Skip to main content
Erschienen in: Clinical Drug Investigation 8/2001

01.08.2001 | Review Article

Role of P-Glycoprotein and Organic Anion Transporting Polypeptides in Drug Absorption and Distribution

Focus on H1-Receptor Antagonists

verfasst von: Dr Philip D. Hansten, Rene H. Levy

Erschienen in: Clinical Drug Investigation | Ausgabe 8/2001

Einloggen, um Zugang zu erhalten

Abstract

Traditionally, drug-induced changes in cytochrome P450 isoenzyme activity, causing changes in drug metabolism and bioavailability, have been the main focus of drug interaction studies. Recent research, however, suggests that the drug transporters P-glycoprotein and organic anion transporting peptide (OATP), which can effect the efflux and influx of many classes of drugs, may contribute to drug interactions by mechanisms independent of oxidative metabolism. Experimental models designed to selectively probe the function of P-glycoprotein or OATP have demonstrated that changes in the activities of these transporters may have a significant effect on the bioavailability of clinically important drugs, leading to the potential for adverse drug interactions.
This review focuses on what is known about the P-glycoprotein and OATP drug transporters and their effects on drug bioavailability. Where possible, it uses as examples the second-generation Hi-receptor antagonists, where concomitant administration of other drugs or food constituents has been shown to alter the bioavailability of some agents of this class via mechanisms probably mediated by P-glycoprotein and/or OATP.
Literatur
1.
Zurück zum Zitat Schoenwetter WF. Allergic rhinitis: Epidemiology and natural history. Allergy Asthma Proc 2000; 21: 1–6PubMedCrossRef Schoenwetter WF. Allergic rhinitis: Epidemiology and natural history. Allergy Asthma Proc 2000; 21: 1–6PubMedCrossRef
2.
Zurück zum Zitat Honig PK, Woosley RL, Zamani K, et al. Changes in the pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine with concomitant administration of erythromycin. Clin Pharmacol Ther 1992; 52: 231–8PubMedCrossRef Honig PK, Woosley RL, Zamani K, et al. Changes in the pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine with concomitant administration of erythromycin. Clin Pharmacol Ther 1992; 52: 231–8PubMedCrossRef
3.
Zurück zum Zitat Monahan BP, Ferguson CL, Killeavy ES, et al. Torsades de pointes occurring in association with terfenadine use. JAMA 1990; 264: 2788–90PubMedCrossRef Monahan BP, Ferguson CL, Killeavy ES, et al. Torsades de pointes occurring in association with terfenadine use. JAMA 1990; 264: 2788–90PubMedCrossRef
4.
Zurück zum Zitat Michalets EL. Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy 1998; 18: 84–112PubMed Michalets EL. Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy 1998; 18: 84–112PubMed
6.
Zurück zum Zitat Banfield C, Cayen M, Gupta S, et al. Grapefruit juice has no effect on the bioavailability of desloratadine, but reduces the Cmax and AUC of fexofenadine by 30% [abstract]. Ann Allergy Asthma Immunol 2001; 86: 108 Banfield C, Cayen M, Gupta S, et al. Grapefruit juice has no effect on the bioavailability of desloratadine, but reduces the Cmax and AUC of fexofenadine by 30% [abstract]. Ann Allergy Asthma Immunol 2001; 86: 108
7.
8.
Zurück zum Zitat Kullak-Ublick GA, Ismair MG, Stieger B, et al. Organic aniontransporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterol 2001; 120: 525–33CrossRef Kullak-Ublick GA, Ismair MG, Stieger B, et al. Organic aniontransporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterol 2001; 120: 525–33CrossRef
9.
Zurück zum Zitat Kullak-Ublick GA, Hagenbuch B, Stieger B, et al. Functional characterization of the basolateral rat liver organic anion transporting polypeptide. Hepatology 1994; 20: 411–6PubMed Kullak-Ublick GA, Hagenbuch B, Stieger B, et al. Functional characterization of the basolateral rat liver organic anion transporting polypeptide. Hepatology 1994; 20: 411–6PubMed
10.
Zurück zum Zitat Kim RB, Wandel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999; 16: 408–14PubMedCrossRef Kim RB, Wandel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999; 16: 408–14PubMedCrossRef
11.
