Skip to main content
Erschienen in: CNS Drugs 11/2007

01.11.2007 | Leading Article

Agmatine

Metabolic Pathway and Spectrum of Activity in Brain

verfasst von: Dr Angelos Halaris, John Plietz

Erschienen in: CNS Drugs | Ausgabe 11/2007

Einloggen, um Zugang zu erhalten

Abstract

Agmatine is an endogenous neuromodulator that, based on animal studies, has the potential for new drug development. As an endogenous aminoguanidine compound (1-amino-4-guanidinobutane), it is structurally unique compared with other monoamines. Agmatine was long thought to be synthesised only in lower life forms, until its biosynthetic pathway (decarboxylation of arginine) was described in the mammalian brain in 1994. Human arginine decarboxylase has been cloned and shown to have 48% identity to ornithine decarboxylase. In neurons of the brain and spinal cord, agmatine is packaged into synaptic vesicles and released upon neuronal depolarisation. Other evidence of a neuromodulation role for agmatine is the presence of a specific cellular uptake mechanism and a specific metabolic enzyme (agmatinase; which forms putrescine).
Initially, agmatine was conceptualised as an endogenous clonidine-displacing substance of imidazoline receptors; however, it has now been established to have affinity for several transmembrane receptors, such as α2-adrenergic, imidazoline I1 and glutamatergic NMDA receptors. In addition to activity at these receptors, agmatine irreversibly inhibits neuronal nitric oxide synthase and downregulates inducible nitric oxide synthase.
Endogenous agmatine is induced in response to stress and/or inflammation. Stressful conditions that induce agmatine include hypoxic-ischaemia and cold-restraint stress of ulcerogenic proportion. Induction of agmatine in the brain seems to occur in astrocytes, although neurons also synthesise agmatine. The effects of injected agmatine in animals include anticonvulsant-, antineurotoxic- and antidepressant-like actions. Intraperitoneal or intracerebroventricular injections of agmatine rapidly elicit antidepressant-like behavioural changes in the rodent forced swim test and tail suspension test. Intraperitoneal injections of agmatine into rats and mice also elicit acute anxiolytic-like behavioural changes in the elevated plus-maze stress test. In an animal model of acute stress disorder, intraperitoneal agmatine injections diminish contextual fear learning. Furthermore, intraperitoneal injections of agmatine reduce alcohol and opioid dependence by diminishing behaviour in a rat conditioned place preference paradigm.
Based on these findings, agmatine appears to be an endogenous neuromodulator of mental stress. The possible roles and/or beneficial effects of agmatine in stress-related disorders, such as depression, anxiety and post-traumatic stress disorder, merit further investigation.
Literatur
1.
Zurück zum Zitat Li G, Regunathan S, Barrow CJ, et al. Agmatine: an endogenous clonidine-displacing substance in the brain. Science 1994; 263: 966–9PubMedCrossRef Li G, Regunathan S, Barrow CJ, et al. Agmatine: an endogenous clonidine-displacing substance in the brain. Science 1994; 263: 966–9PubMedCrossRef
2.
Zurück zum Zitat Satriano J. Arginine pathways and the inflammatory response: interregulation of nitric oxide and polyamines: review article. Amino Acids 2004; 26: 321–9PubMedCrossRef Satriano J. Arginine pathways and the inflammatory response: interregulation of nitric oxide and polyamines: review article. Amino Acids 2004; 26: 321–9PubMedCrossRef
3.
Zurück zum Zitat Zhu M, Iyo A, Piletz J, et al. Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatine. Biochim Biophys Acta 2004; 1670: 156–64PubMedCrossRef Zhu M, Iyo A, Piletz J, et al. Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatine. Biochim Biophys Acta 2004; 1670: 156–64PubMedCrossRef
4.
Zurück zum Zitat Reis DJ, Regunathan S. Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci 2000; 21: 187–93PubMedCrossRef Reis DJ, Regunathan S. Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci 2000; 21: 187–93PubMedCrossRef
5.
Zurück zum Zitat Coleman CS, Hu G, Pegg AE. Putrescine biosynthesis in mammalian tissues. Biochem J 2004; 379: 849–55PubMedCrossRef Coleman CS, Hu G, Pegg AE. Putrescine biosynthesis in mammalian tissues. Biochem J 2004; 379: 849–55PubMedCrossRef
6.
Zurück zum Zitat Iyo AH, Zhu MY, Ordway GA, et al. Expression of arginine decarboxylase in brain regions and neuronal cells. J Neurochem 2006; 96: 1042–50PubMedCrossRef Iyo AH, Zhu MY, Ordway GA, et al. Expression of arginine decarboxylase in brain regions and neuronal cells. J Neurochem 2006; 96: 1042–50PubMedCrossRef
7.
Zurück zum Zitat Goracke-Postle CJ, Nguyen HO, Stone LS, et al. Release of tritiated agmatine from spinal synaptosomes. Neuroreport 2006; 17: 13–7PubMedCrossRef Goracke-Postle CJ, Nguyen HO, Stone LS, et al. Release of tritiated agmatine from spinal synaptosomes. Neuroreport 2006; 17: 13–7PubMedCrossRef
8.
Zurück zum Zitat Reis DJ, Yang XC, Milner TA. Agmatine containing axon terminals in rat hippocampus form synapses on pyramidal cells. Neurosci Lett 1998; 250: 185–8PubMedCrossRef Reis DJ, Yang XC, Milner TA. Agmatine containing axon terminals in rat hippocampus form synapses on pyramidal cells. Neurosci Lett 1998; 250: 185–8PubMedCrossRef
9.
Zurück zum Zitat Su R, Wei X, Zheng J, et al. Anticonvulsive effect of agmatine in mice. Pharmacol Biochem Behav 2004; 77: 345–9PubMedCrossRef Su R, Wei X, Zheng J, et al. Anticonvulsive effect of agmatine in mice. Pharmacol Biochem Behav 2004; 77: 345–9PubMedCrossRef
10.
