Skip to main content
Erschienen in: Journal of Inherited Metabolic Disease 5/2017

05.05.2017 | Review

Linking mitochondrial dysfunction to neurodegeneration in lysosomal storage diseases

verfasst von: Afshin Saffari, Stefan Kölker, Georg F. Hoffmann, Darius Ebrahimi-Fakhari

Erschienen in: Journal of Inherited Metabolic Disease | Ausgabe 5/2017

Einloggen, um Zugang zu erhalten

Abstract

Lysosomal storage diseases (LSD) are inborn errors of metabolism resulting in multisystem disease. Central nervous system involvement, often with progressive neurodegeneration, accounts for a large portion of the morbidity and mortality seen in many LSD. Available treatments fail to prevent or correct neurologic symptoms and decline. Emerging evidence points to an important role for mitochondrial dysfunction in the pathogenesis and progression of LSD-associated neurodegeneration. Mitochondrial dysfunction in LSD is characterized by alterations in mitochondrial mass, morphology and function. Disturbed mitochondrial metabolism in the CNS may lead to excessive production of mitochondrial reactive oxygen species and dysregulated calcium homeostasis. These metabolic disturbances ultimately result in mitochondria-induced apoptosis and neuronal degeneration. Here, we review the current evidence for mitochondrial dysfunction in neuronal models of seven LSD, including GM1-gangliosidosis, mucopolysaccharidosis IIIC, multiple sulfatase deficiency, Krabbe disease, Gaucher disease, Niemann Pick disease type C and the neural ceroid lipofuscinoses and outline current experimental therapies aimed at restoring mitochondrial function and neuroprotection in LSD.
Literatur
Zurück zum Zitat Alavian KN, Beutner G, Lazrove E et al (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci U S A 111:10580–10585CrossRefPubMedPubMedCentral Alavian KN, Beutner G, Lazrove E et al (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci U S A 111:10580–10585CrossRefPubMedPubMedCentral
Zurück zum Zitat Bahat-Stroomza M, Gilgun-Sherki Y, Offen D et al (2005) A novel thiol antioxidant that crosses the blood brain barrier protects dopaminergic neurons in experimental models of Parkinson’s disease. Eur J Neurosci 21:637–646CrossRefPubMed Bahat-Stroomza M, Gilgun-Sherki Y, Offen D et al (2005) A novel thiol antioxidant that crosses the blood brain barrier protects dopaminergic neurons in experimental models of Parkinson’s disease. Eur J Neurosci 21:637–646CrossRefPubMed
Zurück zum Zitat Bove J, Martinez-Vicente M, Vila M (2011) Fighting neurodegeneration with rapamycin: mechanistic insights. Nat Rev Neurosci 12:437–452CrossRefPubMed Bove J, Martinez-Vicente M, Vila M (2011) Fighting neurodegeneration with rapamycin: mechanistic insights. Nat Rev Neurosci 12:437–452CrossRefPubMed
Zurück zum Zitat Cali T, Ottolini D, Negro A, Brini M (2012) Alpha-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J Biol Chem 287:17914–17929CrossRefPubMedPubMedCentral Cali T, Ottolini D, Negro A, Brini M (2012) Alpha-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J Biol Chem 287:17914–17929CrossRefPubMedPubMedCentral
Zurück zum Zitat Cantuti Castelvetri L, Givogri MI, Hebert A et al (2013) The sphingolipid psychosine inhibits fast axonal transport in Krabbe disease by activation of GSK3beta and deregulation of molecular motors. J Neurosci 33:10048–10056CrossRefPubMedPubMedCentral Cantuti Castelvetri L, Givogri MI, Hebert A et al (2013) The sphingolipid psychosine inhibits fast axonal transport in Krabbe disease by activation of GSK3beta and deregulation of molecular motors. J Neurosci 33:10048–10056CrossRefPubMedPubMedCentral