Zurück zum Zitat Silverman JA. P-glycoprotein. Metabolic drug interactions. Philadelphia: Lippincott Williams & Wilkins, 2000: 135–44 Silverman JA. P-glycoprotein. Metabolic drug interactions. Philadelphia: Lippincott Williams & Wilkins, 2000: 135–44
12.
Zurück zum Zitat Fromm MF. P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int J Clin Phannacol Ther 2000; 38: 69–74 Fromm MF. P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int J Clin Phannacol Ther 2000; 38: 69–74
13.
Zurück zum Zitat Ueda K, Pastan I, Gottesman MM. Isolation and sequence of the promoter region of the human multidrug-resistance (P-glycoprotein) gene. J Biol Chem 1987; 262: 17432–6PubMed Ueda K, Pastan I, Gottesman MM. Isolation and sequence of the promoter region of the human multidrug-resistance (P-glycoprotein) gene. J Biol Chem 1987; 262: 17432–6PubMed
14.
Zurück zum Zitat Thiebaut F, Tsuruo T, Hamada H, et al. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 1987; 84: 7735–8PubMedCrossRef Thiebaut F, Tsuruo T, Hamada H, et al. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 1987; 84: 7735–8PubMedCrossRef
15.
Zurück zum Zitat Schinkel AH, Wagenaar E, Mol CA, et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97: 2517–4PubMedCrossRef Schinkel AH, Wagenaar E, Mol CA, et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97: 2517–4PubMedCrossRef
16.
Zurück zum Zitat Dresser GK, Scharwz U, Leake B, et al. Grapefruit juice selectively inhibits OATP not P-glycoprotein [abstract]. Drug Metab Rev 2000; 32Suppl. 2: 193 Dresser GK, Scharwz U, Leake B, et al. Grapefruit juice selectively inhibits OATP not P-glycoprotein [abstract]. Drug Metab Rev 2000; 32Suppl. 2: 193
17.
Zurück zum Zitat Mayer U, Wagenaar E, Dorobek B, et al. Full blockade of intestinal P-glycoprotein and extensive inhibition of blood-brain barrier P-glycoprotein by oral treatment of mice with PSC833. J Clin Invest 1997; 100: 2430–6PubMedCrossRef Mayer U, Wagenaar E, Dorobek B, et al. Full blockade of intestinal P-glycoprotein and extensive inhibition of blood-brain barrier P-glycoprotein by oral treatment of mice with PSC833. J Clin Invest 1997; 100: 2430–6PubMedCrossRef
18.
Zurück zum Zitat Golden PL, Pardridge WM. Brain microvascular P-glycoprotein and a revised model of multidrug resistance in brain. Cell Mol Neurobiol 2000; 20: 165–81PubMedCrossRef Golden PL, Pardridge WM. Brain microvascular P-glycoprotein and a revised model of multidrug resistance in brain. Cell Mol Neurobiol 2000; 20: 165–81PubMedCrossRef
19.
Zurück zum Zitat Borst P, Zelcer N, van Helvoort A. ABC transporters in lipid transport. Biochim Biophys Acta 2000; 1486: 128–44PubMedCrossRef Borst P, Zelcer N, van Helvoort A. ABC transporters in lipid transport. Biochim Biophys Acta 2000; 1486: 128–44PubMedCrossRef
20.
Zurück zum Zitat Sawamoto T, Van Gelder T, Christians U, et al. Membrane transport of mycophenolate mofetil and its active metabolite, mycophenolic acid in MDCK and MDR1-MDCK cell monolayers [abstract]. J Heart Lung Transplant 2001; 20: 234–5PubMedCrossRef Sawamoto T, Van Gelder T, Christians U, et al. Membrane transport of mycophenolate mofetil and its active metabolite, mycophenolic acid in MDCK and MDR1-MDCK cell monolayers [abstract]. J Heart Lung Transplant 2001; 20: 234–5PubMedCrossRef
21.
Zurück zum Zitat Cvetkovic M, Leake B, Fromm MF, et al. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos 1999; 27: 866–71PubMed Cvetkovic M, Leake B, Fromm MF, et al. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos 1999; 27: 866–71PubMed
22.
Zurück zum Zitat Ishikawa M, Fujita R, Takayanagi M, et al. Reversal of acquired resistance to doxorubicin in K562 human leukemia cells by astemizole. Biol Pharm Bull 2000; 23: 112–5PubMedCrossRef Ishikawa M, Fujita R, Takayanagi M, et al. Reversal of acquired resistance to doxorubicin in K562 human leukemia cells by astemizole. Biol Pharm Bull 2000; 23: 112–5PubMedCrossRef
23.