Zurück zum Zitat Riazi K, Honar H, Homayoun H, et al. The synergistic anticon-vulsant effect of agmatine and morphine: possible role of alpha 2-adrenoceptors. Epilepsy Res 2005; 65: 33–40PubMedCrossRef Riazi K, Honar H, Homayoun H, et al. The synergistic anticon-vulsant effect of agmatine and morphine: possible role of alpha 2-adrenoceptors. Epilepsy Res 2005; 65: 33–40PubMedCrossRef
11.
Zurück zum Zitat Zhu MY, Wang WP, Bissette G. Neuroprotective effects of agmatine against cell damage caused by glucocorticoids in cultured rat hippocampal neurons. Neuroscience 2006; 1414) 2019–27PubMedCrossRef Zhu MY, Wang WP, Bissette G. Neuroprotective effects of agmatine against cell damage caused by glucocorticoids in cultured rat hippocampal neurons. Neuroscience 2006; 1414) 2019–27PubMedCrossRef
12.
Zurück zum Zitat Gilad GM, Gilad VH, Finberg JP, et al. Neurochemical evidence for agmatine modulation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity. Neurochem Res 2005; 30: 713–9PubMedCrossRef Gilad GM, Gilad VH, Finberg JP, et al. Neurochemical evidence for agmatine modulation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity. Neurochem Res 2005; 30: 713–9PubMedCrossRef
13.
Zurück zum Zitat Wang WP, Iyo AH, Miguel-Hidalgo J, et al. Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons. Brain Res 2006; 1084: 210–6PubMedCrossRef Wang WP, Iyo AH, Miguel-Hidalgo J, et al. Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons. Brain Res 2006; 1084: 210–6PubMedCrossRef
14.
Zurück zum Zitat Halaris A, Piletz J. Relevance of imidazoline receptors and agmatine to psychiatry: a decade of progress. Ann N Y Acad Sci 2003; 1009: 1–20PubMedCrossRef Halaris A, Piletz J. Relevance of imidazoline receptors and agmatine to psychiatry: a decade of progress. Ann N Y Acad Sci 2003; 1009: 1–20PubMedCrossRef
15.
Zurück zum Zitat Aricioglu F, Regunathan S. Agmatine attenuates stress- and lipopolysaccharide-induced fever in rats. Physiol Behav 2005; 85: 370–5PubMedCrossRef Aricioglu F, Regunathan S. Agmatine attenuates stress- and lipopolysaccharide-induced fever in rats. Physiol Behav 2005; 85: 370–5PubMedCrossRef
16.
Zurück zum Zitat Reis DJ, Piletz JE. The imidazoline receptor in control of blood pressure by clonidine and allied drugs. Am J Physiol 1997; 273: R1569–71PubMed Reis DJ, Piletz JE. The imidazoline receptor in control of blood pressure by clonidine and allied drugs. Am J Physiol 1997; 273: R1569–71PubMed
17.
Zurück zum Zitat Eglen RM, Hudson AL, Kendall DA, et al. ‘Seeing through a glass darkly’: casting light on imidazoline ‘I’ sites. Trends Pharmacol Sci 1998; 19: 381–90PubMedCrossRef Eglen RM, Hudson AL, Kendall DA, et al. ‘Seeing through a glass darkly’: casting light on imidazoline ‘I’ sites. Trends Pharmacol Sci 1998; 19: 381–90PubMedCrossRef
18.
Zurück zum Zitat Raasch W, Schafer U, Qadri F, et al. Agmatine, an endogenous ligand at imidazoline binding sites, does not antagonize the clonidine-mediated blood pressure reaction. Br J Pharmacol 2002; 135: 663–72PubMedCrossRef Raasch W, Schafer U, Qadri F, et al. Agmatine, an endogenous ligand at imidazoline binding sites, does not antagonize the clonidine-mediated blood pressure reaction. Br J Pharmacol 2002; 135: 663–72PubMedCrossRef
19.
Zurück zum Zitat Reis DJ, Li G, Regunathan S. Endogenous ligands of imidazoline receptors: classic and immunoreactive clonidine-displacing substance and agmatine. Ann N Y Acad Sci 1995; 763: 295–313PubMedCrossRef Reis DJ, Li G, Regunathan S. Endogenous ligands of imidazoline receptors: classic and immunoreactive clonidine-displacing substance and agmatine. Ann N Y Acad Sci 1995; 763: 295–313PubMedCrossRef
20.
Zurück zum Zitat Aricioglu F, Regunathan S, Piletz J. Is agmatine an endogenous factor against stress?Ann N Y Acad Sci 2003; 1009: 127–32PubMedCrossRef Aricioglu F, Regunathan S, Piletz J. Is agmatine an endogenous factor against stress?Ann N Y Acad Sci 2003; 1009: 127–32PubMedCrossRef
21.
Zurück zum Zitat Wu N, Su R, Xu B, et al. IRAS, a candidate for I(l)-imidazoline receptor, mediates inhibitory effect of agmatine on cellular morphine dependence. Biochem Pharmacol 2005; 70 (7): 1079-87 Wu N, Su R, Xu B, et al. IRAS, a candidate for I(l)-imidazoline receptor, mediates inhibitory effect of agmatine on cellular morphine dependence. Biochem Pharmacol 2005; 70 (7): 1079-87
22.
Zurück zum Zitat Wu N, Su RB, Liu Y, et al. Modulation of agmatine on calcium signal in morphine-dependent CHO cells by activation of IRAS, a candidate for imidazoline I1 receptor. Eur J Pharmacol 2006; 548(1-3): 21–8PubMedCrossRef Wu N, Su RB, Liu Y, et al. Modulation of agmatine on calcium signal in morphine-dependent CHO cells by activation of IRAS, a candidate for imidazoline I1 receptor. Eur J Pharmacol 2006; 548(1-3): 21–8PubMedCrossRef
23.
