Skip to main content
Erschienen in: Drugs 11/2008

01.08.2008 | Leading Article

Cell-Based Influenza Vaccines

Progress to Date

verfasst von: Jennifer M. Audsley, Professor Gregory A. Tannock

Erschienen in: Drugs | Ausgabe 11/2008

Einloggen, um Zugang zu erhalten

Abstract

Human vaccines against influenza have been available for almost 60 years and, until recently, were prepared almost entirely from viruses grown in the allantoic cavity of 9- to 11-day-old embryonated chicken eggs. Manufacture involving eggs is not sufficiently flexible to allow vaccine supplies to be rapidly expanded, especially in the face of an impending pandemic. Other problems may arise from the infections of progenitor flocks that adversely affect egg supplies, and from the manufacturing process itself, where breakdowns in sterility can occur from the occasional contamination of large batches of viral allantoic fluid. In addition, egg-grown viruses exhibit differences in antigenicity from viruses isolated in mammalian cell lines from clinical specimens. These concerns and the probable need for greatly expanded manufacturing capability in the future have been brought into focus in recent years by the limited spread of H5N1 avian influenza infections to humans in several Asian countries. Alternative approaches involving the use of accredited anchorage-dependent and -independent preparations of the African Green monkey kidney (Vero), Madin-Darby canine kidney (MDCK) and other cell lines have been pursued by several manufacturers in recent years. Yields comparable with those obtained in embryonated eggs have been achieved. These improvements have occurred in parallel with newer technologies that allow the growth of cells in newer synthetic media that do not contain animal serum, in order to allay the concerns of regulators about the potential for spread of transmissible spongiform encephalopathies.
Fußnoten
1
The use of trade names is for product identification purposes only and does not imply endorsement.
 
