaritanont T, Gorham LM, Ma B, et al. In vitro metabolism of simvastatin in humans [SBT] identification of metabolizing enzymes and effect of the drug on hepatic P450s. Drug Metab Dispos 1997; 25: 1191–9PubMed
39.
Zurück zum Zitat Prueksaritanont T, Ma B, Yu N. The human hepatic metabolism of simvastatin hydroxyl acids is mediated primarily by CYP3A, and not CYP2D6. Br J Clin Pharmacol 2003; 56: 120–4PubMedCrossRef Prueksaritanont T, Ma B, Yu N. The human hepatic metabolism of simvastatin hydroxyl acids is mediated primarily by CYP3A, and not CYP2D6. Br J Clin Pharmacol 2003; 56: 120–4PubMedCrossRef
40.
Zurück zum Zitat Matsushima S, Maeda K, Kondo C, et al. Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther 2005; 314: 1059–67PubMedCrossRef Matsushima S, Maeda K, Kondo C, et al. Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther 2005; 314: 1059–67PubMedCrossRef
41.
Zurück zum Zitat Ho RH, Kim RB. Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther 2005; 78: 260–77PubMedCrossRef Ho RH, Kim RB. Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther 2005; 78: 260–77PubMedCrossRef
42.
Zurück zum Zitat Niemi M. Role of OATP transporters in the disposition of drugs. Pharmacogenomics 2007; 8: 787–802PubMedCrossRef Niemi M. Role of OATP transporters in the disposition of drugs. Pharmacogenomics 2007; 8: 787–802PubMedCrossRef
43.
44.
Zurück zum Zitat Sakaeda T, Fujino H, Komoto C, et al. Effect of acid and lactone forms of eight HMG-CoA reductase inhibitors on CYP-mediated metabolism and MDR1-mediated transport. Pharmaceut Res 2006; 23: 506–12CrossRef Sakaeda T, Fujino H, Komoto C, et al. Effect of acid and lactone forms of eight HMG-CoA reductase inhibitors on CYP-mediated metabolism and MDR1-mediated transport. Pharmaceut Res 2006; 23: 506–12CrossRef
45.
Zurück zum Zitat Wang E, Casciano CN, Clement RP, et al. HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharmaceut Res 2001; 18: 800–6CrossRef Wang E, Casciano CN, Clement RP, et al. HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharmaceut Res 2001; 18: 800–6CrossRef
46.
Zurück zum Zitat Parker TS, McNamara DJ, Brown C, et al. Mevalonic acid in human plasma: relationship of concentration and circadian rhythm to cholesterol synthesis rates in man. Proc Natl Acad Sci U S A 1982; 79: 3037–41PubMedCrossRef Parker TS, McNamara DJ, Brown C, et al. Mevalonic acid in human plasma: relationship of concentration and circadian rhythm to cholesterol synthesis rates in man. Proc Natl Acad Sci U S A 1982; 79: 3037–41PubMedCrossRef
47.
Zurück zum Zitat Plakogiannis R, Cohen H. Optimal low-density lipoprotein cholesterol lowering: morning versus evening statin administration. Ann Pharmacother 2007; 41: 106–10PubMed Plakogiannis R, Cohen H. Optimal low-density lipoprotein cholesterol lowering: morning versus evening statin administration. Ann Pharmacother 2007; 41: 106–10PubMed
48.
Zurück zum Zitat Wang RW, Kari PH, Lu AY, et al. Biotransformation of lovastatin: IV. Identification of cytochrome P450 3A proteins as the major enzymes responsible for the oxidative metabolism of lovastatin in rat and human liver microsomes. Arch Biochem Biophys 1991; 290: 355–61PubMedCrossRef Wang RW, Kari PH, Lu AY, et al. Biotransformation of lovastatin: IV. Identification of cytochrome P450 3A proteins as the major enzymes responsible for the oxidative metabolism of lovastatin in rat and human liver microsomes. Arch Biochem Biophys 1991; 290: 355–61PubMedCrossRef
49.
Zurück zum Zitat Christians U, Jacobsen W, Floren LC. Metabolism and drug interactions of 3-hydroxy-methylglutaryl coenzyme A reductase inhibitors in transplant patients: are the statins mechanistically similar? Pharmacol Ther 1998; 80: 1–34PubMedCrossRef Christians U, Jacobsen W, Floren LC. Metabolism and drug interactions of 3-hydroxy-methylglutaryl coenzyme A reductase inhibitors in transplant patients: are the statins mechanistically similar? Pharmacol Ther 1998; 80: 1–34PubMedCrossRef
50.
