Skip to main content
Erschienen in: BioDrugs 2/2009

01.04.2009 | Drug Development

Current Status and Challenges Associated with Targeting mTOR for Cancer Therapy

verfasst von: Ryan J.O. Dowling, Michael Pollak, Dr Nahum Sonenberg

Erschienen in: BioDrugs | Ausgabe 2/2009

Einloggen, um Zugang zu erhalten

Abstract

The phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in the regulation of cellular growth, survival, and proliferation. Inappropriate activation of PI3K/Akt/mTOR signaling can promote a cellular environment that is favorable for transformation. In fact, dysregulation of this pathway, as a result of genetic mutations and amplifications, is implicated in a variety of human cancers. Therefore, mTOR has emerged as a key target for the treatment of cancer, particularly in the treatment of tumors that exhibit increased mTOR signaling as a result of genetic lesions. The immunosuppressant sirolimus (rapamycin) directly inhibits mTOR activity and suppresses the growth of cancer cells in vitro and in vivo. As a result, a number of sirolimus derivatives have been developed as anti-cancer therapies, and these compounds are currently under investigation in phase I–III clinical trials. In this review, we summarize the use of sirolimus derivatives in clinical trials and address some of the challenges associated with targeting mTOR for the treatment of human cancer.
Literatur
1.
Zurück zum Zitat Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer 2004 May; 4(5): 335–48PubMedCrossRef Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer 2004 May; 4(5): 335–48PubMedCrossRef
2.
Zurück zum Zitat Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004 Aug 15; 18(16): 1926–45PubMedCrossRef Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004 Aug 15; 18(16): 1926–45PubMedCrossRef
3.
Zurück zum Zitat Guertin DA, Sabatini DM. An expanding role for mTOR in cancer. Trends Mol Med 2005 Aug; 11(8): 353–61PubMedCrossRef Guertin DA, Sabatini DM. An expanding role for mTOR in cancer. Trends Mol Med 2005 Aug; 11(8): 353–61PubMedCrossRef
4.
Zurück zum Zitat Oza AM, Elit L, Biagi J, et al. Molecular correlates associated with a phase II study of temsirolimus (CCI-779) in patients with metastatic or recurrent endometrial cancer [abstract no. 3003]. Annual Meeting, American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta (GA) Oza AM, Elit L, Biagi J, et al. Molecular correlates associated with a phase II study of temsirolimus (CCI-779) in patients with metastatic or recurrent endometrial cancer [abstract no. 3003]. Annual Meeting, American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta (GA)
5.
Zurück zum Zitat Le Tourneau C, Faivre S, Serova M, et al. mTORC1 inhibitors: is temsirolimus in renal cancer telling us how they really work? Br J Cancer 2008 Oct 21;99(8): 1197–203PubMedCrossRef Le Tourneau C, Faivre S, Serova M, et al. mTORC1 inhibitors: is temsirolimus in renal cancer telling us how they really work? Br J Cancer 2008 Oct 21;99(8): 1197–203PubMedCrossRef
6.
Zurück zum Zitat Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 2007 May 31; 356(22): 2271–81PubMedCrossRef Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 2007 May 31; 356(22): 2271–81PubMedCrossRef
7.
Zurück zum Zitat Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991 Aug 23; 253(5022): 905–9PubMedCrossRef Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991 Aug 23; 253(5022): 905–9PubMedCrossRef
8.
Zurück zum Zitat Kunz J, Henriquez R, Schneider U, et al. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 1993 May 7; 73(3): 585–96PubMedCrossRef Kunz J, Henriquez R, Schneider U, et al. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 1993 May 7; 73(3): 585–96PubMedCrossRef
9.
Zurück zum Zitat Sabatini DM, Erdjument-Bromage H, Lui M, et al. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 1994 Jul 15; 78(1): 35–43PubMedCrossRef Sabatini DM, Erdjument-Bromage H, Lui M, et al. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 1994 Jul 15; 78(1): 35–43PubMedCrossRef
10.
Zurück zum Zitat Brown EJ, Albers MW, Shin TB, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994; 369: 756–8PubMedCrossRef Brown EJ, Albers MW, Shin TB, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994; 369: 756–8PubMedCrossRef
11.
Zurück zum Zitat Petroulakis E, Mamane Y, Le Bacquer O, et al. mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer 2006 Jan 30; 94(2): 195–9PubMedCrossRef Petroulakis E, Mamane Y, Le Bacquer O, et al. mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer 2006 Jan 30; 94(2): 195–9PubMedCrossRef
13.
Zurück zum Zitat Schalm SS, Fingar DC, Sabatini DM, et al. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 2003 May 13; 13(10): 797–806PubMedCrossRef Schalm SS, Fingar DC, Sabatini DM, et al. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 2003 May 13; 13(10): 797–806PubMedCrossRef
14.
Zurück zum Zitat Hara K, Maruki Y, Long X, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002 Jul 26; 110(2): 177–89PubMedCrossRef Hara K, Maruki Y, Long X, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002 Jul 26; 110(2): 177–89PubMedCrossRef
15.
Zurück zum Zitat Schalm SS, Blenis J. Identification of a conserved motif required for mTOR signaling. Curr Biol 2002 Apr 16; 12(8): 632–9PubMedCrossRef Schalm SS, Blenis J. Identification of a conserved motif required for mTOR signaling. Curr Biol 2002 Apr 16; 12(8): 632–9PubMedCrossRef
16.
Zurück zum Zitat Nojima H, Tokunaga C, Eguchi S, et al. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 2003 May 2; 278(18): 15461–4PubMedCrossRef Nojima H, Tokunaga C, Eguchi S, et al. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 2003 May 2; 278(18): 15461–4PubMedCrossRef
17.
Zurück zum Zitat Vander Haar E, Lee SI, Bandhakavi S, et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 2007 Mar; 9(3): 316–23PubMedCrossRef Vander Haar E, Lee SI, Bandhakavi S, et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 2007 Mar; 9(3): 316–23PubMedCrossRef
18.
Zurück zum Zitat Sancak Y, Thoreen CC, Peterson TR, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007 Mar 23; 25(6): 903–15PubMedCrossRef Sancak Y, Thoreen CC, Peterson TR, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007 Mar 23; 25(6): 903–15PubMedCrossRef
19.
Zurück zum Zitat Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 2006 Sep; 6(9): 729–34PubMedCrossRef Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 2006 Sep; 6(9): 729–34PubMedCrossRef
20.
Zurück zum Zitat Jacinto E, Facchinetti V, Liu D, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006 Oct 6; 127(1): 125–37PubMedCrossRef Jacinto E, Facchinetti V, Liu D, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006 Oct 6; 127(1): 125–37PubMedCrossRef
21.