Literatur
1.
Zurück zum Zitat Wilson IA, Cox NJ. Structural basis of immune recognition of influenza virus hemagglutinin. Annu Rev Immunol 1990; 8: 737–71PubMedCrossRef Wilson IA, Cox NJ. Structural basis of immune recognition of influenza virus hemagglutinin. Annu Rev Immunol 1990; 8: 737–71PubMedCrossRef
2.
Zurück zum Zitat Shaw MW, Arden NH, Maassab HF. New aspects of influenza viruses. Clin Microbiol Rev 1992; 5: 74–92PubMed Shaw MW, Arden NH, Maassab HF. New aspects of influenza viruses. Clin Microbiol Rev 1992; 5: 74–92PubMed
3.
Zurück zum Zitat Potter CW. Unique features of influenza viruses, and their implications. Semin Respir Infect 1992; 4: 216–23 Potter CW. Unique features of influenza viruses, and their implications. Semin Respir Infect 1992; 4: 216–23
4.
Zurück zum Zitat Fouchier RA, Munster V, Wallensten A, et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 2005; 79(5): 2814–22PubMedCrossRef Fouchier RA, Munster V, Wallensten A, et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 2005; 79(5): 2814–22PubMedCrossRef
5.
Zurück zum Zitat Wright PF, Webster RG. Orthomyxoviruses. In: Knipe DM, Hawley PM, editors. Fields virology. Phildelphia (PA): Lippincott Williams & Wilkins, 2001: 1564 Wright PF, Webster RG. Orthomyxoviruses. In: Knipe DM, Hawley PM, editors. Fields virology. Phildelphia (PA): Lippincott Williams & Wilkins, 2001: 1564
6.
Zurück zum Zitat Hay AJ, Gregory V, Douglas AR, et al. The evolution of human influenza viruses. Philos Trans R Soc Lond B Biol Sci 2001; 356: 1861–70PubMedCrossRef Hay AJ, Gregory V, Douglas AR, et al. The evolution of human influenza viruses. Philos Trans R Soc Lond B Biol Sci 2001; 356: 1861–70PubMedCrossRef
7.
Zurück zum Zitat WHO. WHO position paper on influenza. WHO Wkly Epidemiol Rec 2005; 80: 277–88 WHO. WHO position paper on influenza. WHO Wkly Epidemiol Rec 2005; 80: 277–88
8.
Zurück zum Zitat Audsley JM, Tannock GA. The role of cell culture vaccines in the control of the next influenza pandemic. Expert Opin Biol Ther 2004; 4(5): 709–17PubMedCrossRef Audsley JM, Tannock GA. The role of cell culture vaccines in the control of the next influenza pandemic. Expert Opin Biol Ther 2004; 4(5): 709–17PubMedCrossRef
9.
Zurück zum Zitat Schild GC, Oxford JS, de Jong JC, et al. Evidence for host-cell selection of influenza virus antigenic variants. Nature 1983; 303: 706–9PubMedCrossRef Schild GC, Oxford JS, de Jong JC, et al. Evidence for host-cell selection of influenza virus antigenic variants. Nature 1983; 303: 706–9PubMedCrossRef
10.
Zurück zum Zitat Robertson JS, Naeve CW, Webster RG, et al. Alterations in the hemagglutinin associated with adaptation of influenza B virus to growth in eggs. Virology 1985; 143(1): 166–74PubMedCrossRef Robertson JS, Naeve CW, Webster RG, et al. Alterations in the hemagglutinin associated with adaptation of influenza B virus to growth in eggs. Virology 1985; 143(1): 166–74PubMedCrossRef
11.
Zurück zum Zitat Oxford JS, Corcoran T, Knott R, et al. Serological studies with influenza A (H1N1) viruses cultivated in eggs or in a canine kidney cell line (MDCK). Bull World Health Organ 1987; 65(2): 181–7PubMed Oxford JS, Corcoran T, Knott R, et al. Serological studies with influenza A (H1N1) viruses cultivated in eggs or in a canine kidney cell line (MDCK). Bull World Health Organ 1987; 65(2): 181–7PubMed
12.
Zurück zum Zitat Katz JM, Naeve CW, Webster RG. Host cell-mediated variation in H3N2 influenza viruses. Virology 1987; 156: 386–95PubMedCrossRef Katz JM, Naeve CW, Webster RG. Host cell-mediated variation in H3N2 influenza viruses. Virology 1987; 156: 386–95PubMedCrossRef
13.
Zurück zum Zitat Robertson JS, Bootman JS, Newman R, et al. Structural changes in the haemagglutinin which accompany egg adaptation of an influenza A(H1N1) virus. Virology 1987; 160(1): 31–7PubMedCrossRef Robertson JS, Bootman JS, Newman R, et al. Structural changes in the haemagglutinin which accompany egg adaptation of an influenza A(H1N1) virus. Virology 1987; 160(1): 31–7PubMedCrossRef
14.
Zurück zum Zitat Katz JM, Webster RG. Antigenic and structural characterization of multiple subpopulations of H3N2 influenza virus from an individual. Virology 1988; 165: 446–56PubMedCrossRef Katz JM, Webster RG. Antigenic and structural characterization of multiple subpopulations of H3N2 influenza virus from an individual. Virology 1988; 165: 446–56PubMedCrossRef