Zurück zum Zitat Olmos G, DeGregorio-Rocasolano N, Paz Regalado M, et al. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. Br J Pharmacol 1999; 127: 1317–26PubMedCrossRef Olmos G, DeGregorio-Rocasolano N, Paz Regalado M, et al. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. Br J Pharmacol 1999; 127: 1317–26PubMedCrossRef
24.
Zurück zum Zitat Yang XC, Reis DJ. Agmatine selectively blocks the N-methyl-D-aspartate subclass of glutamate receptor channels in rat hippocampal neurons. J Pharmacol Exp Ther 1999; 288: 544–9PubMed Yang XC, Reis DJ. Agmatine selectively blocks the N-methyl-D-aspartate subclass of glutamate receptor channels in rat hippocampal neurons. J Pharmacol Exp Ther 1999; 288: 544–9PubMed
25.
Zurück zum Zitat Galea E, Regunathan S, Eliopoulos V, et al. Inhibition of mammalian nitric oxide synthases by agmatine, an endogenous polyamine formed by decarboxylation of arginine. Biochem J 1996; 316: 247–9PubMed Galea E, Regunathan S, Eliopoulos V, et al. Inhibition of mammalian nitric oxide synthases by agmatine, an endogenous polyamine formed by decarboxylation of arginine. Biochem J 1996; 316: 247–9PubMed
26.
Zurück zum Zitat Demady DR, Jianmongkol S, Vuletich JL, et al. Agmatine enhances the NADPH oxidase activity of neuronal NO synthase and leads to oxidative inactivation of the enzyme. Mol Pharmacol 2001; 59: 24–9PubMed Demady DR, Jianmongkol S, Vuletich JL, et al. Agmatine enhances the NADPH oxidase activity of neuronal NO synthase and leads to oxidative inactivation of the enzyme. Mol Pharmacol 2001; 59: 24–9PubMed
27.
Zurück zum Zitat Regunathan S, Piletz J. Regulation of inducible nitric oxide synthase and agmatine synthesis in macrophages and astrocytes. Ann N Y Acad Sci 2003 Dec; 1009: 20–9PubMedCrossRef Regunathan S, Piletz J. Regulation of inducible nitric oxide synthase and agmatine synthesis in macrophages and astrocytes. Ann N Y Acad Sci 2003 Dec; 1009: 20–9PubMedCrossRef
28.
Zurück zum Zitat Piletz J, May P, Wang G, et al. Agmatine crosses the blood-brain barrier. Ann N Y Acad Sci 2003; 1009: 64–74PubMedCrossRef Piletz J, May P, Wang G, et al. Agmatine crosses the blood-brain barrier. Ann N Y Acad Sci 2003; 1009: 64–74PubMedCrossRef
29.
Zurück zum Zitat Zomkowski AD, Hammes L, Lin J, et al. Agmatine produces antidepressant-like effects in two models of depression in mice. Neuroreport 2002; 13: 387–91PubMedCrossRef Zomkowski AD, Hammes L, Lin J, et al. Agmatine produces antidepressant-like effects in two models of depression in mice. Neuroreport 2002; 13: 387–91PubMedCrossRef
30.
Zurück zum Zitat Aricioglu F, Altunbas H. Is agmatine an endogenous anxiolytic/ antidepressant agent? Ann N Y Acad Sci 2003; 1009: 136–40PubMedCrossRef Aricioglu F, Altunbas H. Is agmatine an endogenous anxiolytic/ antidepressant agent? Ann N Y Acad Sci 2003; 1009: 136–40PubMedCrossRef
31.
Zurück zum Zitat Li Y, Gong Z, Cao J, et al. Antidepressant-like effect of agmatine and its possible mechanism. Eur J Pharmacol 2003; 469: 81–8PubMedCrossRef Li Y, Gong Z, Cao J, et al. Antidepressant-like effect of agmatine and its possible mechanism. Eur J Pharmacol 2003; 469: 81–8PubMedCrossRef
32.
Zurück zum Zitat Lavinsky D, Arteni N, Netto C. Agmatine induces anxiolysis in the elevated plus maze task in adult rats. Behav Brain Res 2003; 141: 19–24PubMedCrossRef Lavinsky D, Arteni N, Netto C. Agmatine induces anxiolysis in the elevated plus maze task in adult rats. Behav Brain Res 2003; 141: 19–24PubMedCrossRef
33.
Zurück zum Zitat Stewart LS, McKay BE. Acquisition deficit and time-dependent retrograde amnesia for contextual fear conditioning in agmatine-treated rats. Behav Pharmacol 2000; 11: 93–7PubMedCrossRef Stewart LS, McKay BE. Acquisition deficit and time-dependent retrograde amnesia for contextual fear conditioning in agmatine-treated rats. Behav Pharmacol 2000; 11: 93–7PubMedCrossRef
34.
Zurück zum Zitat Uzbay IT, Yesilyurt O, Celik T, et al. Effects of agmatine on ethanol withdrawal syndrome in rats. Behav Brain Res 2000; 107: 153–9PubMedCrossRef Uzbay IT, Yesilyurt O, Celik T, et al. Effects of agmatine on ethanol withdrawal syndrome in rats. Behav Brain Res 2000; 107: 153–9PubMedCrossRef
35.
Zurück zum Zitat Aricioglu F, Means A, Regunathan S. Effect of agmatine on the development of morphine dependence in rats: potential role of cAMP system. Eur J Pharmacol 2004; 504: 191–7PubMedCrossRef Aricioglu F, Means A, Regunathan S. Effect of agmatine on the development of morphine dependence in rats: potential role of cAMP system. Eur J Pharmacol 2004; 504: 191–7PubMedCrossRef
36.
