Skip to main content
Erschienen in: Clinical Pharmacokinetics 12/2010

01.12.2010 | Original Research Article

A Pharmacokinetic and Pharmacodynamic Study of Oral Oxycodone in a Human Experimental Pain Model of Hyperalgesia

verfasst von: Anne E. Olesen, Richard Upton, David J. R. Foster, Camilla Staahl, Lona L. Christrup, Lars Arendt-Nielsen, Professor Asbjørn M. Drewes

Erschienen in: Clinical Pharmacokinetics | Ausgabe 12/2010

Einloggen, um Zugang zu erhalten

Abstract

Background and Objective

Oxycodone is not as well characterized, with respect to its pharmacokinetic/ pharmacodynamic properties, as other opioids. Moreover, the pharmacodynamic profile of oxycodone can be affected by changes in the pain system, e.g. hyperalgesia. Therefore, the aim of this study was to investigate the pharmacokinetic/pharmacodynamic profiles of oxycodone in a human experimental pain model of hyperalgesia.

Methods

Twenty-four healthy subjects received oral oxycodone (15 mg) or placebo. Pharmacodynamics were assessed utilizing a multimodal, multi-tissue paradigm where pain was assessed from skin (heat), muscle (pressure) and viscera (heat and electricity) before and 30, 60 and 90 minutes after induction of generalized hyperalgesia evoked by perfusion of acid and capsaicin in the oesophagus. Venous blood samples were obtained for quantification of oxycodone plasma concentrations before and 5, 10, 15, 30, 45, 60, 90 and 120 minutes after drug administration.

Results

Oxycodone blood concentrations could be described by a one-compartment model but, given the necessarily short timescale of the study, the concentrations were represented by linear interpolation for subsequent pharmacodynamic models. Time-dependent changes in the pain measures in the placebo arm of the study were represented by linear or quadratic functions. The time course of the pain measures in the oxycodone arm was taken to be the time course for the placebo arm plus a concentration-effect relationship that was either zero (no drug effect), linear or a maximum effect (Emax) model.
For three of the four pain measures, there was a time-dependent change after administration of placebo (e.g. due to the development of generalized hyperalgesia).

