Skip to main content
Erschienen in: BMC Endocrine Disorders 1/2021

Open Access 01.12.2021 | Research article

Lithium carbonate as add-on therapy to radioiodine in the treatment on hyperthyroidism: a systematic review and meta-analysis

verfasst von: Mohamed Abd-ElGawad, Mohamed Abdelmonem, Ahmed Eissa Ahmed, Omar Magdy Mohammed, Mohamed Sayed Zaazouee, Ahmed Assar, Mohamed Gadelkarim, Ahmed M. Afifi

Erschienen in: BMC Endocrine Disorders | Ausgabe 1/2021

Abstract

Background

The main purpose is to investigate the effect of LiCO3 as an add-on therapy with radioactive iodine in increasing the cure and decreasing the T4 level compared to radioactive iodine alone. The primary outcome is the cure rate as defined by the number of hyperthyroid patients who became euthyroid or hypothyroid. The secondary outcome is the T4 level.

Methods

Four databases were searched (PubMed, Scopus, Web of Science, and Cochrane central library). The inclusion criteria were randomized and non-randomized clinical trials of hyperthyroidism patients receiving LiCO3 with radioiodine compared with hyperthyroidism patients receiving radioactive iodine alone. Included studies were appraised with the risk of bias version 2 tool, according to the Cochrane Handbook for Systematic Reviews of Interventions 5.1.0.

Results

Nine studies were eligible for inclusion in the study, six randomized control trials and three non-randomized control trials. There were 477 patients in the intervention group and 451 patients in the control group. The cure rate was not significantly different between the two groups, while it was significantly increased with 5000 to 6500 mg optimized cumulative dose of LiCO3 compared with the control group, P = 0.0001. The T4 level showed no significant difference between the two groups, P = 0.13.

Conclusions

LiCO3 adjunct to radioactive iodine did not show significant differences compared with radioactive iodine alone in terms of cure rate or decreasing T4 level. However, the dose of 5000 to 6000 mg of LiCO3 may increase the cure rate.
Begleitmaterial
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12902-021-00729-2.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Background

Hyperthyroidism is a syndrome in which the thyroid gland is secreting large amounts of thyroid hormones as thyroxin (T4) and triiodothyronine (T3) [1]. It has some causes as Graves’ disease which is an autoimmune disease characterized by the presence of the anti-thyroid stimulating hormone (TSH), receptor antibodies with overproduction of T3 and T4 [2, 3], autonomous nodule or nodules with overproduction of thyroid hormones, some forms of thyroiditis with damage of thyroid follicles which resulted in the irregular release of T3 and T4, thyroid tumor or toxic goiter [1].
An initial approach to the treatment of hyperthyroidism is by administrating anti-thyroid drugs and aiming to reduce the production of thyroid hormones [4]. However, population-based studies [5] showed that anti-thyroid drugs might be associated with sudden cardiac death (3.9%). Besides, they had rare serious side effects as agranulocytosis, vasculitis, or hepatic injury which were considered as signs to stop these drugs [1]. The literature reported other less serious side effects as fever, pruritus, rash, arthralgia, gastrointestinal distress, and abnormal taste sensation [6]. Besides, this treatment is likely to fail after 18 months, and the recurrence of hyperthyroidism ensues [7]. Thus, nowadays, recommended treatments include radioiodine (RAI) therapy or thyroidectomy [4, 8].
Physicians at the Massachusetts General Hospital in Boston have used radioiodine in the treatment of thyrotoxicosis since 1941 [9, 10]. Owing to its convenient eight-day half-life and being an effective treatment of hyperthyroidism, it spread worldwide. Also, its risk of developing malignancy or even the mortality risk were not significantly elevated [11]. However, it had disadvantages as worsening exophthalmos in Graves’ disease patients with moderate or severe exophthalmos [12]. Also, it was advisable to be prevented in pregnant women for fear of its teratogenicity on the fetuses [1]. Besides, it could cause a sudden rise in thyroid hormones concentrations as a result of post radioiodine thyroiditis which increased the risk of cardiovascular disorders [1, 13]. Therefore, several adjunct therapies were used with RAI to increase its effectiveness, to prevent this acute increase of thyroid hormones, and to decrease its dose. One of these adjuncts was Lithium carbonate (LiCO3) [14].
Lithium salts were observed causing sedation in Guinea pigs, and LiCO3 in 1949 was introduced to patients with bipolar psychoses as a mode stabilizer [15]. The reason that lithium salts may be a suitable add-on with RAI is its significant inhibitory effect on the discharge rate of RAI from the gland [16], together with its ability to block the release of TH [17]. Lithium is also known to play a role in RAI retention in the gland being involved in blocking organic iodine and thyroid hormone release without effect on RAI uptake [1820].
A cohort study in patients with Graves’ disease confirmed the above mentioned theory and showed a higher cure rate in patients treated with RAI with LiCO3, as add-on therapy, after one year [20]. This higher cure rate suggests that using lithium, as an adjunct to RAI therapy, in thyrotoxicosis can be useful. However, there are discrepancies in outcomes of using LiCO3 as adjuvant therapy with I131 among published studies [14, 21, 22]. We aim to solve these differences by performing a systematic review and meta-analysis to determine the overall effect of adding lithium carbonate to RAI in the treatment of hyperthyroidism.