Zurück zum Zitat Wang EJ, Casciano CN, Clement RP, et al. Evaluation of the interaction of loratadine and desloratadine with P-glycoprotein. Drug Metab Dispos 2001; 29: 1080–3PubMed Wang EJ, Casciano CN, Clement RP, et al. Evaluation of the interaction of loratadine and desloratadine with P-glycoprotein. Drug Metab Dispos 2001; 29: 1080–3PubMed
24.
Zurück zum Zitat Kim RB, Fromm MF, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HTV-1 protease inhibitors. J Clin Invest 1998; 101: 289–94PubMedCrossRef Kim RB, Fromm MF, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HTV-1 protease inhibitors. J Clin Invest 1998; 101: 289–94PubMedCrossRef
25.
Zurück zum Zitat Lee CG, Gottesman MM, Cardarelli CO, et al. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry 1998; 37: 3594–601PubMedCrossRef Lee CG, Gottesman MM, Cardarelli CO, et al. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry 1998; 37: 3594–601PubMedCrossRef
26.
Zurück zum Zitat Alsenz J, Steffen H, Alex R. Active apical secretory efflux of the HIV protease inhibitors saquinavir and ritonavir in Caco-2 cell monolayers [published erratum appears in Pharm Res 1998 Jun; 15 (6): 958]. Pharm Res 1998; 15: 423–8PubMedCrossRef Alsenz J, Steffen H, Alex R. Active apical secretory efflux of the HIV protease inhibitors saquinavir and ritonavir in Caco-2 cell monolayers [published erratum appears in Pharm Res 1998 Jun; 15 (6): 958]. Pharm Res 1998; 15: 423–8PubMedCrossRef
27.
Zurück zum Zitat Sparreboom A, van Asperen J, Mayer U, et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci USA 1997; 94: 2031–5PubMedCrossRef Sparreboom A, van Asperen J, Mayer U, et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci USA 1997; 94: 2031–5PubMedCrossRef
28.
Zurück zum Zitat Mayer U, Wagenaar E, Beijnen JH, et al. Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdr 1a P-glycoprotein. Br J Phannacol 1996; 119: 1038–44CrossRef Mayer U, Wagenaar E, Beijnen JH, et al. Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdr 1a P-glycoprotein. Br J Phannacol 1996; 119: 1038–44CrossRef
29.
Zurück zum Zitat Lown KS, Mayo RR, Leichtman AB, et al. Role of intestinal P-glycoprotein (mdrl) in interpatient variation in the oral bioavailability of cyclosporine. Clin Phannacol Ther 1997; 62: 248–60CrossRef Lown KS, Mayo RR, Leichtman AB, et al. Role of intestinal P-glycoprotein (mdrl) in interpatient variation in the oral bioavailability of cyclosporine. Clin Phannacol Ther 1997; 62: 248–60CrossRef
30.
Zurück zum Zitat Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999; 104: 147–53PubMedCrossRef Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999; 104: 147–53PubMedCrossRef
31.
Zurück zum Zitat Schwarz UI, Gramatte T, Krappweis J, et al. P-glycoprotein inhibitor erythromycin increases oral bioavailability of talinolol in humans. Int J Clin Pharmacol Ther 2000; 38: 161–7PubMed Schwarz UI, Gramatte T, Krappweis J, et al. P-glycoprotein inhibitor erythromycin increases oral bioavailability of talinolol in humans. Int J Clin Pharmacol Ther 2000; 38: 161–7PubMed
32.
Zurück zum Zitat Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol 1996; 49: 311–8PubMed Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol 1996; 49: 311–8PubMed
33.
Zurück zum Zitat Johne A, Brockmoller J, Bauer S, et al. Pharmacokinetic interaction of digoxin with an herbal extract from St John’s wort (Hypericum perfonitum). Clin Pharmacol Ther 1999; 66: 338–45PubMedCrossRef Johne A, Brockmoller J, Bauer S, et al. Pharmacokinetic interaction of digoxin with an herbal extract from St John’s wort (Hypericum perfonitum). Clin Pharmacol Ther 1999; 66: 338–45PubMedCrossRef
34.