Zurück zum Zitat Nakai D, Nakagomi R, Furuta Y, et al. Human liver-specific organic anion transporter, LST-1, mediates uptake of pravastatin by human hepatocytes. J Pharmacol Exp Ther 2001; 297: 861–7PubMed Nakai D, Nakagomi R, Furuta Y, et al. Human liver-specific organic anion transporter, LST-1, mediates uptake of pravastatin by human hepatocytes. J Pharmacol Exp Ther 2001; 297: 861–7PubMed
51.
Zurück zum Zitat Koga T, Shimada Y, Kuroda M, et al. Tissue-selective inhibition of cholesterol synthesis in vivo by pravastatin sodium, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. Biochim Biophys Acta 1990; 1045: 115–20PubMedCrossRef Koga T, Shimada Y, Kuroda M, et al. Tissue-selective inhibition of cholesterol synthesis in vivo by pravastatin sodium, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. Biochim Biophys Acta 1990; 1045: 115–20PubMedCrossRef
52.
Zurück zum Zitat Buckett L, Davidson R, Dunkley C, et al. Selectivity of ZD4522 for inhibition of cholesterol synthesis in hepatic versus non-hepatic cells [abstract]. Atherosclerosis 2000; 151: 41CrossRef Buckett L, Davidson R, Dunkley C, et al. Selectivity of ZD4522 for inhibition of cholesterol synthesis in hepatic versus non-hepatic cells [abstract]. Atherosclerosis 2000; 151: 41CrossRef
53.
Zurück zum Zitat Shitara Y, Sato H, Sugiyama Y. Evaluation of drug-drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol 2005; 45: 689–723PubMedCrossRef Shitara Y, Sato H, Sugiyama Y. Evaluation of drug-drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol 2005; 45: 689–723PubMedCrossRef
54.
Zurück zum Zitat Kivistö KT, Niemi M. Influence of drug transporter polymorphisms on pravastatin pharmacokinetics in humans. Pharmaceut Res 2007; 24: 239–47CrossRef Kivistö KT, Niemi M. Influence of drug transporter polymorphisms on pravastatin pharmacokinetics in humans. Pharmaceut Res 2007; 24: 239–47CrossRef
55.
Zurück zum Zitat Mangravite LM, Thorn CF, Kraus RM. Clinical implications of pharmacogenomics of statin treatment. Pharmacogenom J 2006; 6: 360–74CrossRef Mangravite LM, Thorn CF, Kraus RM. Clinical implications of pharmacogenomics of statin treatment. Pharmacogenom J 2006; 6: 360–74CrossRef
56.
Zurück zum Zitat Kivistö KT, Niemi M, Schaeffeler E, et al. Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics 2004; 14: 523–5PubMedCrossRef Kivistö KT, Niemi M, Schaeffeler E, et al. Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics 2004; 14: 523–5PubMedCrossRef
57.
Zurück zum Zitat Nishizato Y, Ieiri I, Suzuki H, et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther 2003; 73: 554–65PubMedCrossRef Nishizato Y, Ieiri I, Suzuki H, et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther 2003; 73: 554–65PubMedCrossRef
58.
Zurück zum Zitat Mwinyi J, Johne A, Bauer S, et al. Evidence for inverse effects of OATP-C (SLC21A6) 5 and 1b haplotypes on pravastatin kinetics. Clin Pharmacol Ther 2004; 75: 415–21PubMedCrossRef Mwinyi J, Johne A, Bauer S, et al. Evidence for inverse effects of OATP-C (SLC21A6) 5 and 1b haplotypes on pravastatin kinetics. Clin Pharmacol Ther 2004; 75: 415–21PubMedCrossRef
59.
Zurück zum Zitat Niemi M, Schaeffeler E, Lang T, et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 2004; 14: 429–40PubMedCrossRef Niemi M, Schaeffeler E, Lang T, et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 2004; 14: 429–40PubMedCrossRef
60.
Zurück zum Zitat Kim RB. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) and genetic variability (single nucleotide polymorphism) in a hepatic drug uptake transporter: what’s it all about? Clin Pharmacol Ther 2004; 75: 381–5PubMedCrossRef Kim RB. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) and genetic variability (single nucleotide polymorphism) in a hepatic drug uptake transporter: what’s it all about? Clin Pharmacol Ther 2004; 75: 381–5PubMedCrossRef
61.
Zurück zum Zitat Niemi M, Arnold KA, Backman JT, et al. Association of genetic polymorphism in ABCC2 with hepatic MRP2 expression and pravastatin pharmacokinetics. Pharmacogenet Genomics 2006; 16: 801–8PubMedCrossRef Niemi M, Arnold KA, Backman JT, et al. Association of genetic polymorphism in ABCC2 with hepatic MRP2 expression and pravastatin pharmacokinetics. Pharmacogenet Genomics 2006; 16: 801–8PubMedCrossRef
62.