Zurück zum Zitat Pestova TV, Lorsch JR, Hellen CUT. The mechanism of translation initiation in eukaryotes. In: Mathews MB, Sonenberg N, Hershey JWB, editors. Translational control in biology and medicine. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2007: 87–128 Pestova TV, Lorsch JR, Hellen CUT. The mechanism of translation initiation in eukaryotes. In: Mathews MB, Sonenberg N, Hershey JWB, editors. Translational control in biology and medicine. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2007: 87–128
22.
Zurück zum Zitat Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 1999; 68: 913–63PubMedCrossRef Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 1999; 68: 913–63PubMedCrossRef
23.
Zurück zum Zitat Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 2005 Apr; 6(4): 318–27PubMedCrossRef Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 2005 Apr; 6(4): 318–27PubMedCrossRef
24.
Zurück zum Zitat Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev 2001 Apr 1; 15(7): 807–26PubMedCrossRef Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev 2001 Apr 1; 15(7): 807–26PubMedCrossRef
25.
Zurück zum Zitat Pause A, Belsham GJ, Gingras AC, et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 1994 Oct 27; 371(6500): 762–7PubMedCrossRef Pause A, Belsham GJ, Gingras AC, et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 1994 Oct 27; 371(6500): 762–7PubMedCrossRef
26.
Zurück zum Zitat Gingras AC, Gygi SP, Raught B, et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 1999 Jun 1; 13(11): 1422–37PubMedCrossRef Gingras AC, Gygi SP, Raught B, et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 1999 Jun 1; 13(11): 1422–37PubMedCrossRef
27.
Zurück zum Zitat Shahbazian D, Roux PP, Mieulet V, et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J 2006 Jun 21; 25(12): 2781–91PubMedCrossRef Shahbazian D, Roux PP, Mieulet V, et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J 2006 Jun 21; 25(12): 2781–91PubMedCrossRef
28.
Zurück zum Zitat Richardson CJ, Broenstrup M, Fingar DC, et al. SKAR is a specific target of S6 kinase 1 in cell growth control. Curr Biol 2004 Sep 7; 14(17): 1540–9PubMedCrossRef Richardson CJ, Broenstrup M, Fingar DC, et al. SKAR is a specific target of S6 kinase 1 in cell growth control. Curr Biol 2004 Sep 7; 14(17): 1540–9PubMedCrossRef
29.
Zurück zum Zitat Raught B, Gingras AC, Gygi SP, et al. Serum-stimulated, rapamycinsensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. EMBO J 2000 Feb 1; 19(3): 434–44PubMedCrossRef Raught B, Gingras AC, Gygi SP, et al. Serum-stimulated, rapamycinsensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. EMBO J 2000 Feb 1; 19(3): 434–44PubMedCrossRef
30.
Zurück zum Zitat Raught B, Gingras AC, Sonenberg N. The target of rapamycin (TOR) proteins. Proc Natl Acad Sci U S A 2001 Jun 19; 98(13): 7037–44PubMedCrossRef Raught B, Gingras AC, Sonenberg N. The target of rapamycin (TOR) proteins. Proc Natl Acad Sci U S A 2001 Jun 19; 98(13): 7037–44PubMedCrossRef
31.
Zurück zum Zitat Barnhart BC, Simon MC. Taking aim at translation for tumor therapy. J Clin Invest 2007 Sep; 117(9): 2385–8PubMedCrossRef Barnhart BC, Simon MC. Taking aim at translation for tumor therapy. J Clin Invest 2007 Sep; 117(9): 2385–8PubMedCrossRef
32.
Zurück zum Zitat Mamane Y, Petroulakis E, Rong L, et al. eIF4E: from translation to transformation. Oncogene 2004 Apr 19; 23(18): 3172–9PubMedCrossRef Mamane Y, Petroulakis E, Rong L, et al. eIF4E: from translation to transformation. Oncogene 2004 Apr 19; 23(18): 3172–9PubMedCrossRef
33.
Zurück zum Zitat De Benedetti A, Graff JR. eIF-4E expression and its role in malignancies and metastases. Oncogene 2004 Apr 19; 23(18): 3189–99PubMedCrossRef De Benedetti A, Graff JR. eIF-4E expression and its role in malignancies and metastases. Oncogene 2004 Apr 19; 23(18): 3189–99PubMedCrossRef
34.
Zurück zum Zitat Mamane Y, Petroulakis E, Martineau Y, et al. Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS ONE 2007; 2: e242PubMedCrossRef Mamane Y, Petroulakis E, Martineau Y, et al. Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS ONE 2007; 2: e242PubMedCrossRef
35.
Zurück zum Zitat Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 1990 Jun 7; 345(6275): 544–7PubMedCrossRef Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 1990 Jun 7; 345(6275): 544–7PubMedCrossRef
36.
Zurück zum Zitat Lazaris-Karatzas A, Sonenberg N. The mRNA 5′ cap-binding protein, eIF-4E, cooperates with v-myc or E1A in the transformation of primary rodent fibroblasts. Mol Cell Biol 1992 Mar; 12(3): 1234–8PubMed Lazaris-Karatzas A, Sonenberg N. The mRNA 5′ cap-binding protein, eIF-4E, cooperates with v-myc or E1A in the transformation of primary rodent fibroblasts. Mol Cell Biol 1992 Mar; 12(3): 1234–8PubMed
37.
Zurück zum Zitat Avdulov S, Li S, Michalek V, et al. Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 2004 Jun; 5(6): 553–63PubMedCrossRef Avdulov S, Li S, Michalek V, et al. Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 2004 Jun; 5(6): 553–63PubMedCrossRef
38.
Zurück zum Zitat Ruggero D, Montanaro L, Ma L, et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 2004 May; 10(5): 484–6PubMedCrossRef Ruggero D, Montanaro L, Ma L, et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 2004 May; 10(5): 484–6PubMedCrossRef
39.
Zurück zum Zitat Wendel HG, De Stanchina E, Fridman JS, et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 2004 Mar 18; 428(6980): 332–7PubMedCrossRef Wendel HG, De Stanchina E, Fridman JS, et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 2004 Mar 18; 428(6980): 332–7PubMedCrossRef
40.
Zurück zum Zitat De Benedetti A, Harris AL. eIF4E expression in tumors: its possible role in progression of malignancies. Int J Biochem Cell Biol 1999 Jan; 31(1): 59–72PubMedCrossRef De Benedetti A, Harris AL. eIF4E expression in tumors: its possible role in progression of malignancies. Int J Biochem Cell Biol 1999 Jan; 31(1): 59–72PubMedCrossRef
41.
Zurück zum Zitat Clemens MJ, Bommer UA. Translational control: the cancer connection. Int J Biochem Cell Biol 1999 Jan; 31(1): 1–23PubMedCrossRef Clemens MJ, Bommer UA. Translational control: the cancer connection. Int J Biochem Cell Biol 1999 Jan; 31(1): 1–23PubMedCrossRef
42.