Zurück zum Zitat Dresser GK, Schwarz UI, Wilkinson GR, et al. St. John’s wort induces intestinal and hepatic CYP3A4 and P-glycoprotein in healthy volunteers [abstract]. Clin Pharmacol Ther 2001; 69:23 Dresser GK, Schwarz UI, Wilkinson GR, et al. St. John’s wort induces intestinal and hepatic CYP3A4 and P-glycoprotein in healthy volunteers [abstract]. Clin Pharmacol Ther 2001; 69:23
35.
Zurück zum Zitat Harnman MA, Wang Z, Honig P, et al. Effects of acute and chronic Saint John’s wort (SJW) administration of fexofenadine (FEX) disposition [abstract]. Clin Pharmacol Ther 2001; 69: 53 Harnman MA, Wang Z, Honig P, et al. Effects of acute and chronic Saint John’s wort (SJW) administration of fexofenadine (FEX) disposition [abstract]. Clin Pharmacol Ther 2001; 69: 53
36.
Zurück zum Zitat Jacquemin E, Hagenbuch B, Stieger B, et al. Expression cloning of a rat liver Na(+)-independent organic anion transporter. Proc Natl Acad Sci USA 1994; 91: 133–7PubMedCrossRef Jacquemin E, Hagenbuch B, Stieger B, et al. Expression cloning of a rat liver Na(+)-independent organic anion transporter. Proc Natl Acad Sci USA 1994; 91: 133–7PubMedCrossRef
37.
Zurück zum Zitat Noe B, Hagenbuch B, Stieger B, et al. Isolation of a multi-specific organic anion and cardiac glycoside transporter from rat brain. Proc Natl Acad Sci USA 1997; 94: 10346–50PubMedCrossRef Noe B, Hagenbuch B, Stieger B, et al. Isolation of a multi-specific organic anion and cardiac glycoside transporter from rat brain. Proc Natl Acad Sci USA 1997; 94: 10346–50PubMedCrossRef
38.
Zurück zum Zitat Ishizuka H, Konno K, Naganuma H, et al. Transport of temo-caprilat into rat hepatocytes: role of organic anion transporting polypeptide. J Pharmacol Exp Ther 1998; 287: 37–42PubMed Ishizuka H, Konno K, Naganuma H, et al. Transport of temo-caprilat into rat hepatocytes: role of organic anion transporting polypeptide. J Pharmacol Exp Ther 1998; 287: 37–42PubMed
39.
Zurück zum Zitat Pang KS, Wang PJ, Chung AY, et al. The modified dipeptide, enalapril, an angiotensin-converting enzyme inhibitor, is transported by the rat liver organic anion transport protein. Hepatology 1998; 28: 1341–6PubMedCrossRef Pang KS, Wang PJ, Chung AY, et al. The modified dipeptide, enalapril, an angiotensin-converting enzyme inhibitor, is transported by the rat liver organic anion transport protein. Hepatology 1998; 28: 1341–6PubMedCrossRef
40.
Zurück zum Zitat Shi X, Bai S, Ford AC, et al. Stable inducible expression of a functional rat liver organic anion transport protein in HeLa cells. J Biol Chem 1995; 270: 25591–5PubMedCrossRef Shi X, Bai S, Ford AC, et al. Stable inducible expression of a functional rat liver organic anion transport protein in HeLa cells. J Biol Chem 1995; 270: 25591–5PubMedCrossRef
41.
Zurück zum Zitat Kullak-Ublick GA, Hagenbuch B, Stieger B, et al. Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver. Gastroenterol 1995; 109: 1274–82CrossRef Kullak-Ublick GA, Hagenbuch B, Stieger B, et al. Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver. Gastroenterol 1995; 109: 1274–82CrossRef
42.
Zurück zum Zitat Bergwerk AJ, Shi X, Ford AC, et al. Immunologie distribution of an organic anion transport protein in rat liver and kidney. Am J Physiol 1996; 271: G231–8PubMed Bergwerk AJ, Shi X, Ford AC, et al. Immunologie distribution of an organic anion transport protein in rat liver and kidney. Am J Physiol 1996; 271: G231–8PubMed
43.