Zurück zum Zitat Pasanen MK, Neuvonen PJ, Niemi M. Global analysis of genetic variation in SLCO1B1. Pharmacogenomics 2008; 65: 78–86 Pasanen MK, Neuvonen PJ, Niemi M. Global analysis of genetic variation in SLCO1B1. Pharmacogenomics 2008; 65: 78–86
63.
Zurück zum Zitat Tachibana-Iimori R, Tabara Y, Kusuhara H, et al. Effect of genetic polymorphism of OATP-C (SLCO1B1) on lipid-lowering response to HMG-CoA reductase inhibitors. Drug Metab Pharmacokinet 2004; 19: 375–80PubMedCrossRef Tachibana-Iimori R, Tabara Y, Kusuhara H, et al. Effect of genetic polymorphism of OATP-C (SLCO1B1) on lipid-lowering response to HMG-CoA reductase inhibitors. Drug Metab Pharmacokinet 2004; 19: 375–80PubMedCrossRef
64.
Zurück zum Zitat Niemi M, Neuvonen PJ, Hofmann U, et al. Acute effects of pravastatin on cholesterol synthesis are associated with SLCO1B1 (encoding OATP1B1) haplotype *17. Pharmacogenet Genomics 2005; 15: 303–9PubMedCrossRef Niemi M, Neuvonen PJ, Hofmann U, et al. Acute effects of pravastatin on cholesterol synthesis are associated with SLCO1B1 (encoding OATP1B1) haplotype *17. Pharmacogenet Genomics 2005; 15: 303–9PubMedCrossRef
65.
Zurück zum Zitat Neuvonen PJ, Jalava M. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1996; 60: 54–61PubMedCrossRef Neuvonen PJ, Jalava M. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1996; 60: 54–61PubMedCrossRef
66.
Zurück zum Zitat Jacobson TA. Comparative interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors. Am J Cardiol 2004; 94: 1140–6PubMedCrossRef Jacobson TA. Comparative interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors. Am J Cardiol 2004; 94: 1140–6PubMedCrossRef
67.
Zurück zum Zitat Fichtenbaum CJ, Gerber JG, Rosenkranz SL, et al. Pharmacokinetic interactions between protease inhibitors and statins in seronegative volunteers: ACTG study A5047. AIDS 2002; 16: 569–77PubMedCrossRef Fichtenbaum CJ, Gerber JG, Rosenkranz SL, et al. Pharmacokinetic interactions between protease inhibitors and statins in seronegative volunteers: ACTG study A5047. AIDS 2002; 16: 569–77PubMedCrossRef
68.
Zurück zum Zitat Mazzu AL, Lasseter KC, Shamblen EC, et al. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clin Pharmacol Ther 2000; 68: 391–400PubMedCrossRef Mazzu AL, Lasseter KC, Shamblen EC, et al. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clin Pharmacol Ther 2000; 68: 391–400PubMedCrossRef
69.
Zurück zum Zitat Azie NE, Brater DC, Becker PA, et al. The interaction of diltiazem with lovastatin and pravastatin. Clin Pharmacol Ther 1998; 64: 369–77PubMedCrossRef Azie NE, Brater DC, Becker PA, et al. The interaction of diltiazem with lovastatin and pravastatin. Clin Pharmacol Ther 1998; 64: 369–77PubMedCrossRef
70.
Zurück zum Zitat Mousa O, Brater DC, Sunblad KJ, et al. The interaction of diltiazem with simvastatin. Clin Pharmacol Ther 2000; 67: 267–74PubMedCrossRef Mousa O, Brater DC, Sunblad KJ, et al. The interaction of diltiazem with simvastatin. Clin Pharmacol Ther 2000; 67: 267–74PubMedCrossRef
71.
Zurück zum Zitat Watanabe H, Kosuge K, Nishio S, et al. Pharmacokinetic and pharmacodynamic interactions between simvastatin and diltiazem in patients with hypercholesterolemia and hypertension. Life Sci 2004; 76: 281–92PubMedCrossRef Watanabe H, Kosuge K, Nishio S, et al. Pharmacokinetic and pharmacodynamic interactions between simvastatin and diltiazem in patients with hypercholesterolemia and hypertension. Life Sci 2004; 76: 281–92PubMedCrossRef
72.
Zurück zum Zitat Becquemont L, Neuvonen M, Verstuyft C, et al. Amiodarone interacts with simvastatin but not with pravastatin disposition kinetics. Clin Pharmacol Ther 2007; 81: 679–84PubMedCrossRef Becquemont L, Neuvonen M, Verstuyft C, et al. Amiodarone interacts with simvastatin but not with pravastatin disposition kinetics. Clin Pharmacol Ther 2007; 81: 679–84PubMedCrossRef
73.