Conclusion

There was a measurable effect of oxycodone, compared with placebo, on all pain measures, and a linear concentration-effect relationship without an effect delay was demonstrated. This could indicate an initial peripheral analgesic effect of oxycodone.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Trescot AM, Datta S, Lee M, et al. Opioid pharmacology. Pain Physician 2008 Mar; 11: 133–53 Trescot AM, Datta S, Lee M, et al. Opioid pharmacology. Pain Physician 2008 Mar; 11: 133–53
2.
Zurück zum Zitat Holtman JR, Wala EP. Characterization of the antinociceptive effect of oxycodone in male and female rats. Pharmacol Biochem Behav 2006 Jan; 83: 100–8PubMedCrossRef Holtman JR, Wala EP. Characterization of the antinociceptive effect of oxycodone in male and female rats. Pharmacol Biochem Behav 2006 Jan; 83: 100–8PubMedCrossRef
3.
Zurück zum Zitat Nielsen CK, Ross FB, Lotfipour S, et al. Oxycodone and morphine have distinctly different pharmacological profiles: radioligand binding and behavioural studies in two rat models of neuropathic pain. Pain 2007 Dec; 132: 289–300PubMedCrossRef Nielsen CK, Ross FB, Lotfipour S, et al. Oxycodone and morphine have distinctly different pharmacological profiles: radioligand binding and behavioural studies in two rat models of neuropathic pain. Pain 2007 Dec; 132: 289–300PubMedCrossRef
4.
Zurück zum Zitat Nozaki C, Saitoh A, Kamei J. Characterization of the antinociceptive effects of oxycodone in diabetic mice. Eur J Pharmacol 2006 Mar; 535: 145–51PubMedCrossRef Nozaki C, Saitoh A, Kamei J. Characterization of the antinociceptive effects of oxycodone in diabetic mice. Eur J Pharmacol 2006 Mar; 535: 145–51PubMedCrossRef
5.
Zurück zum Zitat Nozaki C, Saitoh A, Tamura N, et al. Antinociceptive effect of oxycodone in diabetic mice. Eur J Pharmacol 2005 Nov; 524: 75–9PubMedCrossRef Nozaki C, Saitoh A, Tamura N, et al. Antinociceptive effect of oxycodone in diabetic mice. Eur J Pharmacol 2005 Nov; 524: 75–9PubMedCrossRef
6.
Zurück zum Zitat Ross FB, Smith MT. The intrinsic antinociceptive effects of oxycodone appear to be kappa-opioid receptor mediated. Pain 1997 Nov; 73: 151–7PubMedCrossRef Ross FB, Smith MT. The intrinsic antinociceptive effects of oxycodone appear to be kappa-opioid receptor mediated. Pain 1997 Nov; 73: 151–7PubMedCrossRef
8.
Zurück zum Zitat Labuz D, Mousa SA, Schafer M, et al. Relative contribution of peripheral versus central opioid receptors to antinociception. Brain Res 2007 Jul; 1160: 30–8PubMedCrossRef Labuz D, Mousa SA, Schafer M, et al. Relative contribution of peripheral versus central opioid receptors to antinociception. Brain Res 2007 Jul; 1160: 30–8PubMedCrossRef
9.
10.
Zurück zum Zitat Burton MB, Gebhart GF. Effects of kappa-opioid receptor agonists on responses to colorectal distension in rats with and without acute colonic inflammation. J Pharmacol Exp Ther 1998 May; 285: 707–15PubMed Burton MB, Gebhart GF. Effects of kappa-opioid receptor agonists on responses to colorectal distension in rats with and without acute colonic inflammation. J Pharmacol Exp Ther 1998 May; 285: 707–15PubMed
11.
Zurück zum Zitat De Schepper HU, Cremonini F, Park MI, et al. Opioids and the gut: pharmacology and current clinical experience. Neurogastroenterol Motil 2004 Aug; 16: 383–94PubMedCrossRef De Schepper HU, Cremonini F, Park MI, et al. Opioids and the gut: pharmacology and current clinical experience. Neurogastroenterol Motil 2004 Aug; 16: 383–94PubMedCrossRef
12.
Zurück zum Zitat Staahl C, Christrup LL, Andersen SD, et al. A comparative study of oxycodone and morphine in a multi-modal, tissue-differentiated experimental pain model. Pain 2006 Jul; 123: 28–36PubMedCrossRef Staahl C, Christrup LL, Andersen SD, et al. A comparative study of oxycodone and morphine in a multi-modal, tissue-differentiated experimental pain model. Pain 2006 Jul; 123: 28–36PubMedCrossRef