Zurück zum Zitat Angeletti RH, Novikoff PM, Juvvadi SR, et al. The choroid plexus epithelium is the site of the organic anion transport protein in the brain. Proc Natl Acad Sci USA 1997; 94: 283–6PubMedCrossRef Angeletti RH, Novikoff PM, Juvvadi SR, et al. The choroid plexus epithelium is the site of the organic anion transport protein in the brain. Proc Natl Acad Sci USA 1997; 94: 283–6PubMedCrossRef
44.
Zurück zum Zitat Eckhardt U, Horz JA, Petzinger E, et al. The peptide-based thrombin inhibitor CRC 220 is a new substrate of the basolateral rat liver organic anion-transporting polypeptide. Hepatology 1996; 24: 380–4PubMedCrossRef Eckhardt U, Horz JA, Petzinger E, et al. The peptide-based thrombin inhibitor CRC 220 is a new substrate of the basolateral rat liver organic anion-transporting polypeptide. Hepatology 1996; 24: 380–4PubMedCrossRef
45.
Zurück zum Zitat Bossuyt X, Muller M, Hagenbuch B, et al. Polyspecific drug and steroid clearance by an organic anion transporter of mammalian liver. J Pharmacol Exp Ther 1996; 276: 891–6PubMed Bossuyt X, Muller M, Hagenbuch B, et al. Polyspecific drug and steroid clearance by an organic anion transporter of mammalian liver. J Pharmacol Exp Ther 1996; 276: 891–6PubMed
46.
Zurück zum Zitat Kanai N, Lu R, Bao Y, et al. Estradiol 17-beta-D-glucuronide is a high-affinity substrate for oatp organic anion transporter. Am J Physiol 1996; 270: F326–31PubMed Kanai N, Lu R, Bao Y, et al. Estradiol 17-beta-D-glucuronide is a high-affinity substrate for oatp organic anion transporter. Am J Physiol 1996; 270: F326–31PubMed
47.
Zurück zum Zitat Satlin LM, Amin V, Wolkoff AW. Organic anion transporting polypeptide mediates organic anion/HCO3 − exchange. J Biol Chem 1997; 272: 26340–5PubMedCrossRef Satlin LM, Amin V, Wolkoff AW. Organic anion transporting polypeptide mediates organic anion/HCO3 exchange. J Biol Chem 1997; 272: 26340–5PubMedCrossRef
48.
Zurück zum Zitat Reichel C, Gao B, Van Montfoort J, et al. Localization and function of the organic anion-transporting polypeptide Oatp2 in rat liver. Gastroenterol 1999; 117: 688–95CrossRef Reichel C, Gao B, Van Montfoort J, et al. Localization and function of the organic anion-transporting polypeptide Oatp2 in rat liver. Gastroenterol 1999; 117: 688–95CrossRef
49.
Zurück zum Zitat Tokui T, Nakai D, Nakagomi R, et al. Pravastatin, an HMG-CoA reductase inhibitor, is transported by rat organic anion transporting polypeptide, oatp2. Pharm Res 1999; 16: 904–8PubMedCrossRef Tokui T, Nakai D, Nakagomi R, et al. Pravastatin, an HMG-CoA reductase inhibitor, is transported by rat organic anion transporting polypeptide, oatp2. Pharm Res 1999; 16: 904–8PubMedCrossRef
50.
Zurück zum Zitat Kakyo M, Sakagami H, Nishio T, et al. Immunohistochemical distribution and functional characterization of an organic anion transporting polypeptide 2 (oatp2). FEBS Lett 1999; 445: 343–6PubMedCrossRef Kakyo M, Sakagami H, Nishio T, et al. Immunohistochemical distribution and functional characterization of an organic anion transporting polypeptide 2 (oatp2). FEBS Lett 1999; 445: 343–6PubMedCrossRef
51.
Zurück zum Zitat Dresser GK, Schwarz UI, Leake B, et al. Citrus juices are potent inhibitors of intestinal OATP but not P-glycoprotein [abstract]. Clin Pharmacol Ther 2001; 69: 23 Dresser GK, Schwarz UI, Leake B, et al. Citrus juices are potent inhibitors of intestinal OATP but not P-glycoprotein [abstract]. Clin Pharmacol Ther 2001; 69: 23
52.
Zurück zum Zitat Bailey DG, Dresser GK, Munoz C, et al. Reduction of fexofenadine bioavailability by fruit juices [abstract]. Clin Pharmacol Ther 2001; 69: 21 Bailey DG, Dresser GK, Munoz C, et al. Reduction of fexofenadine bioavailability by fruit juices [abstract]. Clin Pharmacol Ther 2001; 69: 21
53.