Zurück zum Zitat Wei X, Su R, Lu X, et al. Inhibition by agmatine on morphine-induced conditioned place preference in rats. Eur J Pharmacol 2005; 515: 99–106PubMedCrossRef Wei X, Su R, Lu X, et al. Inhibition by agmatine on morphine-induced conditioned place preference in rats. Eur J Pharmacol 2005; 515: 99–106PubMedCrossRef
37.
Zurück zum Zitat Fullerton CS, Ursano RJ, Wang L. Acute stress disorder, post-traumatic stress disorder, and depression in disaster or rescue workers. Am J Psychiatry 2004; 161: 1370–6PubMedCrossRef Fullerton CS, Ursano RJ, Wang L. Acute stress disorder, post-traumatic stress disorder, and depression in disaster or rescue workers. Am J Psychiatry 2004; 161: 1370–6PubMedCrossRef
39.
Zurück zum Zitat Molderings G, Bruss M, Bonisch H, et al. Identification and pharmacological characterization of a specific agmatine transport system in human tumor cell lines. Ann N Y Acad Sci 2003; 1009: 75–81PubMedCrossRef Molderings G, Bruss M, Bonisch H, et al. Identification and pharmacological characterization of a specific agmatine transport system in human tumor cell lines. Ann N Y Acad Sci 2003; 1009: 75–81PubMedCrossRef
40.
Zurück zum Zitat Mistry SK, Burwell TJ, Chambers RM, et al. Cloning of human agmatinase: an alternate path for polyamine synthesis induced in liver by hepatitis B virus. Am J Physiol Gastrointest Liver Physiol 2002; 282: G375–81PubMed Mistry SK, Burwell TJ, Chambers RM, et al. Cloning of human agmatinase: an alternate path for polyamine synthesis induced in liver by hepatitis B virus. Am J Physiol Gastrointest Liver Physiol 2002; 282: G375–81PubMed
41.
Zurück zum Zitat Iyer R, Kim H, Tsoa R, et al. Cloning and characterization of human agmatinase. Mol Genet Metab 2002; 75: 209–18PubMedCrossRef Iyer R, Kim H, Tsoa R, et al. Cloning and characterization of human agmatinase. Mol Genet Metab 2002; 75: 209–18PubMedCrossRef
42.
Zurück zum Zitat Morris S. Recent advances in arginine metabolism. Curr Opin Clin Nutr Metab Care 2004; 7: 45–51PubMedCrossRef Morris S. Recent advances in arginine metabolism. Curr Opin Clin Nutr Metab Care 2004; 7: 45–51PubMedCrossRef
43.
Zurück zum Zitat Gorbatyuk OS, Milner TA, Wang G, et al. Localization of agmatine in vasopressin and oxytocin neurons of the rat hypothalamic paraventricular and supraoptic nuclei. Exp Neurol 2001; 171: 235–45PubMedCrossRef Gorbatyuk OS, Milner TA, Wang G, et al. Localization of agmatine in vasopressin and oxytocin neurons of the rat hypothalamic paraventricular and supraoptic nuclei. Exp Neurol 2001; 171: 235–45PubMedCrossRef
44.
Zurück zum Zitat Piletz JE, Chikkala DN, Ernsberger P. Comparison of the properties of agmatine and endogenous clonidine-displacing substance at imidazoline and alpha-2 adrenergic receptors. J Pharmacol Exp Ther 1995; 272: 581–7PubMed Piletz JE, Chikkala DN, Ernsberger P. Comparison of the properties of agmatine and endogenous clonidine-displacing substance at imidazoline and alpha-2 adrenergic receptors. J Pharmacol Exp Ther 1995; 272: 581–7PubMed
45.
Zurück zum Zitat Zheng J, Weng X, Gai X, et al. Mechanism underlying blockade of voltage-gated calcium channels by agmatine in cultured rat hippocampal neurons. Acta Pharmacol Sin 2004; 25: 281–5PubMed Zheng J, Weng X, Gai X, et al. Mechanism underlying blockade of voltage-gated calcium channels by agmatine in cultured rat hippocampal neurons. Acta Pharmacol Sin 2004; 25: 281–5PubMed
46.
Zurück zum Zitat Askalany A, Yamakura T, Petrenko A, et al. Effect of agmatine on heteromeric N-methyl-d-aspartate receptor channels. Neurosci Res 2005; 52: 387–92PubMedCrossRef Askalany A, Yamakura T, Petrenko A, et al. Effect of agmatine on heteromeric N-methyl-d-aspartate receptor channels. Neurosci Res 2005; 52: 387–92PubMedCrossRef
47.
Zurück zum Zitat Loring RH. Agmatine acts as an antagonist of neuronal nicotinic receptors. Br J Pharmacol 1990; 99: 207–11PubMedCrossRef Loring RH. Agmatine acts as an antagonist of neuronal nicotinic receptors. Br J Pharmacol 1990; 99: 207–11PubMedCrossRef
48.
Zurück zum Zitat Molderings GJ, Schmidt K, Bonisch H, et al. Inhibition of 5-HT3 receptor function by imidazolines in mouse neuroblastoma cells: potential involvement of sigma 2 binding sites. Naunyn Schmiedebergs Arch Pharmacol 1996; 354: 245–52PubMedCrossRef Molderings GJ, Schmidt K, Bonisch H, et al. Inhibition of 5-HT3 receptor function by imidazolines in mouse neuroblastoma cells: potential involvement of sigma 2 binding sites. Naunyn Schmiedebergs Arch Pharmacol 1996; 354: 245–52PubMedCrossRef
49.
Zurück zum Zitat Otake K, Ruggiero DA, Regunathan S, et al. Regional localization of agmatine in the rat brain: an immunocytochemical study. Brain Res 1998; 787: 1–14PubMedCrossRef Otake K, Ruggiero DA, Regunathan S, et al. Regional localization of agmatine in the rat brain: an immunocytochemical study. Brain Res 1998; 787: 1–14PubMedCrossRef
50.