Zurück zum Zitat Bauer C, Brass N, Diesinger I, et al. Overexpression of the eukaryotic translation initiation factor 4G (eIF4G-1) in squamous cell lung carcinoma. Int J Cancer 2002 Mar 10; 98(2): 181–5PubMedCrossRef Bauer C, Brass N, Diesinger I, et al. Overexpression of the eukaryotic translation initiation factor 4G (eIF4G-1) in squamous cell lung carcinoma. Int J Cancer 2002 Mar 10; 98(2): 181–5PubMedCrossRef
43.
Zurück zum Zitat Bauer C, Diesinger I, Brass N, et al. Translation initiation factor eIF-4G is immunogenic, overexpressed, and amplified in patients with squamous cell lung carcinoma. Cancer 2001 Aug 15; 92(4): 822–9PubMedCrossRef Bauer C, Diesinger I, Brass N, et al. Translation initiation factor eIF-4G is immunogenic, overexpressed, and amplified in patients with squamous cell lung carcinoma. Cancer 2001 Aug 15; 92(4): 822–9PubMedCrossRef
44.
Zurück zum Zitat Eberle J, Krasagakis K, Orfanos CE. Translation initiation factor eIF-4A1 mRNA is consistently overexpressed in human melanoma cells in vitro. Int J Cancer 1997 May 2; 71(3): 396–401PubMedCrossRef Eberle J, Krasagakis K, Orfanos CE. Translation initiation factor eIF-4A1 mRNA is consistently overexpressed in human melanoma cells in vitro. Int J Cancer 1997 May 2; 71(3): 396–401PubMedCrossRef
45.
Zurück zum Zitat Rousseau D, Gingras AC, Pause A, et al. The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene 1996 Dec 5; 13(11): 2415–20PubMed Rousseau D, Gingras AC, Pause A, et al. The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene 1996 Dec 5; 13(11): 2415–20PubMed
46.
Zurück zum Zitat Polunovsky VA, Gingras AC, Sonenberg N, et al. Translational control of the antiapoptotic function of Ras. J Biol Chem 2000 Aug 11; 275(32): 24776–80PubMedCrossRef Polunovsky VA, Gingras AC, Sonenberg N, et al. Translational control of the antiapoptotic function of Ras. J Biol Chem 2000 Aug 11; 275(32): 24776–80PubMedCrossRef
47.
Zurück zum Zitat Armengol G, Rojo F, Castellvi J, et al. 4E-Binding protein 1: a key molecular “funnel factor” in human cancer with clinical implications. Cancer Res 2007 Aug 15; 67(16): 7551–5PubMedCrossRef Armengol G, Rojo F, Castellvi J, et al. 4E-Binding protein 1: a key molecular “funnel factor” in human cancer with clinical implications. Cancer Res 2007 Aug 15; 67(16): 7551–5PubMedCrossRef
48.
Zurück zum Zitat Castellvi J, Garcia A, Rojo F, et al. Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer. Cancer 2006 Oct 15; 107(8): 1801–11PubMedCrossRef Castellvi J, Garcia A, Rojo F, et al. Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer. Cancer 2006 Oct 15; 107(8): 1801–11PubMedCrossRef
49.
Zurück zum Zitat Fumagalli S, Thomas G. S6 Phosphorylation and signal transduction. In: Sonenberg N, Hershey JWB, Mathews MB, editors. Translational control of gene expression. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2000: 695–717 Fumagalli S, Thomas G. S6 Phosphorylation and signal transduction. In: Sonenberg N, Hershey JWB, Mathews MB, editors. Translational control of gene expression. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2000: 695–717
50.
Zurück zum Zitat Shima H, Pende M, Chen Y, et al. Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 1998 Nov 16; 17(22): 6649–59PubMedCrossRef Shima H, Pende M, Chen Y, et al. Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 1998 Nov 16; 17(22): 6649–59PubMedCrossRef
51.
Zurück zum Zitat Dowling RJ, Zakikhani M, Fantus IG, et al. metformin inhibits mammalian target of rapamycin dependent translation initiation in breast cancer cells. Cancer Res 2007 Nov 15; 67(22): 10804–12PubMedCrossRef Dowling RJ, Zakikhani M, Fantus IG, et al. metformin inhibits mammalian target of rapamycin dependent translation initiation in breast cancer cells. Cancer Res 2007 Nov 15; 67(22): 10804–12PubMedCrossRef
52.
Zurück zum Zitat Inoki K, Li Y, Xu T, et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003 Aug 1; 17(15): 1829–34PubMedCrossRef Inoki K, Li Y, Xu T, et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003 Aug 1; 17(15): 1829–34PubMedCrossRef
53.
Zurück zum Zitat Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002 Sep; 4(9): 648–57PubMedCrossRef Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002 Sep; 4(9): 648–57PubMedCrossRef
54.
Zurück zum Zitat Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 2006 Aug; 5(8): 671–88PubMedCrossRef Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 2006 Aug; 5(8): 671–88PubMedCrossRef
55.
Zurück zum Zitat Fry MJ. Phosphoinositide 3-kinase signalling in breast cancer: how big a role might it play? Breast Cancer Res 2001; 3(5): 304–12PubMedCrossRef Fry MJ. Phosphoinositide 3-kinase signalling in breast cancer: how big a role might it play? Breast Cancer Res 2001; 3(5): 304–12PubMedCrossRef
56.
Zurück zum Zitat Philp AJ, Campbell IG, Leet C, et al. The phosphatidylinositol 3′-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res 2001 Oct 15; 61(20): 7426–9PubMed Philp AJ, Campbell IG, Leet C, et al. The phosphatidylinositol 3′-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res 2001 Oct 15; 61(20): 7426–9PubMed
57.
Zurück zum Zitat Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 2003 Oct; 4(4): 257–62PubMedCrossRef Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 2003 Oct; 4(4): 257–62PubMedCrossRef
58.
Zurück zum Zitat Ikenoue T, Kanai F, Hikiba Y, et al. Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res 2005 Jun 1; 65(11): 4562–7PubMedCrossRef Ikenoue T, Kanai F, Hikiba Y, et al. Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res 2005 Jun 1; 65(11): 4562–7PubMedCrossRef
59.
Zurück zum Zitat Podsypanina K, Ellenson LH, Nemes A, et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A 1999 Feb 16; 96(4): 1563–8PubMedCrossRef Podsypanina K, Ellenson LH, Nemes A, et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A 1999 Feb 16; 96(4): 1563–8PubMedCrossRef
60.
Zurück zum Zitat Neshat MS, Mellinghoff IK, Tran C, et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci U S A 2001 Aug 28; 98(18): 10314–9PubMedCrossRef Neshat MS, Mellinghoff IK, Tran C, et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci U S A 2001 Aug 28; 98(18): 10314–9PubMedCrossRef
61.
Zurück zum Zitat Koksal IT, Dirice E, Yasar D, et al. The assessment of PTEN tumor suppressor gene in combination with Gleason scoring and serum PSA to evaluate progression of prostate carcinoma. Urol Oncol 2004 Jul–Aug; 22(4): 307–12PubMedCrossRef Koksal IT, Dirice E, Yasar D, et al. The assessment of PTEN tumor suppressor gene in combination with Gleason scoring and serum PSA to evaluate progression of prostate carcinoma. Urol Oncol 2004 Jul–Aug; 22(4): 307–12PubMedCrossRef
62.