Zurück zum Zitat Hedman M, Neuvonen PJ, Neuvonen M, et al. Pharmacokinetics and pharmacodynamics of pravastatin in pediatric and adolescent cardiac transplant recipients on a regimen of triple immunosuppression. Clin Pharmacol Ther 2004; 75: 101–9PubMedCrossRef Hedman M, Neuvonen PJ, Neuvonen M, et al. Pharmacokinetics and pharmacodynamics of pravastatin in pediatric and adolescent cardiac transplant recipients on a regimen of triple immunosuppression. Clin Pharmacol Ther 2004; 75: 101–9PubMedCrossRef
74.
Zurück zum Zitat Regazzi MB, Iacona I, Campana C, et al. Altered disposition of pravastatin following concomitant drug therapy with cyclosporin A in transplant recipients. Transplant Proc 1993; 25: 2732–4PubMed Regazzi MB, Iacona I, Campana C, et al. Altered disposition of pravastatin following concomitant drug therapy with cyclosporin A in transplant recipients. Transplant Proc 1993; 25: 2732–4PubMed
75.
Zurück zum Zitat Åsberg A. Interactions between cyclosporin and lipid-lowering drugs: implications for organ transplant recipients. Drugs 2003; 63: 367–78PubMedCrossRef Åsberg A. Interactions between cyclosporin and lipid-lowering drugs: implications for organ transplant recipients. Drugs 2003; 63: 367–78PubMedCrossRef
76.
Zurück zum Zitat Park JW, Siekmeier R, Lattke P, et al. Pharmacokinetics and pharmacodynamics of fluvastatin in heart transplant recipients taking cyclosporine A. J Cardiovasc Pharmacol Ther 2001; 6: 351–61PubMedCrossRef Park JW, Siekmeier R, Lattke P, et al. Pharmacokinetics and pharmacodynamics of fluvastatin in heart transplant recipients taking cyclosporine A. J Cardiovasc Pharmacol Ther 2001; 6: 351–61PubMedCrossRef
77.
Zurück zum Zitat Transon C, Leemann T, Dayer P. In vitro comparative inhibition profiles of major human drug metabolising cytochrome P450 isozymes (CYP2C9, CYP2D6 and CYP3A4) by HMG-CoA reductase inhibitors. Eur J Clin Pharmacol 1996; 50: 209–15PubMedCrossRef Transon C, Leemann T, Dayer P. In vitro comparative inhibition profiles of major human drug metabolising cytochrome P450 isozymes (CYP2C9, CYP2D6 and CYP3A4) by HMG-CoA reductase inhibitors. Eur J Clin Pharmacol 1996; 50: 209–15PubMedCrossRef
78.
Zurück zum Zitat Spence JD, Munoz CE, Hendricks L, et al. Pharmacokinetics of the combination of fluvastatin and gemfibrozil. Am J Cardiol 1995; 76: 80A–83APubMedCrossRef Spence JD, Munoz CE, Hendricks L, et al. Pharmacokinetics of the combination of fluvastatin and gemfibrozil. Am J Cardiol 1995; 76: 80A–83APubMedCrossRef
79.
Zurück zum Zitat Kantola T, Kivistö KT, Neuvonen PJ. Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1998; 63: 397–402PubMedCrossRef Kantola T, Kivistö KT, Neuvonen PJ. Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1998; 63: 397–402PubMedCrossRef
80.
Zurück zum Zitat Lilja JJ, Kivistö KT, Neuvonen PJ. Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin. Clin Pharmacol Ther 1999; 66: 118–27PubMed Lilja JJ, Kivistö KT, Neuvonen PJ. Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin. Clin Pharmacol Ther 1999; 66: 118–27PubMed
81.
Zurück zum Zitat Fukazawa I, Uchida N, Uchida E, et al. Effects of grapefruit juice on pharmacokinetics of atorvastatin and pravastatin in Japanese. Br J Clin Pharmacol 2004; 57: 448–55PubMedCrossRef Fukazawa I, Uchida N, Uchida E, et al. Effects of grapefruit juice on pharmacokinetics of atorvastatin and pravastatin in Japanese. Br J Clin Pharmacol 2004; 57: 448–55PubMedCrossRef
82.
Zurück zum Zitat Ucar M, Neuvonen M, Luurila H, et al. Carbamazepine markedly reduces serum concentrations of simvastatin and simvastatin acid. Eur J Clin Pharmacol 2004; 59: 879–82PubMedCrossRef Ucar M, Neuvonen M, Luurila H, et al. Carbamazepine markedly reduces serum concentrations of simvastatin and simvastatin acid. Eur J Clin Pharmacol 2004; 59: 879–82PubMedCrossRef
83.