13.
Zurück zum Zitat Staahl C, Upton R, Foster DJ, et al. Pharmacokinetic-pharmacodynamic modeling ofmorphine and oxycodone concentrations and analgesic effectin a multimodal experimental pain model. J Clin Pharmacol 2008 May; 48: 619–31PubMedCrossRef Staahl C, Upton R, Foster DJ, et al. Pharmacokinetic-pharmacodynamic modeling ofmorphine and oxycodone concentrations and analgesic effectin a multimodal experimental pain model. J Clin Pharmacol 2008 May; 48: 619–31PubMedCrossRef
14.
Zurück zum Zitat Schafer M. Peripheral opioid analgesia: from experimental to clinical studies. Curr Opin Anaesthesiol 1999 Oct; 12: 603–7PubMedCrossRef Schafer M. Peripheral opioid analgesia: from experimental to clinical studies. Curr Opin Anaesthesiol 1999 Oct; 12: 603–7PubMedCrossRef
15.
Zurück zum Zitat Stein C, Machelska H, Schafer M. Peripheral analgesic and antiinflammatory effects of opioids. Z Rheumatol 2001 Dec; 60: 416–24PubMedCrossRef Stein C, Machelska H, Schafer M. Peripheral analgesic and antiinflammatory effects of opioids. Z Rheumatol 2001 Dec; 60: 416–24PubMedCrossRef
16.
Zurück zum Zitat Sengupta JN, Snider A, Su X, et al. Effects of kappa opioids in the inflamed rat colon. Pain 1999 Feb; 79: 175–85PubMedCrossRef Sengupta JN, Snider A, Su X, et al. Effects of kappa opioids in the inflamed rat colon. Pain 1999 Feb; 79: 175–85PubMedCrossRef
17.
Zurück zum Zitat Hassan AH, Ableitner A, Stein C, et al. Inflammation of the rat paw enhances axonal transport of opioid receptors in the sciatic nerve and increases their density in the inflamed tissue. Neuroscience 1993 Jul; 55: 185–95PubMedCrossRef Hassan AH, Ableitner A, Stein C, et al. Inflammation of the rat paw enhances axonal transport of opioid receptors in the sciatic nerve and increases their density in the inflamed tissue. Neuroscience 1993 Jul; 55: 185–95PubMedCrossRef
18.
Zurück zum Zitat Curatolo M, Arendt-Nielsen L, Petersen-Felix S. Central hypersensitivity in chronic pain: mechanisms and clinical implications. Phys Med Rehabil Clin N Am 2006 May; 17: 287–302PubMedCrossRef Curatolo M, Arendt-Nielsen L, Petersen-Felix S. Central hypersensitivity in chronic pain: mechanisms and clinical implications. Phys Med Rehabil Clin N Am 2006 May; 17: 287–302PubMedCrossRef
19.
Zurück zum Zitat Arendt-Nielsen L, Curatolo M, Drewes A. Human experimental pain models in drug development: translational pain research. Curr Opin Investig Drugs 2007 Jan; 8: 41–53PubMed Arendt-Nielsen L, Curatolo M, Drewes A. Human experimental pain models in drug development: translational pain research. Curr Opin Investig Drugs 2007 Jan; 8: 41–53PubMed
20.
Zurück zum Zitat Hammer J, Vogelsang H. Characterization of sensations induced by capsaicin in the upper gastrointestinal tract. Neurogastroenterol Motil 2007 Apr; 19: 279–87PubMedCrossRef Hammer J, Vogelsang H. Characterization of sensations induced by capsaicin in the upper gastrointestinal tract. Neurogastroenterol Motil 2007 Apr; 19: 279–87PubMedCrossRef
21.
Zurück zum Zitat Drewes AM, Schipper KP, Dimcevski G, et al. Multi-modal induction and assessment of allodynia and hyperalgesia in the human oesophagus. Eur J Pain 2003; 7: 539–49PubMedCrossRef Drewes AM, Schipper KP, Dimcevski G, et al. Multi-modal induction and assessment of allodynia and hyperalgesia in the human oesophagus. Eur J Pain 2003; 7: 539–49PubMedCrossRef
22.