Zurück zum Zitat Kanamori Y, Kigawa J, Itamochi H, et al. Correlation between loss of PTEN expression and Akt phosphorylation in endometrial carcinoma. Clin Cancer Res 2001 Apr; 7(4): 892–5PubMed Kanamori Y, Kigawa J, Itamochi H, et al. Correlation between loss of PTEN expression and Akt phosphorylation in endometrial carcinoma. Clin Cancer Res 2001 Apr; 7(4): 892–5PubMed
63.
Zurück zum Zitat Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell 2000 Feb 18; 100(4): 387–90PubMedCrossRef Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell 2000 Feb 18; 100(4): 387–90PubMedCrossRef
64.
Zurück zum Zitat Stambolic V, Tsao MS, Macpherson D, et al. High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/−mice. Cancer Res 2000 Jul 1; 60(13): 3605–11PubMed Stambolic V, Tsao MS, Macpherson D, et al. High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/−mice. Cancer Res 2000 Jul 1; 60(13): 3605–11PubMed
65.
Zurück zum Zitat Di Cristofano A, Pesce B, Cordon-Cardo C, et al. Pten is essential for embryonic development and tumour suppression. Nat Genet 1998 Aug; 19(4): 348–55PubMedCrossRef Di Cristofano A, Pesce B, Cordon-Cardo C, et al. Pten is essential for embryonic development and tumour suppression. Nat Genet 1998 Aug; 19(4): 348–55PubMedCrossRef
66.
Zurück zum Zitat Wang S, Gao J, Lei Q, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 2003 Sep; 4(3): 209–21PubMedCrossRef Wang S, Gao J, Lei Q, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 2003 Sep; 4(3): 209–21PubMedCrossRef
67.
Zurück zum Zitat Jaeschke A, Hartkamp J, Saitoh M, et al. Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent. J Cell Biol 2002 Oct 28; 159(2): 217–24PubMedCrossRef Jaeschke A, Hartkamp J, Saitoh M, et al. Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent. J Cell Biol 2002 Oct 28; 159(2): 217–24PubMedCrossRef
68.
Zurück zum Zitat Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003 Nov 26; 115(5): 577–90PubMedCrossRef Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003 Nov 26; 115(5): 577–90PubMedCrossRef
69.
Zurück zum Zitat Onda H, Lueck A, Marks PW, et al. Tsc2(+/−) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. J Clin Invest 1999 Sep; 104(6): 687–95PubMedCrossRef Onda H, Lueck A, Marks PW, et al. Tsc2(+/−) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. J Clin Invest 1999 Sep; 104(6): 687–95PubMedCrossRef
70.
Zurück zum Zitat Kobayashi T, Minowa O, Kuno J, et al. Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ-line Tsc2 mutation in mice. Cancer Res 1999 Mar 15; 59(6): 1206–11PubMed Kobayashi T, Minowa O, Kuno J, et al. Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ-line Tsc2 mutation in mice. Cancer Res 1999 Mar 15; 59(6): 1206–11PubMed
71.
Zurück zum Zitat Woods A, Johnstone SR, Dickerson K, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 2003 Nov 11; 13(22): 2004–8PubMedCrossRef Woods A, Johnstone SR, Dickerson K, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 2003 Nov 11; 13(22): 2004–8PubMedCrossRef
72.
Zurück zum Zitat Hawley SA, Boudeau J, Reid JL, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2003; 2(4): 28PubMedCrossRef Hawley SA, Boudeau J, Reid JL, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2003; 2(4): 28PubMedCrossRef
73.
Zurück zum Zitat Kahn BB, Alquier T, Carling D, et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005 Jan; 1(1): 15–25PubMedCrossRef Kahn BB, Alquier T, Carling D, et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005 Jan; 1(1): 15–25PubMedCrossRef
74.
Zurück zum Zitat Shaw RJ, Bardeesy N, Manning BD, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004 Jul; 6(1): 91–9PubMedCrossRef Shaw RJ, Bardeesy N, Manning BD, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004 Jul; 6(1): 91–9PubMedCrossRef
75.
Zurück zum Zitat Hemminki A, Markie D, Tomlinson I, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 1998 Jan 8; 391(6663): 184–7PubMedCrossRef Hemminki A, Markie D, Tomlinson I, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 1998 Jan 8; 391(6663): 184–7PubMedCrossRef
76.
Zurück zum Zitat Bardeesy N, Sinha M, Hezel AF, et al. Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature 2002 Sep 12; 419(6903): 162–7PubMedCrossRef Bardeesy N, Sinha M, Hezel AF, et al. Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature 2002 Sep 12; 419(6903): 162–7PubMedCrossRef
77.
Zurück zum Zitat Weinstein IB. Cancer: addiction to oncogenes —the Achilles heal of cancer. Science 2002 Jul 5; 297(5578): 63–4PubMedCrossRef Weinstein IB. Cancer: addiction to oncogenes —the Achilles heal of cancer. Science 2002 Jul 5; 297(5578): 63–4PubMedCrossRef
78.
79.
Zurück zum Zitat Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic: I, taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975 Oct; 28(10): 721–6CrossRef Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic: I, taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975 Oct; 28(10): 721–6CrossRef
80.
Zurück zum Zitat Choi J, Chen J, Schreiber SL, et al. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 1996 Jul 12; 273(5272): 239–42PubMedCrossRef Choi J, Chen J, Schreiber SL, et al. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 1996 Jul 12; 273(5272): 239–42PubMedCrossRef
81.
Zurück zum Zitat Chiang GG, Abraham RT. Targeting the mTOR signaling network in cancer. Trends Mol Med 2007 Oct; 13(10): 433–42PubMedCrossRef Chiang GG, Abraham RT. Targeting the mTOR signaling network in cancer. Trends Mol Med 2007 Oct; 13(10): 433–42PubMedCrossRef
82.
Zurück zum Zitat Oshiro N, Yoshino K, Hidayat S, et al. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 2004 Apr; 9(4): 359–66PubMedCrossRef Oshiro N, Yoshino K, Hidayat S, et al. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 2004 Apr; 9(4): 359–66PubMedCrossRef
83.
Zurück zum Zitat Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004 Nov; 6(11): 1122–8PubMedCrossRef Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004 Nov; 6(11): 1122–8PubMedCrossRef
84.
Zurück zum Zitat Wu L, Birle DC, Tannock IF. Effects of the mammalian target of rapamycin inhibitor CCI-779 used alone or with chemotherapy on human prostate cancer cells and xenografts. Cancer Res 2005 Apr 1; 65(7): 2825–31PubMedCrossRef Wu L, Birle DC, Tannock IF. Effects of the mammalian target of rapamycin inhibitor CCI-779 used alone or with chemotherapy on human prostate cancer cells and xenografts. Cancer Res 2005 Apr 1; 65(7): 2825–31PubMedCrossRef
85.