Zurück zum Zitat Sugimoto R, Ohmori M, Tsuruoka S, et al. Different effects of St John’s wort on the pharmacokinetics of simvastatin and pravastatin. Clin Pharmacol Ther 2001; 70: 518–24PubMedCrossRef Sugimoto R, Ohmori M, Tsuruoka S, et al. Different effects of St John’s wort on the pharmacokinetics of simvastatin and pravastatin. Clin Pharmacol Ther 2001; 70: 518–24PubMedCrossRef
84.
Zurück zum Zitat Schmassmann-Suhijar D, Bullingham R, Gasser R, et al. Rhabdomyolysis due to interaction of simvastatin with mibefradil [letter]. Lancet 1998; 351: 1929–30PubMedCrossRef Schmassmann-Suhijar D, Bullingham R, Gasser R, et al. Rhabdomyolysis due to interaction of simvastatin with mibefradil [letter]. Lancet 1998; 351: 1929–30PubMedCrossRef
85.
Zurück zum Zitat Lees RS, Lees AM. Rhabdomyolysis from the coadministration of lovastatin and the antifungal agent itraconazole [letter]. N Engl J Med 1995; 333: 664–5PubMedCrossRef Lees RS, Lees AM. Rhabdomyolysis from the coadministration of lovastatin and the antifungal agent itraconazole [letter]. N Engl J Med 1995; 333: 664–5PubMedCrossRef
86.
Zurück zum Zitat Andreou ER, Ledger S. Potential drug interaction between simvastatin and danazol causing rhabdomyolysis. Can J Clin Pharmacol 2003; 10: 172–4PubMed Andreou ER, Ledger S. Potential drug interaction between simvastatin and danazol causing rhabdomyolysis. Can J Clin Pharmacol 2003; 10: 172–4PubMed
87.
Zurück zum Zitat Jacobson RH, Wang P, Glueck CJ. Myositis and rhabdomyolysis associated with concurrent use of simvastatin and nefazodone. JAMA 1997; 277: 296–7PubMedCrossRef Jacobson RH, Wang P, Glueck CJ. Myositis and rhabdomyolysis associated with concurrent use of simvastatin and nefazodone. JAMA 1997; 277: 296–7PubMedCrossRef
88.
Zurück zum Zitat Gladding P, Pilmore H, Edwards C. Potentially fatal interaction between diltiazem and statins. Ann Intern Med 2004; 140: W31PubMed Gladding P, Pilmore H, Edwards C. Potentially fatal interaction between diltiazem and statins. Ann Intern Med 2004; 140: W31PubMed
89.
Zurück zum Zitat Roten L, Schoenenberger RA, Rrahenbuhl S, et al. Rhabdomyolysis in association with simvastatin and amiodarone. Ann Pharmacother 2004; 38: 978–81PubMedCrossRef Roten L, Schoenenberger RA, Rrahenbuhl S, et al. Rhabdomyolysis in association with simvastatin and amiodarone. Ann Pharmacother 2004; 38: 978–81PubMedCrossRef
90.
Zurück zum Zitat Jamal SM, Eisenberg MJ, Christopoulos S. Rhabdomyolysis associated with hydroxymethylglutaryl-coenzyme A reductase inhibitors. Am Heart J 2004; 47: 956–65CrossRef Jamal SM, Eisenberg MJ, Christopoulos S. Rhabdomyolysis associated with hydroxymethylglutaryl-coenzyme A reductase inhibitors. Am Heart J 2004; 47: 956–65CrossRef
91.
Zurück zum Zitat Rahri AJ, Valkonen MM, Vuoristo MR, et al. Rhabdomyolysis associated with concomitant use of simvastatin and clarithromycin. Ann Pharmacother 2004; 38: 719 Rahri AJ, Valkonen MM, Vuoristo MR, et al. Rhabdomyolysis associated with concomitant use of simvastatin and clarithromycin. Ann Pharmacother 2004; 38: 719
92.
Zurück zum Zitat Vlahakos DV, Manginas A, Chilidou D, et al. Itraconazole-induced rhabdomyolysis and acute renal failure in a heart transplant recipient treated with simvastatin and cyclosporine. Transplantation 2002; 73: 1962–4PubMedCrossRef Vlahakos DV, Manginas A, Chilidou D, et al. Itraconazole-induced rhabdomyolysis and acute renal failure in a heart transplant recipient treated with simvastatin and cyclosporine. Transplantation 2002; 73: 1962–4PubMedCrossRef
93.