Methods

Study design and registration

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [23] to conduct this systematic review (SR) and meta-analysis (MA) for clinical trials whether randomized (RCT) or non-randomized. The study has no registered online protocol.

Inclusion criteria

We included studies that included patients with hyperthyroidism, Graves’ disease, or toxic goiter, which uses LiCO3 with I131 as an intervention and RAI only as a comparative. The study design included clinical trials, whether randomized or non-randomized. Only English-written human-based studies that provide published accessible full text were included.

Primary outcomes

The primary outcome of the study was the cure rate of the patients, which is the number of euthyroid or hypothyroid patients after the treatment period.

Secondary outcomes

The secondary outcome was the change in serum levels of total tetra-iodothyronine (T4) (ng/ml).

Search strategy and study selection

We searched the PubMed, Scopus, Cochrane Central Register of Controlled Trials (CENTRAL) and Web of Science Core Collection databases from database inception through 27 July 2019. The search employed all relevant index terms and keywords and did not utilize any filters. The complete search strategy for all databases is available in the supplementary file.
The study selection process was done in two phases: title and abstract screening and full-text screening. Two independent investigators screened each item, and another investigator solved the conflict.

Data extraction

We extracted the following data: the general features of the included studies, baseline characteristics, and outcomes of interest. General features included study design, country, timing, description of the intervention group, description of the control group, inclusion criteria, antithyroid drugs, duration of lithium administration, the reason for hyperthyroidism, and description of the intervention. Baseline characteristics included age (years), the onset of hyperthyroidism (months), gender (frequency), mean thyroid volume (ml), and mean serum TSH (mIU/I). The extracted outcomes were serum’s total T4 (ng/ml), and the number of euthyroid and hypothyroid patients (frequency).

Dealing with missing data

Some data were reported as mean and SE, so we used Revman 5.3 software to convert SE to SD. Besides, we calculated the mean difference for Serum total T4 outcome by subtracting the mean of baseline from that of Post-treatment value. In addition, we obtained the SD of the change from baseline using the method described by Foolman 1992 [24] and Abrams 2005 [25] for calculating the SD of the change from baseline using a decided on correlation coefficient. The correlation coefficient was decided to be zero as a conservative approach to yield the highest possible SD to avoid significant false results.

Statistical analysis

The extracted data regarding the cure rate was pooled as risk ratios, and the data about serum total T4 was pooled as mean differences. Both with the corresponding 95% confidence intervals in a random-effects meta-analysis model using the Mantel-Haenszel equation. Student T-test and Chi-square test were used to test the significant differences in the pooled data between the intervention and the control groups. We used Revman 5.3 software to perform the statistical analysis. We interpreted the results in forest plots for better visualization of data. We identified heterogeneity using the Chi-square heterogeneity test. We solved heterogeneity among studies by performing the leave-one-out sensitivity analysis. If the heterogeneity persisted, we used subgroup analysis. We used the random-effect model for heterogeneous data.