Zurück zum Zitat Cao Y, Staropoli JF, Biswas S et al (2011) Distinct early molecular responses to mutations causing vLINCL and JNCL presage ATP synthase subunit C accumulation in cerebellar cells. PLoS One 6:e17118CrossRefPubMedPubMedCentral Cao Y, Staropoli JF, Biswas S et al (2011) Distinct early molecular responses to mutations causing vLINCL and JNCL presage ATP synthase subunit C accumulation in cerebellar cells. PLoS One 6:e17118CrossRefPubMedPubMedCentral
Zurück zum Zitat Carraro M, Giorgio V, Sileikyte J et al (2014) Channel formation by yeast F-ATP synthase and the role of dimerization in the mitochondrial permeability transition. J Biol Chem 289:15980–15985CrossRefPubMedPubMedCentral Carraro M, Giorgio V, Sileikyte J et al (2014) Channel formation by yeast F-ATP synthase and the role of dimerization in the mitochondrial permeability transition. J Biol Chem 289:15980–15985CrossRefPubMedPubMedCentral
Zurück zum Zitat Chen S, Owens GC, Crossin KL, Edelman DB (2007) Serotonin stimulates mitochondrial transport in hippocampal neurons. Mol Cell Neurosci 36:472–483CrossRefPubMed Chen S, Owens GC, Crossin KL, Edelman DB (2007) Serotonin stimulates mitochondrial transport in hippocampal neurons. Mol Cell Neurosci 36:472–483CrossRefPubMed
Zurück zum Zitat Dasgupta N, Xu YH, Li R et al (2015) Neuronopathic Gaucher disease: dysregulated mRNAs and miRNAs in brain pathogenesis and effects of pharmacologic chaperone treatment in a mouse model. Hum Mol Genet 24:7031–7048PubMedPubMedCentral Dasgupta N, Xu YH, Li R et al (2015) Neuronopathic Gaucher disease: dysregulated mRNAs and miRNAs in brain pathogenesis and effects of pharmacologic chaperone treatment in a mouse model. Hum Mol Genet 24:7031–7048PubMedPubMedCentral
Zurück zum Zitat Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Bjorklund A (2013) TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc Natl Acad Sci U S A 110:E1817–E1826CrossRefPubMedPubMedCentral Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Bjorklund A (2013) TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc Natl Acad Sci U S A 110:E1817–E1826CrossRefPubMedPubMedCentral
Zurück zum Zitat Fernandez A, Llacuna L, Fernandez-Checa JC, Colell A (2009) Mitochondrial cholesterol loading exacerbates amyloid beta peptide-induced inflammation and neurotoxicity. J Neurosci 29:6394–6405CrossRefPubMedPubMedCentral Fernandez A, Llacuna L, Fernandez-Checa JC, Colell A (2009) Mitochondrial cholesterol loading exacerbates amyloid beta peptide-induced inflammation and neurotoxicity. J Neurosci 29:6394–6405CrossRefPubMedPubMedCentral
Zurück zum Zitat Fossale E, Wolf P, Espinola JA et al (2004) Membrane trafficking and mitochondrial abnormalities precede subunit c deposition in a cerebellar cell model of juvenile neuronal ceroid lipofuscinosis. BMC Neurosci 5:57CrossRefPubMedPubMedCentral Fossale E, Wolf P, Espinola JA et al (2004) Membrane trafficking and mitochondrial abnormalities precede subunit c deposition in a cerebellar cell model of juvenile neuronal ceroid lipofuscinosis. BMC Neurosci 5:57CrossRefPubMedPubMedCentral
Zurück zum Zitat Fu R, Wassif CA, Yanjanin NM et al (2013) Efficacy of N-acetylcysteine in phenotypic suppression of mouse models of Niemann-Pick disease, type C1. Hum Mol Genet 22:3508–3523CrossRefPubMedPubMedCentral Fu R, Wassif CA, Yanjanin NM et al (2013) Efficacy of N-acetylcysteine in phenotypic suppression of mouse models of Niemann-Pick disease, type C1. Hum Mol Genet 22:3508–3523CrossRefPubMedPubMedCentral