Zurück zum Zitat Molden E, Andersson RS. Simvastatin-associated rhabdomyolysis after coadministration of macrolide antibiotics in two patients. Pharmacotherapy 2007; 27: 603–7PubMedCrossRef Molden E, Andersson RS. Simvastatin-associated rhabdomyolysis after coadministration of macrolide antibiotics in two patients. Pharmacotherapy 2007; 27: 603–7PubMedCrossRef
94.
Zurück zum Zitat Aboulafia DM, Johnston R. Simvastatin-induced rhabdomyolysis in an HIV-infected patient with coronary artery disease. AIDS Patient Care 2000; 14: 13–8CrossRef Aboulafia DM, Johnston R. Simvastatin-induced rhabdomyolysis in an HIV-infected patient with coronary artery disease. AIDS Patient Care 2000; 14: 13–8CrossRef
95.
Zurück zum Zitat Cheng CH, Miller C, Lowe C, et al. Rhabdomyolysis due to probable interaction between simvastatin and ritonavir. Am J Health Syst Pharm 2002; 59: 728–30PubMed Cheng CH, Miller C, Lowe C, et al. Rhabdomyolysis due to probable interaction between simvastatin and ritonavir. Am J Health Syst Pharm 2002; 59: 728–30PubMed
96.
Zurück zum Zitat Granfors MT, Wang JS, Rajosaari LI, et al. Differential inhibition of cytochrome P450 3A4, 3A5 and 3A7 by five human immunodeficiency virus (HIV) protease inhibitors in vitro. Basic Clin Pharmacol Toxicol 2006; 98: 79–85PubMedCrossRef Granfors MT, Wang JS, Rajosaari LI, et al. Differential inhibition of cytochrome P450 3A4, 3A5 and 3A7 by five human immunodeficiency virus (HIV) protease inhibitors in vitro. Basic Clin Pharmacol Toxicol 2006; 98: 79–85PubMedCrossRef
97.
Zurück zum Zitat Fichtenbaum CJ, Gerber JG. Interactions between antiretroviral drugs and drugs used for the therapy of the metabolic complications encountered during HIV infection. Clin Pharmacokinet 2002; 41: 1195–211PubMedCrossRef Fichtenbaum CJ, Gerber JG. Interactions between antiretroviral drugs and drugs used for the therapy of the metabolic complications encountered during HIV infection. Clin Pharmacokinet 2002; 41: 1195–211PubMedCrossRef
98.
Zurück zum Zitat Rogers JD, Zhao J, Liu L, et al. Grapefruit juice has minimal effects on plasma concentrations of lovastatin-derived 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Clin Pharmacol Ther 1999; 66: 358–66PubMedCrossRef Rogers JD, Zhao J, Liu L, et al. Grapefruit juice has minimal effects on plasma concentrations of lovastatin-derived 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Clin Pharmacol Ther 1999; 66: 358–66PubMedCrossRef
99.
Zurück zum Zitat Dreier JP, Endres M. Statin-associated rhabdomyolysis triggered by grapefruit consumption. Neurology 2004; 62: 670PubMedCrossRef Dreier JP, Endres M. Statin-associated rhabdomyolysis triggered by grapefruit consumption. Neurology 2004; 62: 670PubMedCrossRef
100.
Zurück zum Zitat Bailey DG, Dresser GR. Interactions between grapefruit juice and cardiovascular drugs. Am J Cardiovasc Drugs 2004; 4: 281–97PubMedCrossRef Bailey DG, Dresser GR. Interactions between grapefruit juice and cardiovascular drugs. Am J Cardiovasc Drugs 2004; 4: 281–97PubMedCrossRef
101.
Zurück zum Zitat Wang JS, Neuvonen M, Wen X, et al. Gemfibrozil inhibits CYP2C8-mediated cerivastatin metabolism in human liver microsomes. Drug Metab Dispos 2002; 30: 1352–6PubMedCrossRef Wang JS, Neuvonen M, Wen X, et al. Gemfibrozil inhibits CYP2C8-mediated cerivastatin metabolism in human liver microsomes. Drug Metab Dispos 2002; 30: 1352–6PubMedCrossRef
102.
Zurück zum Zitat Shitara Y, Hirano M, Sato H, et al. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther 2004; 311: 228–36PubMedCrossRef Shitara Y, Hirano M, Sato H, et al. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther 2004; 311: 228–36PubMedCrossRef
103.
Zurück zum Zitat Ogilvie BW, Zhang D, Li W, et al. Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug-drug interactions. Drug Metab Dispos 2006; 34: 191–7PubMedCrossRef Ogilvie BW, Zhang D, Li W, et al. Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug-drug interactions. Drug Metab Dispos 2006; 34: 191–7PubMedCrossRef
104.