15.
Zurück zum Zitat Wang ML, Katz JM, Webster RG. Extensive heterogeneity in the hemagglutinin of egg-grown influenza viruses from different patients. Virology 1989; 171(1): 275–9PubMedCrossRef Wang ML, Katz JM, Webster RG. Extensive heterogeneity in the hemagglutinin of egg-grown influenza viruses from different patients. Virology 1989; 171(1): 275–9PubMedCrossRef
16.
Zurück zum Zitat Oxford JS, Newman R, Corcoran T, et al. Direct isolation in eggs of influenza A (H1N1) and B viruses with haemagglutinins of different antigenic and amino acid composition. J Gen Virol 1991; 72 (Pt 1): 185–9PubMedCrossRef Oxford JS, Newman R, Corcoran T, et al. Direct isolation in eggs of influenza A (H1N1) and B viruses with haemagglutinins of different antigenic and amino acid composition. J Gen Virol 1991; 72 (Pt 1): 185–9PubMedCrossRef
17.
Zurück zum Zitat Katz JM, Wang M, Webster RG. Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus. J Virol 1990; 64(4): 1808–11PubMed Katz JM, Wang M, Webster RG. Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus. J Virol 1990; 64(4): 1808–11PubMed
18.
Zurück zum Zitat Robertson JS, Bootman JS, Nicolson C, et al. The hemagglutinin of influenza B virus present in clinical material is a single species identical to that of mammalian cell-grown virus. Virology 1990; 179(1): 35–40PubMedCrossRef Robertson JS, Bootman JS, Nicolson C, et al. The hemagglutinin of influenza B virus present in clinical material is a single species identical to that of mammalian cell-grown virus. Virology 1990; 179(1): 35–40PubMedCrossRef
19.
Zurück zum Zitat Robertson JS, Nicolson C, Bootman JS, et al. Sequence analysis of the haemagglutinin (HA) of influenza A (H1N1) viruses present in clinical material and comparison with the HA of laboratory-derived virus. J Gen Virol 1991; 72 (Pt 11): 2671–7PubMedCrossRef Robertson JS, Nicolson C, Bootman JS, et al. Sequence analysis of the haemagglutinin (HA) of influenza A (H1N1) viruses present in clinical material and comparison with the HA of laboratory-derived virus. J Gen Virol 1991; 72 (Pt 11): 2671–7PubMedCrossRef
20.
Zurück zum Zitat Rocha EP, Xu X, Hall HE, et al. Comparison of 10 influenza A (H1N1 and H3N2) haemagglutinin sequences obtained directly from clinical specimens to those of MDCK cell- and egggrown viruses. J Gen Virol 1993; 74 (Pt 11): 2513–8PubMedCrossRef Rocha EP, Xu X, Hall HE, et al. Comparison of 10 influenza A (H1N1 and H3N2) haemagglutinin sequences obtained directly from clinical specimens to those of MDCK cell- and egggrown viruses. J Gen Virol 1993; 74 (Pt 11): 2513–8PubMedCrossRef
21.
Zurück zum Zitat Katz JM, Webster RG. Amino acid sequence identity between the HA1 of influenza A (H3N2) viruses grown in mammalian and primary chick kidney cells. J GenVirol 1992; 73: 1159–65CrossRef Katz JM, Webster RG. Amino acid sequence identity between the HA1 of influenza A (H3N2) viruses grown in mammalian and primary chick kidney cells. J GenVirol 1992; 73: 1159–65CrossRef
22.
Zurück zum Zitat Robertson JS, Nicolson C, Major D, et al. The role of amniotic passage in the egg-adaptation of human influenza virus is revealed by haemagglutinin sequence analyses. J Gen Virol 1993; 74 (Pt 10): 2047–51PubMedCrossRef Robertson JS, Nicolson C, Major D, et al. The role of amniotic passage in the egg-adaptation of human influenza virus is revealed by haemagglutinin sequence analyses. J Gen Virol 1993; 74 (Pt 10): 2047–51PubMedCrossRef
23.
Zurück zum Zitat Ito T, Suzuki Y, Takada A, et al. Differences in sialic acidgalactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. J Virol 1997; 71(4): 3357–62PubMed Ito T, Suzuki Y, Takada A, et al. Differences in sialic acidgalactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. J Virol 1997; 71(4): 3357–62PubMed
24.
Zurück zum Zitat Gambaryan AS, Marinina VP, Tuzikov AB, et al. Effects of host-dependent glycosylation of hemagglutinin on receptorbinding properties on H1N1 human influenza A virus grown in MDCK cells and in embryonated eggs. Virology 1998; 247(2): 170–7PubMedCrossRef Gambaryan AS, Marinina VP, Tuzikov AB, et al. Effects of host-dependent glycosylation of hemagglutinin on receptorbinding properties on H1N1 human influenza A virus grown in MDCK cells and in embryonated eggs. Virology 1998; 247(2): 170–7PubMedCrossRef