Zurück zum Zitat Futerman AH, Boldin SA, Brann AB, Pelled D, Meivar-Levy I, Zisling R (1999) Regulation of sphingolipid and glycosphingolipid metabolism during neuronal growth and development. Biochem Soc Trans 27:432–437CrossRefPubMed Futerman AH, Boldin SA, Brann AB, Pelled D, Meivar-Levy I, Zisling R (1999) Regulation of sphingolipid and glycosphingolipid metabolism during neuronal growth and development. Biochem Soc Trans 27:432–437CrossRefPubMed
Zurück zum Zitat Giorgio V, von Stockum S, Antoniel M et al (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci U S A 110:5887–5892CrossRefPubMedPubMedCentral Giorgio V, von Stockum S, Antoniel M et al (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci U S A 110:5887–5892CrossRefPubMedPubMedCentral
Zurück zum Zitat Hamacher-Brady A, Brady NR (2016) Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci 73:775–795CrossRefPubMed Hamacher-Brady A, Brady NR (2016) Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci 73:775–795CrossRefPubMed
Zurück zum Zitat Haq E, Giri S, Singh I, Singh AK (2003) Molecular mechanism of psychosine-induced cell death in human oligodendrocyte cell line. J Neurochem 86:1428–1440CrossRefPubMed Haq E, Giri S, Singh I, Singh AK (2003) Molecular mechanism of psychosine-induced cell death in human oligodendrocyte cell line. J Neurochem 86:1428–1440CrossRefPubMed
Zurück zum Zitat Huang Z, Hou Q, Cheung NS, Li QT (2006) Neuronal cell death caused by inhibition of intracellular cholesterol trafficking is caspase dependent and associated with activation of the mitochondrial apoptosis pathway. J Neurochem 97:280–291CrossRefPubMed Huang Z, Hou Q, Cheung NS, Li QT (2006) Neuronal cell death caused by inhibition of intracellular cholesterol trafficking is caspase dependent and associated with activation of the mitochondrial apoptosis pathway. J Neurochem 97:280–291CrossRefPubMed
Zurück zum Zitat Johnson SC, Yanos ME, Kayser EB et al (2013) mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 342:1524–1528CrossRefPubMedPubMedCentral Johnson SC, Yanos ME, Kayser EB et al (2013) mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 342:1524–1528CrossRefPubMedPubMedCentral
Zurück zum Zitat Karatas H, Aktas Y, Gursoy-Ozdemir Y et al (2009) A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J Neurosci 29:13761–13769CrossRefPubMed Karatas H, Aktas Y, Gursoy-Ozdemir Y et al (2009) A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J Neurosci 29:13761–13769CrossRefPubMed
Zurück zum Zitat Kennedy BE, LeBlanc VG, Mailman TM et al (2013) Pre-symptomatic activation of antioxidant responses and alterations in glucose and pyruvate metabolism in Niemann-Pick type C1-deficient murine brain. PLoS One 8:e82685CrossRefPubMedPubMedCentral Kennedy BE, LeBlanc VG, Mailman TM et al (2013) Pre-symptomatic activation of antioxidant responses and alterations in glucose and pyruvate metabolism in Niemann-Pick type C1-deficient murine brain. PLoS One 8:e82685CrossRefPubMedPubMedCentral
Zurück zum Zitat Kolikova J, Afzalov R, Surin A, Lehesjoki AE, Khiroug L (2011) Deficient mitochondrial ca(2+) buffering in the Cln8(mnd) mouse model of neuronal ceroid lipofuscinosis. Cell Calcium 50:491–501CrossRefPubMed Kolikova J, Afzalov R, Surin A, Lehesjoki AE, Khiroug L (2011) Deficient mitochondrial ca(2+) buffering in the Cln8(mnd) mouse model of neuronal ceroid lipofuscinosis. Cell Calcium 50:491–501CrossRefPubMed