Zurück zum Zitat Mosley JD, Poirier JT, Seachrist DD, et al. Rapamycin inhibits multiple stages of c-Neu/ErbB2 induced tumor progression in a transgenic mouse model of HER2-positive breast cancer. Mol Cancer Ther 2007 Aug; 6(8): 2188–97PubMedCrossRef Mosley JD, Poirier JT, Seachrist DD, et al. Rapamycin inhibits multiple stages of c-Neu/ErbB2 induced tumor progression in a transgenic mouse model of HER2-positive breast cancer. Mol Cancer Ther 2007 Aug; 6(8): 2188–97PubMedCrossRef
86.
Zurück zum Zitat Yu K, Toral-Barza L, Discafani C, et al. mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 2001 Sep; 8(3): 249–58PubMedCrossRef Yu K, Toral-Barza L, Discafani C, et al. mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 2001 Sep; 8(3): 249–58PubMedCrossRef
87.
Zurück zum Zitat Noh WC, Mondesire WH, Peng J, et al. Determinants of rapamycin sensitivity in breast cancer cells. Clin Cancer Res 2004 Feb 1; 10(3): 1013–23PubMedCrossRef Noh WC, Mondesire WH, Peng J, et al. Determinants of rapamycin sensitivity in breast cancer cells. Clin Cancer Res 2004 Feb 1; 10(3): 1013–23PubMedCrossRef
88.
Zurück zum Zitat Beretta L, Gingras AC, Svitkin YV, et al. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 1996 Feb 1; 15(3): 658–64PubMed Beretta L, Gingras AC, Svitkin YV, et al. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 1996 Feb 1; 15(3): 658–64PubMed
89.
Zurück zum Zitat Grolleau A, Bowman J, Pradet-Balade B, et al. Global and specific translational control by rapamycin in T cells uncovered by microarrays and proteomics. J Biol Chem 2002 Jun 21; 277(25): 22175–84PubMedCrossRef Grolleau A, Bowman J, Pradet-Balade B, et al. Global and specific translational control by rapamycin in T cells uncovered by microarrays and proteomics. J Biol Chem 2002 Jun 21; 277(25): 22175–84PubMedCrossRef
90.
Zurück zum Zitat Huang S, Liu LN, Hosoi H, et al. p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin. Cancer Res 2001 Apr 15; 61(8): 3373–81PubMed Huang S, Liu LN, Hosoi H, et al. p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin. Cancer Res 2001 Apr 15; 61(8): 3373–81PubMed
91.
Zurück zum Zitat Abraham RT, Eng CH. Mammalian target of rapamycin as a therapeutic target in oncology. Expert Opin Ther Targets 2008 Feb; 12(2): 209–22PubMedCrossRef Abraham RT, Eng CH. Mammalian target of rapamycin as a therapeutic target in oncology. Expert Opin Ther Targets 2008 Feb; 12(2): 209–22PubMedCrossRef
92.
Zurück zum Zitat Tsang CK, Qi H, Liu LF, et al. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov Today 2007 Feb; 12(3-4): 112–24PubMedCrossRef Tsang CK, Qi H, Liu LF, et al. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov Today 2007 Feb; 12(3-4): 112–24PubMedCrossRef
93.
Zurück zum Zitat Hidalgo M, Buckner JC, Erlichman C, et al. A phase I and pharmacokinetic study of temsirolimus (CCI-779) administered intravenously daily for 5 days every 2 weeks to patients with advanced cancer. Clin Cancer Res 2006 Oct 1; 12(19): 5755–63PubMedCrossRef Hidalgo M, Buckner JC, Erlichman C, et al. A phase I and pharmacokinetic study of temsirolimus (CCI-779) administered intravenously daily for 5 days every 2 weeks to patients with advanced cancer. Clin Cancer Res 2006 Oct 1; 12(19): 5755–63PubMedCrossRef
94.
Zurück zum Zitat Raymond E, Alexandre J, Faivre S, et al. Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol 2004 Jun 15; 22(12): 2336–47PubMedCrossRef Raymond E, Alexandre J, Faivre S, et al. Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol 2004 Jun 15; 22(12): 2336–47PubMedCrossRef
95.
Zurück zum Zitat Chan S, Scheulen ME, Johnston S, et al. Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol 2005 Aug 10; 23(23): 5314–22PubMedCrossRef Chan S, Scheulen ME, Johnston S, et al. Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol 2005 Aug 10; 23(23): 5314–22PubMedCrossRef
96.
Zurück zum Zitat Atkins MB, Hidalgo M, Stadler WM, et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol 2004 Mar 1; 22(5): 909–18PubMedCrossRef Atkins MB, Hidalgo M, Stadler WM, et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol 2004 Mar 1; 22(5): 909–18PubMedCrossRef
97.
Zurück zum Zitat Witzig TE, Geyer SM, Ghobrial I, et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol 2005 Aug 10; 23(23): 5347–56PubMedCrossRef Witzig TE, Geyer SM, Ghobrial I, et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol 2005 Aug 10; 23(23): 5347–56PubMedCrossRef
98.
Zurück zum Zitat O’Donnell A, Faivre S, Judson I, et al. A phase I study of the oral mTOR inhibitor RAD001 as monotherapy to identify the optimal biologically effective dose using toxicity, pharmacokinetic (PK) and pharmaco-dynamic (PD) endpoints in patients with solid tumours [abstract no. A803]. Annual Meeting, American Society of Clinical Oncology; 2003 May 31–Jun 3; Chicago (IL) O’Donnell A, Faivre S, Judson I, et al. A phase I study of the oral mTOR inhibitor RAD001 as monotherapy to identify the optimal biologically effective dose using toxicity, pharmacokinetic (PK) and pharmaco-dynamic (PD) endpoints in patients with solid tumours [abstract no. A803]. Annual Meeting, American Society of Clinical Oncology; 2003 May 31–Jun 3; Chicago (IL)
99.
Zurück zum Zitat Boulay A, Zumstein-Mecker S, Stephan C, et al. Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res 2004 Jan 1; 64(1): 252–61PubMedCrossRef Boulay A, Zumstein-Mecker S, Stephan C, et al. Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res 2004 Jan 1; 64(1): 252–61PubMedCrossRef
100.
Zurück zum Zitat Smolewski P. Recent developments in targeting the mammalian target of rapamycin (mTOR) kinase pathway. Anticancer Drugs 2006 Jun; 17(5): 487–94PubMedCrossRef Smolewski P. Recent developments in targeting the mammalian target of rapamycin (mTOR) kinase pathway. Anticancer Drugs 2006 Jun; 17(5): 487–94PubMedCrossRef
101.