25.
Zurück zum Zitat de Jong JC, de Ronde-Verloop FM, Dorpema JW. Testing of the strain identity of influenza vaccines by haemagglutination inhibition. J Biol Stand 1982; 10(3): 175–83PubMedCrossRef de Jong JC, de Ronde-Verloop FM, Dorpema JW. Testing of the strain identity of influenza vaccines by haemagglutination inhibition. J Biol Stand 1982; 10(3): 175–83PubMedCrossRef
26.
Zurück zum Zitat Robertson JS, Cook P, Nicolson C, et al. Mixed populations in influenza virus vaccine strains. Vaccine 1994; 12(14): 1317–22PubMedCrossRef Robertson JS, Cook P, Nicolson C, et al. Mixed populations in influenza virus vaccine strains. Vaccine 1994; 12(14): 1317–22PubMedCrossRef
27.
Zurück zum Zitat Rota PA, Shaw MW, Kendal AP. Comparison of the immune response to variant influenza type B hemagglutinins expressed in vaccinia virus. Virology 1987; 161(2): 269–75PubMedCrossRef Rota PA, Shaw MW, Kendal AP. Comparison of the immune response to variant influenza type B hemagglutinins expressed in vaccinia virus. Virology 1987; 161(2): 269–75PubMedCrossRef
28.
Zurück zum Zitat Rota P, Shaw M, Kendal A. Cross-protection against microvariants of influenza virus type B by vaccinia viruses expressing haemagglutinins from egg- or MDCK cell-derived subpopulations of influenza virus type B/England/222/82. J Gen Virol 1989; 70(6): 1533–7PubMedCrossRef Rota P, Shaw M, Kendal A. Cross-protection against microvariants of influenza virus type B by vaccinia viruses expressing haemagglutinins from egg- or MDCK cell-derived subpopulations of influenza virus type B/England/222/82. J Gen Virol 1989; 70(6): 1533–7PubMedCrossRef
29.
Zurück zum Zitat Wood JM, Oxford JS, Dunleavy U, et al. Influenza A (H1N1) vaccine efficacy in animal models is influenced by two amino acid substitutions in the hemagglutinin molecule. Virology 1989; 171(1): 214–21PubMedCrossRef Wood JM, Oxford JS, Dunleavy U, et al. Influenza A (H1N1) vaccine efficacy in animal models is influenced by two amino acid substitutions in the hemagglutinin molecule. Virology 1989; 171(1): 214–21PubMedCrossRef
30.
Zurück zum Zitat Johansson BE, Kilbourne ED. Influenza vaccine strain selection: equivalence of two antigenically distinct haemagglutinin variants of 1989 H3N2 influenza A virus in protection of mice. Vaccine 1992; 10(9): 603–6PubMedCrossRef Johansson BE, Kilbourne ED. Influenza vaccine strain selection: equivalence of two antigenically distinct haemagglutinin variants of 1989 H3N2 influenza A virus in protection of mice. Vaccine 1992; 10(9): 603–6PubMedCrossRef
31.
Zurück zum Zitat Katz JM, Webster RG. Efficacy of inactivated influenza A virus (H3N2) vaccines grown in mammalian cells or embryonated eggs. J Infect Dis 1989; 160: 191–8PubMedCrossRef Katz JM, Webster RG. Efficacy of inactivated influenza A virus (H3N2) vaccines grown in mammalian cells or embryonated eggs. J Infect Dis 1989; 160: 191–8PubMedCrossRef
32.
Zurück zum Zitat Kodihalli S, Justewicz DM, Gubareva LV, et al. Selection of a single amino acid substitution in the hemagglutinin molecule by chicken eggs can render influenza A virus (H3) candidate vaccine ineffective. J Virol 1995; 69: 4888–97PubMed Kodihalli S, Justewicz DM, Gubareva LV, et al. Selection of a single amino acid substitution in the hemagglutinin molecule by chicken eggs can render influenza A virus (H3) candidate vaccine ineffective. J Virol 1995; 69: 4888–97PubMed
33.
Zurück zum Zitat Newman RW, Jennings R, Major DL, et al. Immune response of human volunteers and animals to vaccination with egg-grown influenza A (H1N1) virus is influenced by three amino acid substitutions in the haemagglutinin molecule. Vaccine 1993; 11(4): 400–6PubMedCrossRef Newman RW, Jennings R, Major DL, et al. Immune response of human volunteers and animals to vaccination with egg-grown influenza A (H1N1) virus is influenced by three amino acid substitutions in the haemagglutinin molecule. Vaccine 1993; 11(4): 400–6PubMedCrossRef
34.