Quality assessment

For the randomized controlled trials, we used the Risk of Bias version 2 (ROB2) tool. We followed the Cochrane Handbook for Systematic Reviews of Interventions 5.1.0. in using the tool [26]. The tool consists of five domains that assess quality by answering signaling questions that help the authors determine the overall quality in each domain. The five domains include assessing the risk of bias in the randomization process, the risk of deviation from intended interventions, the risk of missing outcome data, the risk of bias in the measurement of the outcomes, and the risk in selecting the reported results. For the non-randomized trials, we used the ROBINS-1 tool [27]. The tool assessed the studies through signaling questions to determine the risk of bias in seven different domains. The tool included the same four domains as ROB-2 except for the randomization bias, in addition to three other domains regarding the confounding bias, selection bias, and bias in the classification of interventions. Funnel plot were used to assess the risk of bias across the studies.

Results

Data collection and study selection

Data collection retrieved 2003 results; 446 of them were duplicates and removed. The remaining 1557 studies were involved in the title and abstract screening phase. Only 108 studies were eligible for the inclusion criteria and entered the full text-screening phase. Nine studies were included in qualitative synthesis and quantitative synthesis (meta-analysis) [14, 21, 22, 2833]. Six were randomized controlled trials [14, 21, 22, 28, 29, 31] and three were non-randomized controlled trials [30, 32, 33]. The study selection process was illustrated in Fig. 1.
The nine studies included 477 patients in the intervention group and 451 patients in the control group, with a total of 928 patients. The general features and the baseline characteristics of the nine included studies were organized in Tables 1 and 2, respectively.
Table 1
Summary of the included studies
Study ID
Study design, country, and timing
Criteria
Intervention group(s)
Control group
Antithyroid drugs
Reason of hyperthyroidism
Randomized controlled trials
Thamcharoenvipas et al. 2019
RCT, Thailand, between April 2015 and June 2016
The inclusion criteria were patients with thyroid gland weight > 50 g and age > 18 years
N = 20
3.7 MBq/g thyroid RAI plus 600 mg/day LiCO3 for seven days
N = 20
5.55 MBq/g RAI plus 600 mg/day LiCO3 for 7 days
N = 20
7.4 MBq/g thyroid RAI without LiCO3
Propylthiouracil or Methimazole. (Stopped seven days before treatment)
Graves’ disease
Hammond et al. 2016
RCT,
South Africa, between February 2014 and September 2015
The inclusion criteria were patients with hyperthyroidism who have Graves’ disease or Plummer’s disease
N = 88
RAI plus lithium 800 mg/day for
seven days
N = 75
RAI alone
Neomercazole, in some patients. (Stopped at least 5–7 days before treatment)
Graves’ disease or Plummer’s disease (toxic multinodular goiter and toxic adenoma)
Lingudu et al. 2014
RCT,
India,
from February 2011 to January 2012
Inclusion criteria were patients with hyperthyroidism aged > 18 years, with mild or absent Graves’ ophthalmopathy
N = 20
RAI plus lithium 900 mg/day in three divided doses for six days
N = 20
RAI alone
Stopped seven days before RAI
Graves’ disease
Bal et al. 2002
RCT,
India,
from Dec 1994 to Dec. 1999