Zurück zum Zitat Sastre M, Regunathan S, Reis DJ. Uptake of agmatine into rat brain synaptosomes: possible role of cation channels. J Neurochem 1997; 69: 2421–6PubMedCrossRef Sastre M, Regunathan S, Reis DJ. Uptake of agmatine into rat brain synaptosomes: possible role of cation channels. J Neurochem 1997; 69: 2421–6PubMedCrossRef
51.
Zurück zum Zitat Molderings G, Heinen A, Menzel S, et al. Gastrointestinal uptake of agmatine: distribution in tissues and organs and pathophysiologic relevance. Ann N Y Acad Sci 2003; 1009: 44–51PubMedCrossRef Molderings G, Heinen A, Menzel S, et al. Gastrointestinal uptake of agmatine: distribution in tissues and organs and pathophysiologic relevance. Ann N Y Acad Sci 2003; 1009: 44–51PubMedCrossRef
52.
Zurück zum Zitat Sastre M, Regunathan S, Galea E, et al. Agmatinase activity in rat brain: a metabolic pathway for the degradation of agmatine. J Neurochem 1996; 67: 1761–5PubMedCrossRef Sastre M, Regunathan S, Galea E, et al. Agmatinase activity in rat brain: a metabolic pathway for the degradation of agmatine. J Neurochem 1996; 67: 1761–5PubMedCrossRef
53.
Zurück zum Zitat Auguet M, Viossat I, Marin JG, et al. Selective inhibition of inducible nitric oxide synthase by agmatine. Jpn J Pharmacol 1995; 69: 285–7PubMedCrossRef Auguet M, Viossat I, Marin JG, et al. Selective inhibition of inducible nitric oxide synthase by agmatine. Jpn J Pharmacol 1995; 69: 285–7PubMedCrossRef
54.
Zurück zum Zitat Feng Y, LeBlanc MH, Regunathan S. Agmatine reduces extracellular glutamate during pentylenetetrazole-induced seizures in rat brain: a potential mechanism for the anticonvulsive effects. Neurosci Lett 2005; 390: 129–33PubMedCrossRef Feng Y, LeBlanc MH, Regunathan S. Agmatine reduces extracellular glutamate during pentylenetetrazole-induced seizures in rat brain: a potential mechanism for the anticonvulsive effects. Neurosci Lett 2005; 390: 129–33PubMedCrossRef
55.
Zurück zum Zitat Abe K, Abe Y, Saito H. Agmatine suppresses nitric oxide production in microglia. Brain Res 2000; 872: 141–8PubMedCrossRef Abe K, Abe Y, Saito H. Agmatine suppresses nitric oxide production in microglia. Brain Res 2000; 872: 141–8PubMedCrossRef
56.
Zurück zum Zitat Abe K, Abe Y, Saito H. Agmatine induces glutamate release and cell death in cultured rat cerebellar granule neurons. Brain Res 2003; 990: 165–71PubMedCrossRef Abe K, Abe Y, Saito H. Agmatine induces glutamate release and cell death in cultured rat cerebellar granule neurons. Brain Res 2003; 990: 165–71PubMedCrossRef
57.
Zurück zum Zitat Satriano J, Schwartz D, Ishizuka S, et al. Suppression of inducible nitric oxide generation by agmatine aldehyde: beneficial effects in sepsis. J Cell Physiol 2001; 188: 313–20PubMedCrossRef Satriano J, Schwartz D, Ishizuka S, et al. Suppression of inducible nitric oxide generation by agmatine aldehyde: beneficial effects in sepsis. J Cell Physiol 2001; 188: 313–20PubMedCrossRef
58.
Zurück zum Zitat Khoshnoodi MA, Motiei-Langroudi R, Tahsili-Fahadan P, et al. Involvement of nitric oxide system in enhancement of morphine-induced conditioned place preference by agmatine in male mice. Neurosci Lett 2006; 399(3): 234–9PubMedCrossRef Khoshnoodi MA, Motiei-Langroudi R, Tahsili-Fahadan P, et al. Involvement of nitric oxide system in enhancement of morphine-induced conditioned place preference by agmatine in male mice. Neurosci Lett 2006; 399(3): 234–9PubMedCrossRef
59.
Zurück zum Zitat Roberts J, Grocholski B, Kitto K, et al. Pharmacodynamic and pharmacokinetic studies of agmatine after spinal administration in the mouse. J Pharmacol Exp Ther 2005; 314: 1226–33PubMedCrossRef Roberts J, Grocholski B, Kitto K, et al. Pharmacodynamic and pharmacokinetic studies of agmatine after spinal administration in the mouse. J Pharmacol Exp Ther 2005; 314: 1226–33PubMedCrossRef
60.
Zurück zum Zitat Feng Y, Halaris AE, Piletz JE. Determination of agmatine in brain and plasma using high-performance liquid chromatography with fluorescence detection [published erratum appears in J Chromatogr B Biomed Sci Appl 1997 Aug 15; 696 (1): 173]. J Chromatogr B Biomed Sci Appl 1997; 691(2): 277–82PubMedCrossRef Feng Y, Halaris AE, Piletz JE. Determination of agmatine in brain and plasma using high-performance liquid chromatography with fluorescence detection [published erratum appears in J Chromatogr B Biomed Sci Appl 1997 Aug 15; 696 (1): 173]. J Chromatogr B Biomed Sci Appl 1997; 691(2): 277–82PubMedCrossRef
61.
Zurück zum Zitat Zhang W, Kaye D. Simultaneous determination of arginine and seven metabolites in plasma by reversed-phase liquid chromatography with a time-controlled ortho-phthaldialdehyde precolumn derivatization. Anal Biochem 2004; 326: 87–92PubMedCrossRef Zhang W, Kaye D. Simultaneous determination of arginine and seven metabolites in plasma by reversed-phase liquid chromatography with a time-controlled ortho-phthaldialdehyde precolumn derivatization. Anal Biochem 2004; 326: 87–92PubMedCrossRef
62.