Zurück zum Zitat Gubareva LV, Wood JM, Meyer WJ, et al. Codominant mixtures of viruses in reference strains of influenza virus due to host cell variation. Virology 1994; 199: 89–97PubMedCrossRef Gubareva LV, Wood JM, Meyer WJ, et al. Codominant mixtures of viruses in reference strains of influenza virus due to host cell variation. Virology 1994; 199: 89–97PubMedCrossRef
35.
Zurück zum Zitat Robertson JS, Cook P, Attwell AM, et al. Replicative advantage in tissue culture of egg-adapted influenza virus over tissueculture derived virus: implications for vaccine manufacture. Vaccine 1995; 13(16): 1583–8PubMedCrossRef Robertson JS, Cook P, Attwell AM, et al. Replicative advantage in tissue culture of egg-adapted influenza virus over tissueculture derived virus: implications for vaccine manufacture. Vaccine 1995; 13(16): 1583–8PubMedCrossRef
36.
Zurück zum Zitat Lehmann-Grube F. Influenza viruses in cell cultures. II: use of calf kidney cells for quantal assay. Arch Ges Virusforsch 1964; 14: 177–88PubMedCrossRef Lehmann-Grube F. Influenza viruses in cell cultures. II: use of calf kidney cells for quantal assay. Arch Ges Virusforsch 1964; 14: 177–88PubMedCrossRef
37.
Zurück zum Zitat Klenk H-D, Rott R, Orlich M, et al. Activation of influenza A viruses by trypsin treatment. Virology 1975; 68: 426–39PubMedCrossRef Klenk H-D, Rott R, Orlich M, et al. Activation of influenza A viruses by trypsin treatment. Virology 1975; 68: 426–39PubMedCrossRef
38.
Zurück zum Zitat Zambon M. Cell culture for surveillance of influenza. Dev Biol Stand 1999; 98: 65–71PubMed Zambon M. Cell culture for surveillance of influenza. Dev Biol Stand 1999; 98: 65–71PubMed
39.
Zurück zum Zitat Govorkova EA, Kaverin NV, Gubareva LV, et al. Replication of influenza A viruses in a Green monkey kidney continuous cell line (Vero). J Infect Dis 1995; 172: 250–3PubMedCrossRef Govorkova EA, Kaverin NV, Gubareva LV, et al. Replication of influenza A viruses in a Green monkey kidney continuous cell line (Vero). J Infect Dis 1995; 172: 250–3PubMedCrossRef
40.
Zurück zum Zitat Tobita K, Sugiura A, Enomoto C, et al. Plaque assay and primary isolation of influenza A viruses in an established line of canine kidney cells (MDCK) in the presence of trypsin. Med Microbiol Immunol 1975; 162: 9–14PubMedCrossRef Tobita K, Sugiura A, Enomoto C, et al. Plaque assay and primary isolation of influenza A viruses in an established line of canine kidney cells (MDCK) in the presence of trypsin. Med Microbiol Immunol 1975; 162: 9–14PubMedCrossRef
41.
Zurück zum Zitat Gaush CR, Hard WL, Smith TF. Characterization of an established line of canine kidney cells (MDCK). Proc Soc Exp Biol Med 1966; 166: 931–5 Gaush CR, Hard WL, Smith TF. Characterization of an established line of canine kidney cells (MDCK). Proc Soc Exp Biol Med 1966; 166: 931–5
42.
Zurück zum Zitat Simmons NL. Cultured monolayers of MDCK cells: a novel model system for the study of epithelial development and function. Gen Pharmacol 1982; 13(4): 287–91PubMedCrossRef Simmons NL. Cultured monolayers of MDCK cells: a novel model system for the study of epithelial development and function. Gen Pharmacol 1982; 13(4): 287–91PubMedCrossRef
43.
Zurück zum Zitat Rindler M, Chuman LM, Shaffer L, et al. Retention of differentiated properties in an established dog kidney epithelial cell line (MDCK). J Cell Biol 1979; 81: 635–48PubMedCrossRef Rindler M, Chuman LM, Shaffer L, et al. Retention of differentiated properties in an established dog kidney epithelial cell line (MDCK). J Cell Biol 1979; 81: 635–48PubMedCrossRef
44.
Zurück zum Zitat Gaush CR, Smith TF. Replication and plaque assay of influenza virus in an established line of canine kidney cells. Appl Microbiol 1968; 16: 588–94PubMed Gaush CR, Smith TF. Replication and plaque assay of influenza virus in an established line of canine kidney cells. Appl Microbiol 1968; 16: 588–94PubMed
45.
Zurück zum Zitat Tobita K. Permanent canine kidney (MDCK) cells for isolation and plaque assay of influenza B viruses. Med Microbiol Immunol 1975; 162: 23–7PubMedCrossRef Tobita K. Permanent canine kidney (MDCK) cells for isolation and plaque assay of influenza B viruses. Med Microbiol Immunol 1975; 162: 23–7PubMedCrossRef
46.