Zurück zum Zitat Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38: 41–57PubMedCrossRef Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38: 41–57PubMedCrossRef
54.
Zurück zum Zitat Kim AE, Dintaman JM, Waddell DS, et al. Saquinavir, an HIV protease inhibitor, is transported by P-glycoprotein. J Pharmacol Exp Ther 1998; 286: 1439–45PubMed Kim AE, Dintaman JM, Waddell DS, et al. Saquinavir, an HIV protease inhibitor, is transported by P-glycoprotein. J Pharmacol Exp Ther 1998; 286: 1439–45PubMed
55.
Zurück zum Zitat Hofsli E, Nissen-Meyer J. Effect of erythromycin and tumour necrosis factor on the drug resistance of multidrug-resistant cells: reversal of drug resistance by erythromycin. Int J Cancer 1989; 43: 520–5PubMedCrossRef Hofsli E, Nissen-Meyer J. Effect of erythromycin and tumour necrosis factor on the drug resistance of multidrug-resistant cells: reversal of drug resistance by erythromycin. Int J Cancer 1989; 43: 520–5PubMedCrossRef
56.
Zurück zum Zitat Barbey JT, Anderson M, Ciprandi G, et al. Cardiovascular safety of second-generation antihistamines. Am J Rhinol 1999; 13: 235–43PubMedCrossRef Barbey JT, Anderson M, Ciprandi G, et al. Cardiovascular safety of second-generation antihistamines. Am J Rhinol 1999; 13: 235–43PubMedCrossRef
57.
Zurück zum Zitat Kreutner W, Hey JA, Anthes J, et al. Preclinical pharmacology of desloratadine, a selective and nonsedating histamine H1 receptor antagonist. 1st communication: receptor selectivity, antihistaminic activity, and antiallergenic effects. Arzneimittelforschung 2000; 50: 345–52PubMed Kreutner W, Hey JA, Anthes J, et al. Preclinical pharmacology of desloratadine, a selective and nonsedating histamine H1 receptor antagonist. 1st communication: receptor selectivity, antihistaminic activity, and antiallergenic effects. Arzneimittelforschung 2000; 50: 345–52PubMed
58.
Zurück zum Zitat Kreutner W, Hey JA, Chiu P, et al. Preclinical pharmacology of desloratadine, a selective and nonsedating histamine H1 receptor antagonist: 2nd communication: Lack of central nervous system and cardiovascular effects. Arzneimittelforschung 2000; 50: 441–8PubMed Kreutner W, Hey JA, Chiu P, et al. Preclinical pharmacology of desloratadine, a selective and nonsedating histamine H1 receptor antagonist: 2nd communication: Lack of central nervous system and cardiovascular effects. Arzneimittelforschung 2000; 50: 441–8PubMed
59.
Zurück zum Zitat Glue P, Banfield C, Affrime MB, et al. Lack of electrocardiographic interaction between desloratadine and erythromycin [abstract]. Allergy 2000; 55(Suppl. 63): 276 Glue P, Banfield C, Affrime MB, et al. Lack of electrocardiographic interaction between desloratadine and erythromycin [abstract]. Allergy 2000; 55(Suppl. 63): 276
60.
Zurück zum Zitat Affrime MB, Banfield C, Glue P, et al. Lack of electrocardiographic effects when desloratadine and ketoconazole are coadministered [abstract]. Allergy 2000; 55Suppl. 63: 277 Affrime MB, Banfield C, Glue P, et al. Lack of electrocardiographic effects when desloratadine and ketoconazole are coadministered [abstract]. Allergy 2000; 55Suppl. 63: 277
Metadaten
Titel
Role of P-Glycoprotein and Organic Anion Transporting Polypeptides in Drug Absorption and Distribution
Focus on H1-Receptor Antagonists
verfasst von
Dr Philip D. Hansten
Rene H. Levy
Publikationsdatum
01.08.2001
Verlag
Springer International Publishing
Erschienen in
Clinical Drug Investigation / Ausgabe 8/2001
Print ISSN: 1173-2563
Elektronische ISSN: 1179-1918
DOI
https://doi.org/10.2165/00044011-200121080-00008

Weitere Artikel der Ausgabe 8/2001

Clinical Drug Investigation 8/2001 Zur Ausgabe