Zurück zum Zitat Zhao S, Wang B, Yuan H, et al. Determination of agmatine in biological samples by capillary electrophoresis with optical fiber light-emitting-diode-induced fluorescence detector. J Chromatogr A 2006; 1123: 138–41PubMedCrossRef Zhao S, Wang B, Yuan H, et al. Determination of agmatine in biological samples by capillary electrophoresis with optical fiber light-emitting-diode-induced fluorescence detector. J Chromatogr A 2006; 1123: 138–41PubMedCrossRef
63.
Zurück zum Zitat Dias Elpo Zomkowski A, Oscar Rosa A, Lin J, et al. Evidence for serotonin receptor subtypes involvement in agmatine antidepressant like-effect in the mouse forced swimming test. Brain Res 2004; 1023: 253–63PubMedCrossRef Dias Elpo Zomkowski A, Oscar Rosa A, Lin J, et al. Evidence for serotonin receptor subtypes involvement in agmatine antidepressant like-effect in the mouse forced swimming test. Brain Res 2004; 1023: 253–63PubMedCrossRef
64.
Zurück zum Zitat Zomkowski A, Santos A, Rodrigues A. Evidence for the involvement of the opioid system in the agmatine antidepressant-like effect in the forced swimming test. Neurosci Lett 2005; 381: 279–83PubMedCrossRef Zomkowski A, Santos A, Rodrigues A. Evidence for the involvement of the opioid system in the agmatine antidepressant-like effect in the forced swimming test. Neurosci Lett 2005; 381: 279–83PubMedCrossRef
65.
Zurück zum Zitat Gonzalez C, Regunathan S, Reis DJ, et al. Agmatine, an endogenous modulator of noradrenergic neurotransmission in the rat tail artery. Br J Pharmacol 1996; 119: 677–84PubMedCrossRef Gonzalez C, Regunathan S, Reis DJ, et al. Agmatine, an endogenous modulator of noradrenergic neurotransmission in the rat tail artery. Br J Pharmacol 1996; 119: 677–84PubMedCrossRef
66.
Zurück zum Zitat Zhao D, Ren L. Non-adrenergic inhibition at prejunctional sites by agmatine of purinergic vasoconstriction in rabbit saphenous artery. Neuropharmacology 2005; 48: 597–606PubMedCrossRef Zhao D, Ren L. Non-adrenergic inhibition at prejunctional sites by agmatine of purinergic vasoconstriction in rabbit saphenous artery. Neuropharmacology 2005; 48: 597–606PubMedCrossRef
67.
Zurück zum Zitat Wang H, Regunathan S, Youngson C, et al. An antibody to agmatine localizes the amine in bovine adrenal chromaffin cells. Neurosci Lett 1995; 183: 17–21PubMedCrossRef Wang H, Regunathan S, Youngson C, et al. An antibody to agmatine localizes the amine in bovine adrenal chromaffin cells. Neurosci Lett 1995; 183: 17–21PubMedCrossRef
68.
Zurück zum Zitat Regunathan S, Youngson C, Raasch W, et al. Imidazoline receptors and agmatine in blood vessels: a novel system inhibiting vascular smooth muscle proliferation. J Pharmacol Exp Ther 1996; 276: 1272–82PubMed Regunathan S, Youngson C, Raasch W, et al. Imidazoline receptors and agmatine in blood vessels: a novel system inhibiting vascular smooth muscle proliferation. J Pharmacol Exp Ther 1996; 276: 1272–82PubMed
69.
Zurück zum Zitat Briaud S, Zhang BL, Sannajust F. Central actions of agmatine in conscious spontaneously hypertensive rats. Clin Exp Hypertens 2005; 27: 619–27PubMedCrossRef Briaud S, Zhang BL, Sannajust F. Central actions of agmatine in conscious spontaneously hypertensive rats. Clin Exp Hypertens 2005; 27: 619–27PubMedCrossRef
70.
Zurück zum Zitat Tahsili-Fahadan P, Yahyavi-Firouz-Abadi N, Khoshnoodi MA, et al. Agmatine potentiates morphine-induced conditioned place preference in mice: modulation by alpha(2)-adrenoceptors. Neuropsychopharmacology 2006; 31(8): 1722–32PubMedCrossRef Tahsili-Fahadan P, Yahyavi-Firouz-Abadi N, Khoshnoodi MA, et al. Agmatine potentiates morphine-induced conditioned place preference in mice: modulation by alpha(2)-adrenoceptors. Neuropsychopharmacology 2006; 31(8): 1722–32PubMedCrossRef
71.
Zurück zum Zitat Sener A, Lebrun P, Blachier F, et al. Stimulus-secretion coupling of arginine-induced insulin release: insulinotropic action of agmatine. Biochem Pharmacol 1989; 38: 327–30PubMedCrossRef Sener A, Lebrun P, Blachier F, et al. Stimulus-secretion coupling of arginine-induced insulin release: insulinotropic action of agmatine. Biochem Pharmacol 1989; 38: 327–30PubMedCrossRef
72.
Zurück zum Zitat Kalra SP, Pearson E, Sahu A, et al. Agmatine, a novel hypothalamic amine, stimulates pituitary luteinizing hormone release in vivo and hypothalamic luteinizing hormone-releasing hormone release in vitro. Neurosci Lett 1995; 194: 165–8PubMedCrossRef Kalra SP, Pearson E, Sahu A, et al. Agmatine, a novel hypothalamic amine, stimulates pituitary luteinizing hormone release in vivo and hypothalamic luteinizing hormone-releasing hormone release in vitro. Neurosci Lett 1995; 194: 165–8PubMedCrossRef
73.