Zurück zum Zitat Meguro H, Bryant JD, Torrence AE, et al. Canine kidney cell line for isolation of respiratory viruses. J Clin Microbiol 1979; 9: 175–9PubMed Meguro H, Bryant JD, Torrence AE, et al. Canine kidney cell line for isolation of respiratory viruses. J Clin Microbiol 1979; 9: 175–9PubMed
47.
Zurück zum Zitat Tannock G, Bryce DA, Paul JA. Evaluation of chicken kidney and chicken embryo kidney cultures for the large-scale growth of attenuated influenza master strain A/Ann/Arbor/6/60-ca. Vaccine 1985; 3: 333–9PubMedCrossRef Tannock G, Bryce DA, Paul JA. Evaluation of chicken kidney and chicken embryo kidney cultures for the large-scale growth of attenuated influenza master strain A/Ann/Arbor/6/60-ca. Vaccine 1985; 3: 333–9PubMedCrossRef
48.
Zurück zum Zitat Seo SH, Goloubeva O, Webby R, et al. Characterization of a porcine lung epithelial cell line suitable for influenza virus studies. J Virol 2001; 75(19): 9517–25PubMedCrossRef Seo SH, Goloubeva O, Webby R, et al. Characterization of a porcine lung epithelial cell line suitable for influenza virus studies. J Virol 2001; 75(19): 9517–25PubMedCrossRef
49.
Zurück zum Zitat Fallaux FJ, Bout A, van der Velde I, et al. New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum Gene Ther 1998; 9: 1909–17PubMedCrossRef Fallaux FJ, Bout A, van der Velde I, et al. New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum Gene Ther 1998; 9: 1909–17PubMedCrossRef
50.
Zurück zum Zitat Pau MG, Ophorst C, Koldijk MH, et al. The human cell line PER.C6 provides a new manufacturing system for the production of influenza vaccines. Vaccine 2001; 19: 2716–21PubMedCrossRef Pau MG, Ophorst C, Koldijk MH, et al. The human cell line PER.C6 provides a new manufacturing system for the production of influenza vaccines. Vaccine 2001; 19: 2716–21PubMedCrossRef
51.
Zurück zum Zitat Merten OW, Manuguerra JC, Hannoun C, et al. Production of influenza virus in serum-free mammalian cell cultures. Dev Biol Stand 1999; 98: 23–37PubMed Merten OW, Manuguerra JC, Hannoun C, et al. Production of influenza virus in serum-free mammalian cell cultures. Dev Biol Stand 1999; 98: 23–37PubMed
52.
Zurück zum Zitat Pearson S. Embryonic stem cells: not just from humans. New applications promise to boost drug development and manufacturing. Genet Eng Biotech News 2007; 27(4): 1–3 Pearson S. Embryonic stem cells: not just from humans. New applications promise to boost drug development and manufacturing. Genet Eng Biotech News 2007; 27(4): 1–3
53.
Zurück zum Zitat Mather KA, White JF, Hudson PJ, et al. Expression of influenza neuraminidase in baculovirus-infected cells. Virus Res 1992; 26(2): 127–39PubMedCrossRef Mather KA, White JF, Hudson PJ, et al. Expression of influenza neuraminidase in baculovirus-infected cells. Virus Res 1992; 26(2): 127–39PubMedCrossRef
54.
Zurück zum Zitat Price PM, Reichelderfer CF, Johansson BE, et al. Complementation of recombinant baculoviruses by coinfection with wild-type virus facilitates production in insect larvae of antigenic proteins of hepatitis b virus and influenza virus. Proc Natl Acad Sci U S A 1989; 86(5): 1453–6PubMedCrossRef Price PM, Reichelderfer CF, Johansson BE, et al. Complementation of recombinant baculoviruses by coinfection with wild-type virus facilitates production in insect larvae of antigenic proteins of hepatitis b virus and influenza virus. Proc Natl Acad Sci U S A 1989; 86(5): 1453–6PubMedCrossRef
55.
Zurück zum Zitat Weyer U, Possee R. A baculovirus dual expression vector derived from the Autographa californica nuclear polyhedrosis virus polyhedrin and p10 promoters: co-expression of two influenza virus genes in insect cells. J Gen Virol 1991; 72(12): 2967–74PubMedCrossRef Weyer U, Possee R. A baculovirus dual expression vector derived from the Autographa californica nuclear polyhedrosis virus polyhedrin and p10 promoters: co-expression of two influenza virus genes in insect cells. J Gen Virol 1991; 72(12): 2967–74PubMedCrossRef
56.
Zurück zum Zitat Treanor JJ, Schiff GM, Hayden FG, et al. Safety and immunogenicity of a baculovirus-expressed hemagglutinin influenza vaccine: a randomized controlled trial. JAMA 2007; 297(14): 1577–82PubMedCrossRef Treanor JJ, Schiff GM, Hayden FG, et al. Safety and immunogenicity of a baculovirus-expressed hemagglutinin influenza vaccine: a randomized controlled trial. JAMA 2007; 297(14): 1577–82PubMedCrossRef