Zurück zum Zitat Willert RP, Delaney C, Kelly K, et al. Exploring the neurophysiological basis of chest wall allodynia induced by experimental oesophageal acidificationevidenceof central sensitization. Neurogastroenterol Motil 2007 Apr; 19: 270–8PubMedCrossRef Willert RP, Delaney C, Kelly K, et al. Exploring the neurophysiological basis of chest wall allodynia induced by experimental oesophageal acidificationevidenceof central sensitization. Neurogastroenterol Motil 2007 Apr; 19: 270–8PubMedCrossRef
23.
Zurück zum Zitat Olesen AE, Staahl C, Brock C, et al. Evoked human oesophageal hyperalgesia: a potential tool for analgesic evaluation? Basic Clin Pharmacol Toxicol 2009 Aug; 105: 126–36PubMedCrossRef Olesen AE, Staahl C, Brock C, et al. Evoked human oesophageal hyperalgesia: a potential tool for analgesic evaluation? Basic Clin Pharmacol Toxicol 2009 Aug; 105: 126–36PubMedCrossRef
24.
Zurück zum Zitat Drewes AM, Gregersen H, Arendt-Nielsen L. Experimental pain in gastroenterology: a reappraisal of human studies. Scand J Gastroenterol 2003 Nov; 38: 1115–30PubMedCrossRef Drewes AM, Gregersen H, Arendt-Nielsen L. Experimental pain in gastroenterology: a reappraisal of human studies. Scand J Gastroenterol 2003 Nov; 38: 1115–30PubMedCrossRef
25.
Zurück zum Zitat Staahl C, Reddy H, Andersen SD, et al. Multi-modal and tissue-differentiated experimental pain assessment: reproducibility ofanew concept for assessment of analgesics. Basic Clin Pharmacol Toxicol 2006 Feb; 98: 201–11PubMedCrossRef Staahl C, Reddy H, Andersen SD, et al. Multi-modal and tissue-differentiated experimental pain assessment: reproducibility ofanew concept for assessment of analgesics. Basic Clin Pharmacol Toxicol 2006 Feb; 98: 201–11PubMedCrossRef
26.
Zurück zum Zitat Jespersen A, Dreyer L, Kendall S, et al. Computerized cuff pressure algometry: a new method to assess deep-tissue hypersensitivity infibromyalgia. Pain 2007 Sep; 131: 57–62PubMedCrossRef Jespersen A, Dreyer L, Kendall S, et al. Computerized cuff pressure algometry: a new method to assess deep-tissue hypersensitivity infibromyalgia. Pain 2007 Sep; 131: 57–62PubMedCrossRef
27.
Zurück zum Zitat Polianskis R, Graven-Nielsen T, Arendt-Nielsen L. Computer-controlled pneumatic pressure algometry: a new technique for quantitative sensory testing. Eur J Pain 2001; 5: 267–77PubMedCrossRef Polianskis R, Graven-Nielsen T, Arendt-Nielsen L. Computer-controlled pneumatic pressure algometry: a new technique for quantitative sensory testing. Eur J Pain 2001; 5: 267–77PubMedCrossRef
28.
29.
Zurück zum Zitat Savic RM, Jonker DM, Kerbusch T, et al. Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn 2007 Oct; 34: 711–26PubMedCrossRef Savic RM, Jonker DM, Kerbusch T, et al. Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn 2007 Oct; 34: 711–26PubMedCrossRef
30.
Zurück zum Zitat Sarkar S, Woolf CJ, Hobson AR, et al. Perceptual wind-up in the human oesophagus is enhanced by central sensitisation. Gut 2006 Jul; 55: 920–5PubMedCrossRef Sarkar S, Woolf CJ, Hobson AR, et al. Perceptual wind-up in the human oesophagus is enhanced by central sensitisation. Gut 2006 Jul; 55: 920–5PubMedCrossRef
31.
Zurück zum Zitat Frokjaer JB, Andersen SD, Gale J, et al. An experimental study of viscerovisceral hyperalgesia using an ultrasound-based multimodal sensory testing approach. Pain 2005 Dec; 119: 191–200PubMedCrossRef Frokjaer JB, Andersen SD, Gale J, et al. An experimental study of viscerovisceral hyperalgesia using an ultrasound-based multimodal sensory testing approach. Pain 2005 Dec; 119: 191–200PubMedCrossRef
32.
Zurück zum Zitat Stanfa L, Dickenson A. Spinal opioid systems in inflammation. Inflamm Res 1995 Jun; 44: 231–41PubMedCrossRef Stanfa L, Dickenson A. Spinal opioid systems in inflammation. Inflamm Res 1995 Jun; 44: 231–41PubMedCrossRef
33.