Zurück zum Zitat Molderings GJ, Gothert M. Inhibitory presynaptic imidazoline receptors on sympathetic nerves in the rabbit aorta differ from I1- and I2-imidazoline binding sites. Naunyn Schmiedebergs Arch Pharmacol 1995; 351: 507–16PubMed Molderings GJ, Gothert M. Inhibitory presynaptic imidazoline receptors on sympathetic nerves in the rabbit aorta differ from I1- and I2-imidazoline binding sites. Naunyn Schmiedebergs Arch Pharmacol 1995; 351: 507–16PubMed
74.
Zurück zum Zitat Regunathan S, Feinstein DL, Reis DJ. Anti-proliferative and anti-inflammatory actions of imidazoline agents: are imidazoline receptors involved? Ann N Y Acad Sci 1999; 881: 410–9PubMedCrossRef Regunathan S, Feinstein DL, Reis DJ. Anti-proliferative and anti-inflammatory actions of imidazoline agents: are imidazoline receptors involved? Ann N Y Acad Sci 1999; 881: 410–9PubMedCrossRef
75.
Zurück zum Zitat Gilad VH, Rabey JM, Kimiagar Y, et al. The polyamine stress response: tissue-, endocrine-, and developmental-dependent regulation. Biochem Pharmacol 2001; 61: 207–13PubMedCrossRef Gilad VH, Rabey JM, Kimiagar Y, et al. The polyamine stress response: tissue-, endocrine-, and developmental-dependent regulation. Biochem Pharmacol 2001; 61: 207–13PubMedCrossRef
76.
Zurück zum Zitat Gilad GM, Gilad VH. Overview of the brain polyamine-stress-response: regulation, development, and modulation by lithium and role in cell survival. Cell Mol Neurobiol 2003; 23: 637–49PubMedCrossRef Gilad GM, Gilad VH. Overview of the brain polyamine-stress-response: regulation, development, and modulation by lithium and role in cell survival. Cell Mol Neurobiol 2003; 23: 637–49PubMedCrossRef
77.
Zurück zum Zitat Gilad GM, Gilad VH. Brain polyamine stress response: recurrence after repetitive Stressor and inhibition by lithium. J Neurochem 1996; 67: 1992–6PubMedCrossRef Gilad GM, Gilad VH. Brain polyamine stress response: recurrence after repetitive Stressor and inhibition by lithium. J Neurochem 1996; 67: 1992–6PubMedCrossRef
78.
Zurück zum Zitat Elgun S, Kumbasar H. Increased serum arginase activity in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 2000; 24: 227–32PubMedCrossRef Elgun S, Kumbasar H. Increased serum arginase activity in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 2000; 24: 227–32PubMedCrossRef
79.
Zurück zum Zitat Halaris A, Zhu H, Feng Y, et al. Plasma agmatine and platelet imidazoline receptors in depression. Ann N Y Acad Sci 1999; 881: 445–51PubMedCrossRef Halaris A, Zhu H, Feng Y, et al. Plasma agmatine and platelet imidazoline receptors in depression. Ann N Y Acad Sci 1999; 881: 445–51PubMedCrossRef
80.
Zurück zum Zitat Sastre M, Galea E, Feinstein D, et al. Metabolism of agmatine in macrophages: modulation by lipopolysaccharide and inhibitory cytokines. Biochem J 1998; 330: 1405–9PubMed Sastre M, Galea E, Feinstein D, et al. Metabolism of agmatine in macrophages: modulation by lipopolysaccharide and inhibitory cytokines. Biochem J 1998; 330: 1405–9PubMed
81.
Zurück zum Zitat Gilad GM, Gilad VH, Rabey JM. Arginine and ornithine decar-boxylation in rodent brain: coincidental changes during development and after ischemia. Neurosci Lett 1996; 216: 33–6PubMedCrossRef Gilad GM, Gilad VH, Rabey JM. Arginine and ornithine decar-boxylation in rodent brain: coincidental changes during development and after ischemia. Neurosci Lett 1996; 216: 33–6PubMedCrossRef
82.
Zurück zum Zitat Feng Y, Piletz JE, Leblanc MH. Agmatine suppresses nitric oxide production and attenuates hypoxic-ischemic brain injury in neonatal rats. Pediatr Res 2002; 52: 606–11PubMedCrossRef Feng Y, Piletz JE, Leblanc MH. Agmatine suppresses nitric oxide production and attenuates hypoxic-ischemic brain injury in neonatal rats. Pediatr Res 2002; 52: 606–11PubMedCrossRef
83.
Zurück zum Zitat Fairbanks C, Kaminski L, Nguyen H, et al. Pre-treatment with antisera raised against agmatine sensitizes mice to plasticity-mediated events [abstract]. Soc Neurosci Abstr 2001; 27: 465 Fairbanks C, Kaminski L, Nguyen H, et al. Pre-treatment with antisera raised against agmatine sensitizes mice to plasticity-mediated events [abstract]. Soc Neurosci Abstr 2001; 27: 465
84.
Zurück zum Zitat Aricioglu-Kartei F, Reis D, Regunathan S. Agmatine and morphine tolerance/dependance: molecular mechanisms of interactions [abstract]. Soc Neurosci Abstr 2001; 27: 685 Aricioglu-Kartei F, Reis D, Regunathan S. Agmatine and morphine tolerance/dependance: molecular mechanisms of interactions [abstract]. Soc Neurosci Abstr 2001; 27: 685
85.
Zurück zum Zitat Gilad GM, Salame K, Rabey JM, et al. Agmatine treatment is neuroprotective in rodent brain injury models. Life Sci 1996; 58: 41–6 Gilad GM, Salame K, Rabey JM, et al. Agmatine treatment is neuroprotective in rodent brain injury models. Life Sci 1996; 58: 41–6
86.
Zurück zum Zitat Gilad GM, Gilad VH. Accelerated functional recovery and neuroprotection by agmatine after spinal cord ischemia in rats. Neurosci Lett 2000; 296: 97–100PubMedCrossRef Gilad GM, Gilad VH. Accelerated functional recovery and neuroprotection by agmatine after spinal cord ischemia in rats. Neurosci Lett 2000; 296: 97–100PubMedCrossRef
87.