57.
Zurück zum Zitat Treanor JJ, Wilkinson BE, Masseoud F, et al. Safety and immunogenicity of a recombinant hemagglutinin vaccine for H5 influenza in humans. Vaccine 2001; 19: 1732–7PubMedCrossRef Treanor JJ, Wilkinson BE, Masseoud F, et al. Safety and immunogenicity of a recombinant hemagglutinin vaccine for H5 influenza in humans. Vaccine 2001; 19: 1732–7PubMedCrossRef
58.
Zurück zum Zitat Griffiths JB. Serum and growth factors in cell culture media: an introductory review. Dev Biol Stand 1987; 66: 155–60PubMed Griffiths JB. Serum and growth factors in cell culture media: an introductory review. Dev Biol Stand 1987; 66: 155–60PubMed
59.
Zurück zum Zitat Merten OW. Development of serum-free media for cell growth and production of viruses/viral vaccines: safety issues of animal products used in serum-free media. Dev Biol Stand 2002; 111: 233–57 Merten OW. Development of serum-free media for cell growth and production of viruses/viral vaccines: safety issues of animal products used in serum-free media. Dev Biol Stand 2002; 111: 233–57
60.
Zurück zum Zitat Keay L. The cultivation of animal cells and production of viruses in serum-free systems. Methods Mol Cell Biol 1978; 20: 169–209 Keay L. The cultivation of animal cells and production of viruses in serum-free systems. Methods Mol Cell Biol 1978; 20: 169–209
61.
Zurück zum Zitat Brands R, Palache AM, van Scharrenburg GJM. Madin Darby canine kidney (MDCK): cells for the production of inactivated influenza subunit vaccine. Safety characteristics and clinical results in the elderly. In: Brown LE, editor. Options for the control of influenza III. Amsterdam: Elsevier Science, 1996: 683–93 Brands R, Palache AM, van Scharrenburg GJM. Madin Darby canine kidney (MDCK): cells for the production of inactivated influenza subunit vaccine. Safety characteristics and clinical results in the elderly. In: Brown LE, editor. Options for the control of influenza III. Amsterdam: Elsevier Science, 1996: 683–93
62.
Zurück zum Zitat Palache AM, Brands R, van Scharrenburg GJ. Immunogenicity and reactogenicity of influenza subunit vaccines produced in MDCK cells or fertilized chicken eggs. J Infect Dis 1997; 176 Suppl. 1: S20–3PubMedCrossRef Palache AM, Brands R, van Scharrenburg GJ. Immunogenicity and reactogenicity of influenza subunit vaccines produced in MDCK cells or fertilized chicken eggs. J Infect Dis 1997; 176 Suppl. 1: S20–3PubMedCrossRef
63.
Zurück zum Zitat Halperin SA, Nestruck A, Eastwood JE. Safety and immunogenicity of a new influenza vaccine grown in mammalian cell culture. Vaccine 1998; 16: 1331–5PubMedCrossRef Halperin SA, Nestruck A, Eastwood JE. Safety and immunogenicity of a new influenza vaccine grown in mammalian cell culture. Vaccine 1998; 16: 1331–5PubMedCrossRef
64.
Zurück zum Zitat Brands R, Visser J, Medema J, et al. Influvac: a safe Madin Darby canine kidney (MDCK) cell culture-based influenza vaccine. Dev Biol Stand 1999; 98: 93–100PubMed Brands R, Visser J, Medema J, et al. Influvac: a safe Madin Darby canine kidney (MDCK) cell culture-based influenza vaccine. Dev Biol Stand 1999; 98: 93–100PubMed
65.
Zurück zum Zitat Palache AM, Scheepers HSJ, de Regt V, et al. Safety, reactogenicity and immunogenicity of Madin Darby Canine Kidney cell-derived inactivated influenza subunit vaccine: a meta-analysis of clinical studies. Dev Biol Stand 1999; 98: 115–25PubMed Palache AM, Scheepers HSJ, de Regt V, et al. Safety, reactogenicity and immunogenicity of Madin Darby Canine Kidney cell-derived inactivated influenza subunit vaccine: a meta-analysis of clinical studies. Dev Biol Stand 1999; 98: 115–25PubMed
66.
Zurück zum Zitat Ghendon YZ, Markushin SG, Akopova II, et al. Development of cell culture (MDCK) live cold-adapted (CA) attenuated influenza vaccine. Vaccine 2005; 23(38): 4678–84PubMedCrossRef Ghendon YZ, Markushin SG, Akopova II, et al. Development of cell culture (MDCK) live cold-adapted (CA) attenuated influenza vaccine. Vaccine 2005; 23(38): 4678–84PubMedCrossRef
67.
Zurück zum Zitat Montagnon BJ. Polio and rabies vaccines produced in continuous cell lines: a reality for Vero cell line. Dev Biol Stand 1989; 70: 27–47PubMed Montagnon BJ. Polio and rabies vaccines produced in continuous cell lines: a reality for Vero cell line. Dev Biol Stand 1989; 70: 27–47PubMed