Zurück zum Zitat Liu G, Park SH, Imbesi M et al (2016) Loss of NAD-dependent protein deacetylase Sirtuin-2 alters mitochondrial protein acetylation and dysregulates Mitophagy. Antioxid Redox Signal. doi:10.1089/ars.2016.6662 Liu G, Park SH, Imbesi M et al (2016) Loss of NAD-dependent protein deacetylase Sirtuin-2 alters mitochondrial protein acetylation and dysregulates Mitophagy. Antioxid Redox Signal. doi:10.​1089/​ars.​2016.​6662
Zurück zum Zitat Lloyd-Evans E, Morgan AJ, He X et al (2008) Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14:1247–1255CrossRefPubMed Lloyd-Evans E, Morgan AJ, He X et al (2008) Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14:1247–1255CrossRefPubMed
Zurück zum Zitat Lojewski X, Staropoli JF, Biswas-Legrand S et al (2014) Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway. Hum Mol Genet 23:2005–2022CrossRefPubMed Lojewski X, Staropoli JF, Biswas-Legrand S et al (2014) Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway. Hum Mol Genet 23:2005–2022CrossRefPubMed
Zurück zum Zitat Luiro K, Kopra O, Blom T et al (2006) Batten disease (JNCL) is linked to disturbances in mitochondrial, cytoskeletal, and synaptic compartments. J Neurosci Res 84:1124–1138CrossRefPubMed Luiro K, Kopra O, Blom T et al (2006) Batten disease (JNCL) is linked to disturbances in mitochondrial, cytoskeletal, and synaptic compartments. J Neurosci Res 84:1124–1138CrossRefPubMed
Zurück zum Zitat Martins C, Hulkova H, Dridi L et al (2015) Neuroinflammation, mitochondrial defects and neurodegeneration in mucopolysaccharidosis III type C mouse model. Brain 138:336–355CrossRefPubMedPubMedCentral Martins C, Hulkova H, Dridi L et al (2015) Neuroinflammation, mitochondrial defects and neurodegeneration in mucopolysaccharidosis III type C mouse model. Brain 138:336–355CrossRefPubMedPubMedCentral
Zurück zum Zitat Medina DL, Di Paola S, Peluso I et al (2015) Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 17:288–299CrossRefPubMedPubMedCentral Medina DL, Di Paola S, Peluso I et al (2015) Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 17:288–299CrossRefPubMedPubMedCentral
Zurück zum Zitat Nath S, Goodwin J, Engelborghs Y, Pountney DL (2011) Raised calcium promotes alpha-synuclein aggregate formation. Mol Cell Neurosci 46:516–526CrossRefPubMed Nath S, Goodwin J, Engelborghs Y, Pountney DL (2011) Raised calcium promotes alpha-synuclein aggregate formation. Mol Cell Neurosci 46:516–526CrossRefPubMed
Zurück zum Zitat Okada R, Wu Z, Zhu A et al (2015) Cathepsin D deficiency induces oxidative damage in brain pericytes and impairs the blood-brain barrier. Mol Cell Neurosci 64:51–60CrossRefPubMed Okada R, Wu Z, Zhu A et al (2015) Cathepsin D deficiency induces oxidative damage in brain pericytes and impairs the blood-brain barrier. Mol Cell Neurosci 64:51–60CrossRefPubMed
Zurück zum Zitat Osellame LD, Rahim AA, Hargreaves IP et al (2013) Mitochondria and quality control defects in a mouse model of Gaucher disease--links to Parkinson’s disease. Cell Metab 17:941–953CrossRefPubMedPubMedCentral Osellame LD, Rahim AA, Hargreaves IP et al (2013) Mitochondria and quality control defects in a mouse model of Gaucher disease--links to Parkinson’s disease. Cell Metab 17:941–953CrossRefPubMedPubMedCentral