Zurück zum Zitat Yee KW, Zeng Z, Konopleva M, et al. Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 2006 Sep 1; 12(17): 5165–73PubMedCrossRef Yee KW, Zeng Z, Konopleva M, et al. Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 2006 Sep 1; 12(17): 5165–73PubMedCrossRef
102.
Zurück zum Zitat Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 2008 Aug 9; 372(9637): 449–56PubMedCrossRef Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 2008 Aug 9; 372(9637): 449–56PubMedCrossRef
103.
Zurück zum Zitat Mita MM, Mita AC, Chu QS, et al. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol 2008 Jan 20; 26(3): 361–7PubMedCrossRef Mita MM, Mita AC, Chu QS, et al. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol 2008 Jan 20; 26(3): 361–7PubMedCrossRef
104.
Zurück zum Zitat Iwenofu OH, Lackman RD, Staddon AP, et al. Phospho-S6 ribosomal protein: a potential new predictive sarcoma marker for targeted mTOR therapy. Mod Pathol 2008 Mar; 21(3): 231–7PubMedCrossRef Iwenofu OH, Lackman RD, Staddon AP, et al. Phospho-S6 ribosomal protein: a potential new predictive sarcoma marker for targeted mTOR therapy. Mod Pathol 2008 Mar; 21(3): 231–7PubMedCrossRef
105.
Zurück zum Zitat Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005 Feb 18; 307(5712): 1098–101PubMedCrossRef Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005 Feb 18; 307(5712): 1098–101PubMedCrossRef
106.
Zurück zum Zitat Bayascas JR, Alessi DR. Regulation of Akt/PKB Ser473 phosphorylation. Mol Cell 2005 Apr 15; 18(2): 143–5PubMedCrossRef Bayascas JR, Alessi DR. Regulation of Akt/PKB Ser473 phosphorylation. Mol Cell 2005 Apr 15; 18(2): 143–5PubMedCrossRef
107.
Zurück zum Zitat Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006 Apr 21; 22(2): 159–68PubMedCrossRef Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006 Apr 21; 22(2): 159–68PubMedCrossRef
108.
Zurück zum Zitat Manning BD. Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J Cell Biol 2004 Nov 8; 167(3) Manning BD. Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J Cell Biol 2004 Nov 8; 167(3)
109.
Zurück zum Zitat Shah OJ, Wang Z, Hunter T. Inappropriate activation of the TSC/ Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 2004 Sep 21; 14(18): 1650–6PubMedCrossRef Shah OJ, Wang Z, Hunter T. Inappropriate activation of the TSC/ Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 2004 Sep 21; 14(18): 1650–6PubMedCrossRef
110.
Zurück zum Zitat Harrington LS, Findlay GM, Gray A, et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 2004 Jul 19;166(2): 213-23 Harrington LS, Findlay GM, Gray A, et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 2004 Jul 19;166(2): 213-23
111.
Zurück zum Zitat Greene MW, Sakaue H, Wang L, et al. Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by serine 312 phosphorylation. J Biol Chem 2003 Mar 7; 278(10): 8199–211PubMedCrossRef Greene MW, Sakaue H, Wang L, et al. Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by serine 312 phosphorylation. J Biol Chem 2003 Mar 7; 278(10): 8199–211PubMedCrossRef
112.
Zurück zum Zitat O’Reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006 Feb 1;66(3): 1500–8PubMedCrossRef O’Reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006 Feb 1;66(3): 1500–8PubMedCrossRef
113.
Zurück zum Zitat Zhang H, Bajraszewski N, Wu E, et al. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 2007 Mar; 117(3): 730–8PubMedCrossRef Zhang H, Bajraszewski N, Wu E, et al. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 2007 Mar; 117(3): 730–8PubMedCrossRef
114.
Zurück zum Zitat Buck E, Eyzaguirre A, Brown E, et al. Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung, pancreatic, colon, and breast tumors. Mol Cancer Ther 2006 Nov; 5(11): 2676–84PubMedCrossRef Buck E, Eyzaguirre A, Brown E, et al. Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung, pancreatic, colon, and breast tumors. Mol Cancer Ther 2006 Nov; 5(11): 2676–84PubMedCrossRef
115.
Zurück zum Zitat Skeen JE, Bhaskar PT, Chen CC, et al. Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53-independent and mTORC1-dependent manner. Cancer Cell 2006 Oct; 10(4): 269–80PubMedCrossRef Skeen JE, Bhaskar PT, Chen CC, et al. Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53-independent and mTORC1-dependent manner. Cancer Cell 2006 Oct; 10(4): 269–80PubMedCrossRef
116.
Zurück zum Zitat Wang MY, Lu KV, Zhu S, et al. Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells. Cancer Res 2006 Aug 15; 66(16): 7864–9PubMedCrossRef Wang MY, Lu KV, Zhu S, et al. Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells. Cancer Res 2006 Aug 15; 66(16): 7864–9PubMedCrossRef
117.
Zurück zum Zitat Birle DC, Hedley DW. Signaling interactions of rapamycin combined with erlotinib in cervical carcinoma xenografts. Mol Cancer Ther 2006 Oct; 5(10): 2494–502PubMedCrossRef Birle DC, Hedley DW. Signaling interactions of rapamycin combined with erlotinib in cervical carcinoma xenografts. Mol Cancer Ther 2006 Oct; 5(10): 2494–502PubMedCrossRef
118.
Zurück zum Zitat Azzariti A, Porcelli L, Gatti G, et al. Synergic antiproliferative and antiangiogenic effects of EGFR and mTor inhibitors on pancreatic cancer cells. Biochem Pharmacol 2008 Mar 1; 75(5): 1035–44PubMedCrossRef Azzariti A, Porcelli L, Gatti G, et al. Synergic antiproliferative and antiangiogenic effects of EGFR and mTor inhibitors on pancreatic cancer cells. Biochem Pharmacol 2008 Mar 1; 75(5): 1035–44PubMedCrossRef
119.
Zurück zum Zitat Doherty L, Gigas DC, Kesari S, et al. Pilot study of the combination of EGFR and mTOR inhibitors in recurrent malignant gliomas. Neurology 2006 Jul 11; 67(1): 156–8PubMedCrossRef Doherty L, Gigas DC, Kesari S, et al. Pilot study of the combination of EGFR and mTOR inhibitors in recurrent malignant gliomas. Neurology 2006 Jul 11; 67(1): 156–8PubMedCrossRef
120.
Zurück zum Zitat Milton DT, Riely GJ, Azzoli CG, et al. Phase 1 trial of everolimus and gefitinib in patients with advanced nonsmall-cell lung cancer. Cancer 2007 Aug 1; 110(3): 599–605PubMedCrossRef Milton DT, Riely GJ, Azzoli CG, et al. Phase 1 trial of everolimus and gefitinib in patients with advanced nonsmall-cell lung cancer. Cancer 2007 Aug 1; 110(3): 599–605PubMedCrossRef
121.