Zurück zum Zitat Murphy MJ, Dominiczak MH. Efficacy of statin therapy: possible effect of phenytoin. Postgrad Med J 1999; 75: 359–60PubMed Murphy MJ, Dominiczak MH. Efficacy of statin therapy: possible effect of phenytoin. Postgrad Med J 1999; 75: 359–60PubMed
105.
Zurück zum Zitat Hirano M, Maeda R, Shitara Y, et al. Drug-drug interaction between pravastatin and various drugs via OATP1B1. Drug Metab Dispos 2006; 34: 1229–36PubMedCrossRef Hirano M, Maeda R, Shitara Y, et al. Drug-drug interaction between pravastatin and various drugs via OATP1B1. Drug Metab Dispos 2006; 34: 1229–36PubMedCrossRef
106.
Zurück zum Zitat Pan WJ, Gustavson LE, Achari R, et al. Lack of a clinically significant pharmacokinetic interaction between fenofibrate and pravastatin in healthy volunteers. J Clin Pharmacol 2000; 40: 316–23PubMedCrossRef Pan WJ, Gustavson LE, Achari R, et al. Lack of a clinically significant pharmacokinetic interaction between fenofibrate and pravastatin in healthy volunteers. J Clin Pharmacol 2000; 40: 316–23PubMedCrossRef
107.
Zurück zum Zitat Bergman AJ, Murphy G, Burke J, et al. Simvastatin does not have a clinically significant pharmacokinetic interaction with fenofibrate in humans. J Clin Pharmacol 2004; 44: 1054–62PubMedCrossRef Bergman AJ, Murphy G, Burke J, et al. Simvastatin does not have a clinically significant pharmacokinetic interaction with fenofibrate in humans. J Clin Pharmacol 2004; 44: 1054–62PubMedCrossRef
108.
Zurück zum Zitat Graham DJ, Staffa JA, Shatin D, et al. Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA 2004; 292: 2585–90PubMedCrossRef Graham DJ, Staffa JA, Shatin D, et al. Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA 2004; 292: 2585–90PubMedCrossRef
109.
Zurück zum Zitat Jones PH, Davidson MH. Reporting rate of rhabdomyolysis with fenofibrate-statin versus gemfibrozil-any statin. Am J Cardiol 2005; 95: 120–2PubMedCrossRef Jones PH, Davidson MH. Reporting rate of rhabdomyolysis with fenofibrate-statin versus gemfibrozil-any statin. Am J Cardiol 2005; 95: 120–2PubMedCrossRef
110.
111.
Zurück zum Zitat Combalbert J, Fabre I, Fabre G, et al. Metabolism of cyclosporin A: IV. Purification and identification of the rifampicin-inducible human liver cytochrome P-450 (cyclosporin A oxidase) as a product of P450IIIA gene subfamily. Drug Metab Dispos 1989; 17: 197–207PubMed Combalbert J, Fabre I, Fabre G, et al. Metabolism of cyclosporin A: IV. Purification and identification of the rifampicin-inducible human liver cytochrome P-450 (cyclosporin A oxidase) as a product of P450IIIA gene subfamily. Drug Metab Dispos 1989; 17: 197–207PubMed
112.
Zurück zum Zitat Arnadottir M, Eriksson LO, Thysell H, et al. Plasma concentration profiles of simvastatin 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitory activity in kidney transplant recipients with and without ciclosporin. Nephron 1993; 65: 410–3PubMedCrossRef Arnadottir M, Eriksson LO, Thysell H, et al. Plasma concentration profiles of simvastatin 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitory activity in kidney transplant recipients with and without ciclosporin. Nephron 1993; 65: 410–3PubMedCrossRef
113.
Zurück zum Zitat Ichimaru N, Takahara S, Rokado Y, et al. Changes in lipid metabolism and effect of simvastatin in renal transplant recipients induced by cyclosporine or tacrolimus. Atherosclerosis 2001; 158: 417–23PubMedCrossRef Ichimaru N, Takahara S, Rokado Y, et al. Changes in lipid metabolism and effect of simvastatin in renal transplant recipients induced by cyclosporine or tacrolimus. Atherosclerosis 2001; 158: 417–23PubMedCrossRef
114.
Zurück zum Zitat Olbricht C, Wanner C, Eisenhauer T, et al. Accumulation of lovastatin, but not pravastatin, in the blood of cyclosporine-treated kidney graft patients after multiple doses. Clin Pharmacol Ther 1997; 62: 311–21PubMedCrossRef Olbricht C, Wanner C, Eisenhauer T, et al. Accumulation of lovastatin, but not pravastatin, in the blood of cyclosporine-treated kidney graft patients after multiple doses. Clin Pharmacol Ther 1997; 62: 311–21PubMedCrossRef
115.