Zurück zum Zitat de Pablo-Latorre R, Saide A, Polishhuck EV, Nusco E, Fraldi A, Ballabio A (2012) Impaired parkin-mediated mitochondrial targeting to autophagosomes differentially contributes to tissue pathology in lysosomal storage diseases. Hum Mol Genet 21:1770–1781CrossRefPubMedPubMedCentral de Pablo-Latorre R, Saide A, Polishhuck EV, Nusco E, Fraldi A, Ballabio A (2012) Impaired parkin-mediated mitochondrial targeting to autophagosomes differentially contributes to tissue pathology in lysosomal storage diseases. Hum Mol Genet 21:1770–1781CrossRefPubMedPubMedCentral
Zurück zum Zitat Palmieri M, Pal R, Nelvagal HR et al (2017) mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun 8:14338CrossRefPubMedPubMedCentral Palmieri M, Pal R, Nelvagal HR et al (2017) mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun 8:14338CrossRefPubMedPubMedCentral
Zurück zum Zitat Plotegher N, Duchen MR (2017) Mitochondrial dysfunction and neurodegeneration in lysosomal storage disorders. Trends Mol Med 23:116–134CrossRefPubMed Plotegher N, Duchen MR (2017) Mitochondrial dysfunction and neurodegeneration in lysosomal storage disorders. Trends Mol Med 23:116–134CrossRefPubMed
Zurück zum Zitat Raffaello A, Mammucari C, Gherardi G, Rizzuto R (2016) Calcium at the Center of Cell Signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem Sci 41:1035–1049CrossRefPubMed Raffaello A, Mammucari C, Gherardi G, Rizzuto R (2016) Calcium at the Center of Cell Signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem Sci 41:1035–1049CrossRefPubMed
Zurück zum Zitat Rama Rao KV, Kielian T (2016) Astrocytes and lysosomal storage diseases. Neuroscience 323:195–206CrossRefPubMed Rama Rao KV, Kielian T (2016) Astrocytes and lysosomal storage diseases. Neuroscience 323:195–206CrossRefPubMed
Zurück zum Zitat Sano R, Annunziata I, Patterson A et al (2009) GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to ca(2+)-dependent mitochondrial apoptosis. Mol Cell 36:500–511CrossRefPubMedPubMedCentral Sano R, Annunziata I, Patterson A et al (2009) GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to ca(2+)-dependent mitochondrial apoptosis. Mol Cell 36:500–511CrossRefPubMedPubMedCentral
Zurück zum Zitat Sanz-Blasco S, Valero RA, Rodriguez-Crespo I, Villalobos C, Nunez L (2008) Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. PLoS One 3:e2718CrossRefPubMedPubMedCentral Sanz-Blasco S, Valero RA, Rodriguez-Crespo I, Villalobos C, Nunez L (2008) Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. PLoS One 3:e2718CrossRefPubMedPubMedCentral
Zurück zum Zitat Sato S, Koike M, Funayama M et al (2016) Lysosomal storage of subunit c of mitochondrial ATP synthase in brain-specific Atp13a2-deficient mice. Am J Pathol 186(12):3074–3082CrossRefPubMed Sato S, Koike M, Funayama M et al (2016) Lysosomal storage of subunit c of mitochondrial ATP synthase in brain-specific Atp13a2-deficient mice. Am J Pathol 186(12):3074–3082CrossRefPubMed
Zurück zum Zitat Settembre C, Fraldi A, Jahreiss L et al (2008) A block of autophagy in lysosomal storage disorders. Hum Mol Genet 17:119–129CrossRefPubMed Settembre C, Fraldi A, Jahreiss L et al (2008) A block of autophagy in lysosomal storage disorders. Hum Mol Genet 17:119–129CrossRefPubMed
Zurück zum Zitat Sidransky E, Nalls MA, Aasly JO et al (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361:1651–1661CrossRefPubMedPubMedCentral Sidransky E, Nalls MA, Aasly JO et al (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361:1651–1661CrossRefPubMedPubMedCentral