Zurück zum Zitat Riviere PJ. Peripheral kappa-opioid agonists for visceral pain. Br J Pharmacol 2004 Apr; 141: 1331–4PubMedCrossRef Riviere PJ. Peripheral kappa-opioid agonists for visceral pain. Br J Pharmacol 2004 Apr; 141: 1331–4PubMedCrossRef
34.
Zurück zum Zitat Stein C. The control of pain in peripheral tissue by opioids. N Engl J Med 1995 Jun; 332: 1685–90PubMedCrossRef Stein C. The control of pain in peripheral tissue by opioids. N Engl J Med 1995 Jun; 332: 1685–90PubMedCrossRef
35.
36.
Zurück zum Zitat Foster D, Upton R, Christrup L, et al. Pharmacokinetics and pharmacodynamics of intranasal versus intravenous fentanyl in patients with pain after oral surgery. Ann Pharmacother 2008 Oct; 42: 1380–7PubMedCrossRef Foster D, Upton R, Christrup L, et al. Pharmacokinetics and pharmacodynamics of intranasal versus intravenous fentanyl in patients with pain after oral surgery. Ann Pharmacother 2008 Oct; 42: 1380–7PubMedCrossRef
37.
Zurück zum Zitat Lalovic B, Kharasch E, Hoffer C, et al. Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. Clin Pharmacol Ther 2006 May; 79: 461–79PubMedCrossRef Lalovic B, Kharasch E, Hoffer C, et al. Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. Clin Pharmacol Ther 2006 May; 79: 461–79PubMedCrossRef
38.
Zurück zum Zitat Leow KP, Smith MT, Watt JA, et al. Comparative oxycodone pharmacokinetics in humans after intravenous, oral, and rectal administration. Ther Drug Monit 1992 Dec; 14: 479–84PubMedCrossRef Leow KP, Smith MT, Watt JA, et al. Comparative oxycodone pharmacokinetics in humans after intravenous, oral, and rectal administration. Ther Drug Monit 1992 Dec; 14: 479–84PubMedCrossRef
39.
Zurück zum Zitat Mandema JW, Kaiko RF, Oshlack B, et al. Characterization and validation of a pharmacokinetic model for controlled-release oxycodone. Br J Clin Pharmacol 1996 Dec; 42: 747–56PubMedCrossRef Mandema JW, Kaiko RF, Oshlack B, et al. Characterization and validation of a pharmacokinetic model for controlled-release oxycodone. Br J Clin Pharmacol 1996 Dec; 42: 747–56PubMedCrossRef
40.
Zurück zum Zitat Virk MS, Williams JT. Agonist-specific regulation of mu-opioid receptor desensitization and recovery from desensitization. Mol Pharmacol 2008 Apr; 73: 1301–8PubMedCrossRef Virk MS, Williams JT. Agonist-specific regulation of mu-opioid receptor desensitization and recovery from desensitization. Mol Pharmacol 2008 Apr; 73: 1301–8PubMedCrossRef
41.
Zurück zum Zitat Coller JK, Christrup LL, Somogyi AA. Role of active metabolites in the use of opioids. Eur J Clin Pharmacol 2009 Feb; 65: 121–39PubMedCrossRef Coller JK, Christrup LL, Somogyi AA. Role of active metabolites in the use of opioids. Eur J Clin Pharmacol 2009 Feb; 65: 121–39PubMedCrossRef
42.
Zurück zum Zitat Zwisler ST, Enggaard TP, Noehr-Jensen L, et al. The hypoalgesic effect of oxycodone in human experimental pain models in relation to the CYP2D6 oxidation polymorphism. Basic Clin Pharmacol Toxicol 2009 Apr; 104: 335–44PubMedCrossRef Zwisler ST, Enggaard TP, Noehr-Jensen L, et al. The hypoalgesic effect of oxycodone in human experimental pain models in relation to the CYP2D6 oxidation polymorphism. Basic Clin Pharmacol Toxicol 2009 Apr; 104: 335–44PubMedCrossRef
Metadaten
Titel
A Pharmacokinetic and Pharmacodynamic Study of Oral Oxycodone in a Human Experimental Pain Model of Hyperalgesia
verfasst von
Anne E. Olesen
Richard Upton
David J. R. Foster
Camilla Staahl
Lona L. Christrup
Lars Arendt-Nielsen
Professor Asbjørn M. Drewes
Publikationsdatum
01.12.2010
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 12/2010
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/11536610-000000000-00000

Weitere Artikel der Ausgabe 12/2010

Clinical Pharmacokinetics 12/2010 Zur Ausgabe

Acknowledgments

Acknowledgement