68.
Zurück zum Zitat Nakamura K, Homma M. Protein synthesis in Vero cells abortively infected with influenza B virus. J Gen Virol 1981; 56(1): 199–202PubMedCrossRef Nakamura K, Homma M. Protein synthesis in Vero cells abortively infected with influenza B virus. J Gen Virol 1981; 56(1): 199–202PubMedCrossRef
69.
Zurück zum Zitat Lau SC, Scholtissek C. Abortive infection of Vero cells by an influenza A vims (FPV). Virology 1995; 212(1): 225–31PubMedCrossRef Lau SC, Scholtissek C. Abortive infection of Vero cells by an influenza A vims (FPV). Virology 1995; 212(1): 225–31PubMedCrossRef
70.
Zurück zum Zitat Kaverin NV, Webster RG. Impairment of multicycle influenza virus growth in Vero (WHO) cells by loss of trypsin activity. J Virol 1995; 69: 2700–3PubMed Kaverin NV, Webster RG. Impairment of multicycle influenza virus growth in Vero (WHO) cells by loss of trypsin activity. J Virol 1995; 69: 2700–3PubMed
71.
Zurück zum Zitat Govorkova EA, Murti G, Meignier B, et al. African Green monkey kidney (Vero) cells provide an alternative host cell system for influenza A and B viruses. J Virol 1996; 70: 5519–24PubMed Govorkova EA, Murti G, Meignier B, et al. African Green monkey kidney (Vero) cells provide an alternative host cell system for influenza A and B viruses. J Virol 1996; 70: 5519–24PubMed
72.
Zurück zum Zitat Kistner O, Barrett PN, Mundt W, et al. Development of a mammalian cell (Vero) derived candidate influenza virus vaccine. Vaccine 1998; 16: 960–8PubMedCrossRef Kistner O, Barrett PN, Mundt W, et al. Development of a mammalian cell (Vero) derived candidate influenza virus vaccine. Vaccine 1998; 16: 960–8PubMedCrossRef
73.
Zurück zum Zitat Kistner O, Barrett PN, Mundt W, et al. Development of a Vero cell-derived influenza whole virus vaccine. Dev Biol Stand 1999; 98: 101–10; discussion 111PubMed Kistner O, Barrett PN, Mundt W, et al. Development of a Vero cell-derived influenza whole virus vaccine. Dev Biol Stand 1999; 98: 101–10; discussion 111PubMed
74.
Zurück zum Zitat Bruhl P, Kerschbaum A, Kistner O, et al. Humoral and cellmediated immunity to Vero cell-derived influenza vaccine. Vaccine 2001; 19: 1149–58CrossRef Bruhl P, Kerschbaum A, Kistner O, et al. Humoral and cellmediated immunity to Vero cell-derived influenza vaccine. Vaccine 2001; 19: 1149–58CrossRef
75.
Zurück zum Zitat Kistner O, Howard MK, Spruth M, et al. Cell culture (Vero) derived whole virus (H5N1) vaccine based on wild-type virus strain induces cross-protective immune responses. Vaccine 2007; 25(32): 6028–36PubMedCrossRef Kistner O, Howard MK, Spruth M, et al. Cell culture (Vero) derived whole virus (H5N1) vaccine based on wild-type virus strain induces cross-protective immune responses. Vaccine 2007; 25(32): 6028–36PubMedCrossRef
76.
Zurück zum Zitat Romanova J, Katinger D, Ferko B, et al. Live cold-adapted influenza A vaccine produced in Vero cell line. Proceedings of the First European Influenza Conference. Virus Res 2004; 103(1-2): 187–93PubMedCrossRef Romanova J, Katinger D, Ferko B, et al. Live cold-adapted influenza A vaccine produced in Vero cell line. Proceedings of the First European Influenza Conference. Virus Res 2004; 103(1-2): 187–93PubMedCrossRef
77.
Zurück zum Zitat Kapteyn JC, Saidi MD, Dijkstra R, et al. Haemagglutinin quantification and identification of influenza A & B strains propagated in PER.C6(R) cells: a novel RP-HPLC method. Vaccine 2006; 24(16): 3137–44PubMedCrossRef Kapteyn JC, Saidi MD, Dijkstra R, et al. Haemagglutinin quantification and identification of influenza A & B strains propagated in PER.C6(R) cells: a novel RP-HPLC method. Vaccine 2006; 24(16): 3137–44PubMedCrossRef
Metadaten
Titel
Cell-Based Influenza Vaccines
Progress to Date
verfasst von
Jennifer M. Audsley
Professor Gregory A. Tannock
Publikationsdatum
01.08.2008
Verlag
Springer International Publishing
Erschienen in
Drugs / Ausgabe 11/2008
Print ISSN: 0012-6667
Elektronische ISSN: 1179-1950
DOI
https://doi.org/10.2165/00003495-200868110-00002

Weitere Artikel der Ausgabe 11/2008

Drugs 11/2008 Zur Ausgabe

Adis Drug Profile

Lutropin Alfa

Adis Drug Evaluation

Irbesartan

Adis Drug Profile

Lutropin Alfa