Zurück zum Zitat Takamura A, Higaki K, Kajimaki K et al (2008) Enhanced autophagy and mitochondrial aberrations in murine G(M1)-gangliosidosis. Biochem Biophys Res Commun 367:616–622CrossRefPubMed Takamura A, Higaki K, Kajimaki K et al (2008) Enhanced autophagy and mitochondrial aberrations in murine G(M1)-gangliosidosis. Biochem Biophys Res Commun 367:616–622CrossRefPubMed
Zurück zum Zitat Torres S, Matias N, Baulies A et al (2016) Mitochondrial GSH replenishment as a potential therapeutic approach for Niemann Pick type C disease. Redox Biol 11:60–72CrossRefPubMedPubMedCentral Torres S, Matias N, Baulies A et al (2016) Mitochondrial GSH replenishment as a potential therapeutic approach for Niemann Pick type C disease. Redox Biol 11:60–72CrossRefPubMedPubMedCentral
Zurück zum Zitat Verity C, Winstone AM, Stellitano L, Will R, Nicoll A (2010) The epidemiology of progressive intellectual and neurological deterioration in childhood. Arch Dis Child 95:361–364CrossRefPubMed Verity C, Winstone AM, Stellitano L, Will R, Nicoll A (2010) The epidemiology of progressive intellectual and neurological deterioration in childhood. Arch Dis Child 95:361–364CrossRefPubMed
Zurück zum Zitat Voccoli V, Tonazzini I, Signore G, Caleo M, Cecchini M (2014) Role of extracellular calcium and mitochondrial oxygen species in psychosine-induced oligodendrocyte cell death. Cell Death Dis 5:e1529CrossRefPubMedPubMedCentral Voccoli V, Tonazzini I, Signore G, Caleo M, Cecchini M (2014) Role of extracellular calcium and mitochondrial oxygen species in psychosine-induced oligodendrocyte cell death. Cell Death Dis 5:e1529CrossRefPubMedPubMedCentral
Zurück zum Zitat Walkley SU (2004) Secondary accumulation of gangliosides in lysosomal storage disorders. Semin Cell Dev Biol 15:433–444CrossRefPubMed Walkley SU (2004) Secondary accumulation of gangliosides in lysosomal storage disorders. Semin Cell Dev Biol 15:433–444CrossRefPubMed
Zurück zum Zitat Wei H, Zhang Z, Saha A et al (2011) Disruption of adaptive energy metabolism and elevated ribosomal p-S6K1 levels contribute to INCL pathogenesis: partial rescue by resveratrol. Hum Mol Genet 20:1111–1121CrossRefPubMed Wei H, Zhang Z, Saha A et al (2011) Disruption of adaptive energy metabolism and elevated ribosomal p-S6K1 levels contribute to INCL pathogenesis: partial rescue by resveratrol. Hum Mol Genet 20:1111–1121CrossRefPubMed
Zurück zum Zitat Yamada T, McGeer PL, Baimbridge KG, McGeer EG (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res 526:303–307CrossRefPubMed Yamada T, McGeer PL, Baimbridge KG, McGeer EG (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res 526:303–307CrossRefPubMed
Zurück zum Zitat Yu W, Gong JS, Ko M, Garver WS, Yanagisawa K, Michikawa M (2005) Altered cholesterol metabolism in Niemann-Pick type C1 mouse brains affects mitochondrial function. J Biol Chem 280:11731–11739CrossRefPubMed Yu W, Gong JS, Ko M, Garver WS, Yanagisawa K, Michikawa M (2005) Altered cholesterol metabolism in Niemann-Pick type C1 mouse brains affects mitochondrial function. J Biol Chem 280:11731–11739CrossRefPubMed
Metadaten
Titel
Linking mitochondrial dysfunction to neurodegeneration in lysosomal storage diseases
verfasst von
Afshin Saffari
Stefan Kölker
Georg F. Hoffmann
Darius Ebrahimi-Fakhari
Publikationsdatum
05.05.2017
Verlag
Springer Netherlands
Erschienen in
Journal of Inherited Metabolic Disease / Ausgabe 5/2017
Print ISSN: 0141-8955
Elektronische ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-017-0048-0

Weitere Artikel der Ausgabe 5/2017

Journal of Inherited Metabolic Disease 5/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.