Zurück zum Zitat Fairbanks CA, Schreiber KL, Brewer KL, et al. Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury. Proc Natl Acad Sci U S A 2000; 97: 10584–9PubMedCrossRef Fairbanks CA, Schreiber KL, Brewer KL, et al. Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury. Proc Natl Acad Sci U S A 2000; 97: 10584–9PubMedCrossRef
88.
Zurück zum Zitat Onal A, Delen Y, Ulker S, et al. Agmatine attenuates neuropathic pain in rats: possible mediation of nitric oxide and noradren-ergic activity in the brainstem and cerebellum. Life Sci 2003; 73: 413–28PubMedCrossRef Onal A, Delen Y, Ulker S, et al. Agmatine attenuates neuropathic pain in rats: possible mediation of nitric oxide and noradren-ergic activity in the brainstem and cerebellum. Life Sci 2003; 73: 413–28PubMedCrossRef
89.
Zurück zum Zitat Aricioglu F, Korcegez E, Bozkurt A, et al. Effect of agmatine on acute and mononeuropathic pain. Ann N Y Acad Sci 2003; 1009: 106–15PubMedCrossRef Aricioglu F, Korcegez E, Bozkurt A, et al. Effect of agmatine on acute and mononeuropathic pain. Ann N Y Acad Sci 2003; 1009: 106–15PubMedCrossRef
90.
Zurück zum Zitat Kolesnikov Y, Jain S, Pasternak GW. Modulation of opioid analgesia by agmatine. Eur J Pharmacol 1996; 296: 17–22PubMedCrossRef Kolesnikov Y, Jain S, Pasternak GW. Modulation of opioid analgesia by agmatine. Eur J Pharmacol 1996; 296: 17–22PubMedCrossRef
91.
Zurück zum Zitat Li J, Li X, Pei G, et al. Effects of agmatine on tolerance to and substance dependence on morphine in mice. Chung Kuo Yao Li Hsueh Pao 1999; 20: 232–8PubMed Li J, Li X, Pei G, et al. Effects of agmatine on tolerance to and substance dependence on morphine in mice. Chung Kuo Yao Li Hsueh Pao 1999; 20: 232–8PubMed
92.
Zurück zum Zitat Aricioglu-Kartal F, Uzbay IT. Inhibitory effect of agmatine on naloxone-precipitated abstinence syndrome in morphine dependent rats. Life Sci 1997; 61: 1775–81PubMedCrossRef Aricioglu-Kartal F, Uzbay IT. Inhibitory effect of agmatine on naloxone-precipitated abstinence syndrome in morphine dependent rats. Life Sci 1997; 61: 1775–81PubMedCrossRef
93.
Zurück zum Zitat McKay B, Lado W, Martin L, et al. Learning and memory in agmatine-treated rats. Pharmacol Biochem Behav 2002; 72: 551–7PubMedCrossRef McKay B, Lado W, Martin L, et al. Learning and memory in agmatine-treated rats. Pharmacol Biochem Behav 2002; 72: 551–7PubMedCrossRef
94.
Zurück zum Zitat McKay B, Persinger M. Combined effects of complex magnetic fields and agmatine for contextual fear learning deficits in rats. Life Sci 2003; 72: 2489–98PubMedCrossRef McKay B, Persinger M. Combined effects of complex magnetic fields and agmatine for contextual fear learning deficits in rats. Life Sci 2003; 72: 2489–98PubMedCrossRef
95.
Zurück zum Zitat Porsolt RD, Anton G, Blavet N, et al. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 1978; 47: 379–91PubMedCrossRef Porsolt RD, Anton G, Blavet N, et al. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 1978; 47: 379–91PubMedCrossRef
96.
Zurück zum Zitat Porsolt RD, Deniel M, Jalfre M. Forced swimming in rats: hypothermia, immobility and the effects of imipramine. Eur J Pharmacol 1979; 57: 431–6PubMedCrossRef Porsolt RD, Deniel M, Jalfre M. Forced swimming in rats: hypothermia, immobility and the effects of imipramine. Eur J Pharmacol 1979; 57: 431–6PubMedCrossRef
97.
Zurück zum Zitat Gilad GM, Gilad VH, Eliyayev Y, et al. Developmental regulation of the brain polyamine-stress-response. Int J Dev Neurosci 1998; 16: 271–8PubMedCrossRef Gilad GM, Gilad VH, Eliyayev Y, et al. Developmental regulation of the brain polyamine-stress-response. Int J Dev Neurosci 1998; 16: 271–8PubMedCrossRef
98.
Zurück zum Zitat Huang M, Regunathan S, Botta M, et al. Structure-activity analysis of guanidine group in agmatine for brain agmatinase. Ann N Y Acad Sci 2003; 1009: 52–63PubMedCrossRef Huang M, Regunathan S, Botta M, et al. Structure-activity analysis of guanidine group in agmatine for brain agmatinase. Ann N Y Acad Sci 2003; 1009: 52–63PubMedCrossRef
99.
Zurück zum Zitat Piletz J, Huang M, Lee K, inventors. Jackson State University, assignee. Mammalian agmatinase inhibitory substance. US patent application 20050220707; 2004 Apr 5 Piletz J, Huang M, Lee K, inventors. Jackson State University, assignee. Mammalian agmatinase inhibitory substance. US patent application 20050220707; 2004 Apr 5
Metadaten
Titel
Agmatine
Metabolic Pathway and Spectrum of Activity in Brain
verfasst von
Dr Angelos Halaris
John Plietz
Publikationsdatum
01.11.2007
Verlag
Springer International Publishing
Erschienen in
CNS Drugs / Ausgabe 11/2007
Print ISSN: 1172-7047
Elektronische ISSN: 1179-1934
DOI
https://doi.org/10.2165/00023210-200721110-00002

Weitere Artikel der Ausgabe 11/2007

CNS Drugs 11/2007 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.