Zurück zum Zitat Beuvink I, Boulay A, Fumagalli S, et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 2005 Mar 25; 120(6): 747–59PubMedCrossRef Beuvink I, Boulay A, Fumagalli S, et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 2005 Mar 25; 120(6): 747–59PubMedCrossRef
122.
Zurück zum Zitat Mondesire WH, Jian W, Zhang H, et al. Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin Cancer Res 2004 Oct 15; 10(20): 7031–42PubMedCrossRef Mondesire WH, Jian W, Zhang H, et al. Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin Cancer Res 2004 Oct 15; 10(20): 7031–42PubMedCrossRef
123.
Zurück zum Zitat Raje N, Kumar S, Hideshima T, et al. Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood 2004 Dec 15; 104(13): 4188–93PubMedCrossRef Raje N, Kumar S, Hideshima T, et al. Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood 2004 Dec 15; 104(13): 4188–93PubMedCrossRef
124.
Zurück zum Zitat Mohi MG, Boulton C, Gu TL, et al. Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc Natl Acad Sci U S A 2004 Mar 2; 101(9): 3130–5PubMedCrossRef Mohi MG, Boulton C, Gu TL, et al. Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc Natl Acad Sci U S A 2004 Mar 2; 101(9): 3130–5PubMedCrossRef
125.
Zurück zum Zitat de Graffenried LA, Friedrichs WE, Russell DH, et al. Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt Activity. Clin Cancer Res 2004 Dec 1; 10(23): 8059–67CrossRef de Graffenried LA, Friedrichs WE, Russell DH, et al. Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt Activity. Clin Cancer Res 2004 Dec 1; 10(23): 8059–67CrossRef
126.
Zurück zum Zitat Awada A, Cardoso F, Fontaine C, et al. The oral mTOR inhibitor RAD001 (everolimus) in combination with letrozole in patients with advanced breast cancer: results of a phase I study with pharmacokinetics. Eur J Cancer 2008 Jan; 44(1): 84–91PubMedCrossRef Awada A, Cardoso F, Fontaine C, et al. The oral mTOR inhibitor RAD001 (everolimus) in combination with letrozole in patients with advanced breast cancer: results of a phase I study with pharmacokinetics. Eur J Cancer 2008 Jan; 44(1): 84–91PubMedCrossRef
127.
Zurück zum Zitat Tokunaga E, Kimura Y, Mashino K, et al. Activation of PI3K/Akt signaling and hormone resistance in breast cancer. Breast Cancer 2006; 13(2): 137–44PubMedCrossRef Tokunaga E, Kimura Y, Mashino K, et al. Activation of PI3K/Akt signaling and hormone resistance in breast cancer. Breast Cancer 2006; 13(2): 137–44PubMedCrossRef
128.
Zurück zum Zitat Shinohara ET, Cao C, Niermann K, et al. Enhanced radiation damage of tumor vasculature by mTOR inhibitors. Oncogene 2005 Aug 18; 24(35): 5414–22PubMedCrossRef Shinohara ET, Cao C, Niermann K, et al. Enhanced radiation damage of tumor vasculature by mTOR inhibitors. Oncogene 2005 Aug 18; 24(35): 5414–22PubMedCrossRef
129.
Zurück zum Zitat Podsypanina K, Lee RT, Politis C, et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/−mice. Proc Natl Acad Sci U S A 2001 Aug 28; 98(18): 10320–5PubMedCrossRef Podsypanina K, Lee RT, Politis C, et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/−mice. Proc Natl Acad Sci U S A 2001 Aug 28; 98(18): 10320–5PubMedCrossRef
130.
Zurück zum Zitat Shi Y, Gera J, Hu L, et al. Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res 2002 Sep 1; 62(17): 5027–34PubMed Shi Y, Gera J, Hu L, et al. Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res 2002 Sep 1; 62(17): 5027–34PubMed
131.
Zurück zum Zitat Uegaki K, Kanamori Y, Kigawa J, et al. PTEN-positive and phosphorylated-Akt-negative expression is a predictor of survival for patients with advanced endometrial carcinoma. Oncol Rep 2005 Aug; 14(2): 389–92PubMed Uegaki K, Kanamori Y, Kigawa J, et al. PTEN-positive and phosphorylated-Akt-negative expression is a predictor of survival for patients with advanced endometrial carcinoma. Oncol Rep 2005 Aug; 14(2): 389–92PubMed
132.
Zurück zum Zitat Tashiro H, Blazes MS, Wu R, et al. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res 1997 Sep 15; 57(18): 3935–40PubMed Tashiro H, Blazes MS, Wu R, et al. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res 1997 Sep 15; 57(18): 3935–40PubMed
133.
Zurück zum Zitat Wendel HG, Malina A, Zhao Z, et al. Determinants of sensitivity and resistance to rapamycin-chemotherapy drug combinations in vivo. Cancer Res 2006 Aug 1; 66(15): 7639–46PubMedCrossRef Wendel HG, Malina A, Zhao Z, et al. Determinants of sensitivity and resistance to rapamycin-chemotherapy drug combinations in vivo. Cancer Res 2006 Aug 1; 66(15): 7639–46PubMedCrossRef
134.
Zurück zum Zitat Galanis E, Buckner JC, Maurer MJ, et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 2005 Aug 10; 23(23): 5294–304PubMedCrossRef Galanis E, Buckner JC, Maurer MJ, et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 2005 Aug 10; 23(23): 5294–304PubMedCrossRef
135.
Zurück zum Zitat Margolin K, Longmate J, Baratta T, et al. CCI-779 in metastatic melanoma: a phase II trial of the California Cancer Consortium. Cancer 2005 Sep 1; 104(5): 1045–8PubMedCrossRef Margolin K, Longmate J, Baratta T, et al. CCI-779 in metastatic melanoma: a phase II trial of the California Cancer Consortium. Cancer 2005 Sep 1; 104(5): 1045–8PubMedCrossRef
136.
Zurück zum Zitat Chang SM, Wen P, Cloughesy T, et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest New Drugs 2005 Aug; 23(4): 357–61PubMedCrossRef Chang SM, Wen P, Cloughesy T, et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest New Drugs 2005 Aug; 23(4): 357–61PubMedCrossRef
137.
Zurück zum Zitat Cho D, Signoretti S, Regan M, et al. The role of mammalian target of rapamycin inhibitors in the treatment of advanced renal cancer. Clin Cancer Res 2007 Jan 15; 13 (2 Pt 2): 758s–63sPubMedCrossRef Cho D, Signoretti S, Regan M, et al. The role of mammalian target of rapamycin inhibitors in the treatment of advanced renal cancer. Clin Cancer Res 2007 Jan 15; 13 (2 Pt 2): 758s–63sPubMedCrossRef
138.
Zurück zum Zitat Dilling MB, Germain GS, Dudkin L, et al. 4E-binding proteins, the suppressors of eukaryotic initiation factor 4E, are down-regulated in cells with acquired or intrinsic resistance to rapamycin. J Biol Chem 2002 Apr 19; 277(16): 13907–17PubMedCrossRef Dilling MB, Germain GS, Dudkin L, et al. 4E-binding proteins, the suppressors of eukaryotic initiation factor 4E, are down-regulated in cells with acquired or intrinsic resistance to rapamycin. J Biol Chem 2002 Apr 19; 277(16): 13907–17PubMedCrossRef
139.