Zurück zum Zitat Omar MA, Wilson JP. FDA adverse event reports on statin-associated rhabdomyolysis. Ann Pharmacother 2002; 36: 288–95PubMedCrossRef Omar MA, Wilson JP. FDA adverse event reports on statin-associated rhabdomyolysis. Ann Pharmacother 2002; 36: 288–95PubMedCrossRef
116.
Zurück zum Zitat Omar MA, Wilson JP, Cox TS. Rhabdomyolysis and HMG-CoA reductase inhibitors [published erratum appears in Ann Pharmacother 2001; 35: 1296]. Ann Pharmacother 2001; 35: 1096–107PubMedCrossRef Omar MA, Wilson JP, Cox TS. Rhabdomyolysis and HMG-CoA reductase inhibitors [published erratum appears in Ann Pharmacother 2001; 35: 1296]. Ann Pharmacother 2001; 35: 1096–107PubMedCrossRef
117.
Zurück zum Zitat Ballantyne CM, Corsini A, Davidson MH, et al. Risk for myopathy with statin therapy in high-risk patients. Arch Intern Med 2003; 163: 553–64PubMedCrossRef Ballantyne CM, Corsini A, Davidson MH, et al. Risk for myopathy with statin therapy in high-risk patients. Arch Intern Med 2003; 163: 553–64PubMedCrossRef
118.
Zurück zum Zitat Tobert JA. Efficacy and long-term adverse effect pattern of lovastatin. Am J Cardiol 1988; 62: 28J–34JPubMedCrossRef Tobert JA. Efficacy and long-term adverse effect pattern of lovastatin. Am J Cardiol 1988; 62: 28J–34JPubMedCrossRef
119.
Zurück zum Zitat Page 2nd RL, Miller GG, Lindenfeld J. Drug therapy in the heart transplant recipient: part IV. Drug-drug interactions. Circulation 2005; 111: 230–9PubMedCrossRef Page 2nd RL, Miller GG, Lindenfeld J. Drug therapy in the heart transplant recipient: part IV. Drug-drug interactions. Circulation 2005; 111: 230–9PubMedCrossRef
120.
Zurück zum Zitat Lindenfeld J, Page 2nd RL, Zolty R, et al. Drug therapy in the heart transplant recipient: part III. Common medical problems. Circulation 2005; 111: 113–7PubMedCrossRef Lindenfeld J, Page 2nd RL, Zolty R, et al. Drug therapy in the heart transplant recipient: part III. Common medical problems. Circulation 2005; 111: 113–7PubMedCrossRef
121.
Zurück zum Zitat Williams D, Feely J. Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmacokinet 2002; 41: 343–70PubMedCrossRef Williams D, Feely J. Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmacokinet 2002; 41: 343–70PubMedCrossRef
122.
Zurück zum Zitat Tornio A, Pasanen MR, Laitila J, et al. Comparison of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) as inhibitors of cytochrome P450 2C8. Basic Clin Pharmacol Toxicol 2005; 97: 104–8PubMedCrossRef Tornio A, Pasanen MR, Laitila J, et al. Comparison of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) as inhibitors of cytochrome P450 2C8. Basic Clin Pharmacol Toxicol 2005; 97: 104–8PubMedCrossRef
123.
Zurück zum Zitat Andrus MR. Oral anticoagulant drug interactions with statins: case report of fluvastatin and review of the literature. Pharmacotherapy 2004; 24: 285–90PubMedCrossRef Andrus MR. Oral anticoagulant drug interactions with statins: case report of fluvastatin and review of the literature. Pharmacotherapy 2004; 24: 285–90PubMedCrossRef
124.
Zurück zum Zitat Kim M-J, Nafziger AN, Kashuba ADM, et al. Effects of fluvastatin and cigarette smoking on CYP2C9 activity measured using the probe S-warfarin. Eur J Clin Pharmacol 2006; 62: 431–6PubMedCrossRef Kim M-J, Nafziger AN, Kashuba ADM, et al. Effects of fluvastatin and cigarette smoking on CYP2C9 activity measured using the probe S-warfarin. Eur J Clin Pharmacol 2006; 62: 431–6PubMedCrossRef
Metadaten
Titel
Pharmacokinetic Comparison of the Potential Over-the-Counter Statins Simvastatin, Lovastatin, Fluvastatin and Pravastatin
verfasst von
Dr Pertti J. Neuvonen
Janne T. Backman
Mikko Niemi
Publikationsdatum
01.07.2008
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 7/2008
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200847070-00003