Zurück zum Zitat Aguirre D, Boya P, Bellet D, et al. Bcl-2 and CCND1/CDK4 expression levels predict the cellular effects of mTOR inhibitors in human ovarian carcinoma. Apoptosis 2004 Nov; 9(6): 797–805PubMedCrossRef Aguirre D, Boya P, Bellet D, et al. Bcl-2 and CCND1/CDK4 expression levels predict the cellular effects of mTOR inhibitors in human ovarian carcinoma. Apoptosis 2004 Nov; 9(6): 797–805PubMedCrossRef
140.
Zurück zum Zitat Feldman ME, Apsel B, Uotila A, et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 2009 Feb 10; 7(2): e38PubMedCrossRef Feldman ME, Apsel B, Uotila A, et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 2009 Feb 10; 7(2): e38PubMedCrossRef
141.
Zurück zum Zitat Thoreen CC, Kang SA, Chang JW, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009 Mar 20; 284(12): 8023–32PubMedCrossRef Thoreen CC, Kang SA, Chang JW, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009 Mar 20; 284(12): 8023–32PubMedCrossRef
142.
Zurück zum Zitat Howes AL, Chiang GG, Lang ES, et al. The phosphatidylinositol 3-kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motility and growth in three-dimensional cultures. Mol Cancer Ther 2007 Sep; 6(9): 2505–14PubMedCrossRef Howes AL, Chiang GG, Lang ES, et al. The phosphatidylinositol 3-kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motility and growth in three-dimensional cultures. Mol Cancer Ther 2007 Sep; 6(9): 2505–14PubMedCrossRef
143.
Zurück zum Zitat Billottet C, Grandage VL, Gale RE, et al. A selective inhibitor of the p110delta isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP 16. Oncogene 2006 Oct 26; 25(50): 6648–59PubMedCrossRef Billottet C, Grandage VL, Gale RE, et al. A selective inhibitor of the p110delta isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP 16. Oncogene 2006 Oct 26; 25(50): 6648–59PubMedCrossRef
144.
Zurück zum Zitat Schultz RM, Merriman RL, Andis SL, et al. In vitro and in vivo antitumor activity of the phosphatidylinositol-3-kinase inhibitor, wortmannin. Anticancer Res 1995 Jul–Aug; 15(4): 1135–9PubMed Schultz RM, Merriman RL, Andis SL, et al. In vitro and in vivo antitumor activity of the phosphatidylinositol-3-kinase inhibitor, wortmannin. Anticancer Res 1995 Jul–Aug; 15(4): 1135–9PubMed
145.
Zurück zum Zitat Ward S, Sotsios Y, Dowden J, et al. Therapeutic potential of phosphoinositide 3-kinase inhibitors. Chem Biol 2003 Mar; 10(3): 207–13PubMedCrossRef Ward S, Sotsios Y, Dowden J, et al. Therapeutic potential of phosphoinositide 3-kinase inhibitors. Chem Biol 2003 Mar; 10(3): 207–13PubMedCrossRef
146.
Zurück zum Zitat Fan QW, Knight ZA, Goldenberg DD, et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 2006 May; 9(5): 341–9PubMedCrossRef Fan QW, Knight ZA, Goldenberg DD, et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 2006 May; 9(5): 341–9PubMedCrossRef
147.
Zurück zum Zitat DeFeo-Jones D, Barnett SF, Fu S, et al. Tumor cell sensitization to apoptotic stimuli by selective inhibition of specific Akt/PKB family members. Mol Cancer Ther 2005 Feb; 4(2): 271–9PubMed DeFeo-Jones D, Barnett SF, Fu S, et al. Tumor cell sensitization to apoptotic stimuli by selective inhibition of specific Akt/PKB family members. Mol Cancer Ther 2005 Feb; 4(2): 271–9PubMed
148.
Zurück zum Zitat Rattan R, Giri S, Singh AK, et al. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J Biol Chem 2005 Nov 25; 280(47): 39582–93PubMedCrossRef Rattan R, Giri S, Singh AK, et al. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J Biol Chem 2005 Nov 25; 280(47): 39582–93PubMedCrossRef
149.
Zurück zum Zitat Zakikhani M, Dowling R, Fantus IG, et al. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 2006 Nov 1; 66(21): 10269–73PubMedCrossRef Zakikhani M, Dowling R, Fantus IG, et al. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 2006 Nov 1; 66(21): 10269–73PubMedCrossRef
150.
Zurück zum Zitat Buzzai M, Jones RG, Amaravadi RK, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 2007 Jul 15; 67(14): 6745–52PubMedCrossRef Buzzai M, Jones RG, Amaravadi RK, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 2007 Jul 15; 67(14): 6745–52PubMedCrossRef
151.
Zurück zum Zitat Evans JM, Donnelly LA, Emslie-Smith AM, et al. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005 Jun 4; 330(7503): 1304–5PubMedCrossRef Evans JM, Donnelly LA, Emslie-Smith AM, et al. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005 Jun 4; 330(7503): 1304–5PubMedCrossRef
152.
Zurück zum Zitat Pollak M. Insulin and insulin-like growth factor signaling in neoplasia. Nat Rev Cancer 2008 Dec; 8: 915–28PubMedCrossRef Pollak M. Insulin and insulin-like growth factor signaling in neoplasia. Nat Rev Cancer 2008 Dec; 8: 915–28PubMedCrossRef
153.
Zurück zum Zitat Ballou LM, Selinger ES, Choi JY, et al. Inhibition ofmammalian target of rapamycin signaling by 2-(morpholin-1-yl)pyrimido[2,1-alpha]isoquinolin-4-one. J Biol Chem 2007 Aug 17; 282(33): 24463–70PubMedCrossRef Ballou LM, Selinger ES, Choi JY, et al. Inhibition ofmammalian target of rapamycin signaling by 2-(morpholin-1-yl)pyrimido[2,1-alpha]isoquinolin-4-one. J Biol Chem 2007 Aug 17; 282(33): 24463–70PubMedCrossRef
Metadaten
Titel
Current Status and Challenges Associated with Targeting mTOR for Cancer Therapy
verfasst von
Ryan J.O. Dowling
Michael Pollak
Dr Nahum Sonenberg
Publikationsdatum
01.04.2009
Verlag
Springer International Publishing
Erschienen in
BioDrugs / Ausgabe 2/2009
Print ISSN: 1173-8804
Elektronische ISSN: 1179-190X
DOI
https://doi.org/10.2165/00063030-200923020-00002

Weitere Artikel der Ausgabe 2/2009

BioDrugs 2/2009 Zur Ausgabe

Adis Drug Profile

Golimumab