Exclusion criteria were patients with severe Graves’ ophthalmopathy, previous treatment of hyperthyroidism with radioiodine or surgery, and those with contraindications to lithium treatment
N = 164
Radioactive iodine plus lithium carbonate 900 mg/day for three weeks
N = 152
Radioactive iodine with no lithium
carbimazole (stopped 3–4 days before the radioiodine therapy)
Graves’ disease, autonomous functioning thyroid nodule (AFTN), or a toxic multinodular goiter (TMNG)
Bogazzi et al. 2002
RCT,
Italy,
During the year 1999–2000
Inclusion criteria were patients with hyperthyroidism (Graves’ disease), aged > 20 years
N = 12
RAI plus lithium 900 mg/d for 6 days
N = 12
RAI plus lithium 900 mg/d for 19 days
N = 12
RAI only
Methimazole (Stopped five days before RAI therapy)
Graves’ disease
Bogazzi et al. 1999
RCT,
Italy,
During the period 1994–1996
Inclusion criteria were patients with hyperthyroidism (Graves’ disease), aged > 20 years
N = 54
RAI plus lithium 900 mg/day for 6 days
N = 46
RAI only
Methimazole (stopped five days before RAI therapy)
Graves’ disease
Non-Randomized controlled trials.
Sekulić et al. 2017
Non-RCT, Serbia,
from April 2012 to March 2016
The inclusion criteria were patients aged 20–70 years, with the gland size estimated by palpation as a grade 0 (normal-sized, invisible), grade 1 (slightly enlarged, visible), and grade 2 (moderately enlarged, highly visible)
N = 30
131I and LiCO3 900 mg/day for seven days
N = 30
131I alone
Stopped seven days before RAI
Patients with recurrent and long-lasting Grave’s hyperthyroidism
Oszukowska et al. 2010
Non-RCT, Poland, 2010.
The reported retrospective study involved 200 patients with hyperthyroidism, treated with radioactive iodine
N = 40
Radioiodine therapy plus lithium carbonate 750 mg/day for ten days
N = 40
Radioiodine only
Not reported
Graves’ disease or toxic nodular goiter
TURNER et al. 1976
Non-RCT New Zealand, 1976
Inclusion criteria were patients with Diffuse thyroid hyperplasia as assessed by thyroid scan.
N = 16
131I (5 mCi) and lithium carbonate 400 mg daily for one week before and one week after 131I
N = 16
131I (5 mCi) without lithium therapy
Carbimazole or propylthiouracil; (stopped one week prior to the start of the radioiodine)
Diffuse thyroid hyperplasia
RCT: Randomized controlled trial. N: number. RAI: radioactive iodine therapy. MBg: megabecquerel. mCi: millicurie
Table 2
Baseline characters of the patients in the included studies
Study ID
Study groups
Age (years)
Mean (SD)
Gender (males)
Number, percentage
The onset of hyperthyroidism (years)
Mean (SD)
Mean thyroid volume (ml)
Mean (SD)
Mean serum TSH (mIU/l)
Mean (SD)
Randomized controlled trials
Thamcharoenvipas et al 2019
Intervention 1
30 (7.4)
3, 15%
21.3 (32.6)
82.6 (30.4)
.005 (.006)
Intervention 2
34.3 (13)
1, 5%
30.3 (39.3)
87.1 (21.0)
.011 (.02)
control
31.8 (12.2)
8, 40%
15.2 (19.6)
98.9 (36.0)
.003 (.004)
Hammond et al. 2016
intervention
43.7 (13.2)
9, 10%
NA
NA
.05
control
48.4 (12.0)
11, 14.7%
NA
NA
.04
Lingudu et al. 2014
intervention
35.9 (7.5)
2, 10%
19.7 (21)
26.7 (15.8)
NA
control
37.3 (12.7)
9, 45%
15.5 (10.8)
28.2 (12.4)
NA
Bal et al. 2002
intervention
41.8 (12.2)
61, 37.2%
6.1 (47.9)
48 (29.0)
NA
control
41.8 (11.5)
54, 35.5%
45.4 (41.6)
45 (24.0)
NA
Bogazzi et al. 2002
Intervention 1
48.0 (9.0)
2, 16.7%
37.3 (2.4)
19 (10)
1.3 (1.3)
Intervention 2
51.0 (9.0)
3, 25%
5.7 (2.0)
21 (11.0)
1.4 (1.7)
control
52.0 (13.0)
4, 33.4%
5.3 (1.8)
24 (13.0)
2.3 (1.8)
Bogazzi et al. 1999
Intervention
45 (12.8)
10, 18.5%
6.1 (2.3)
38 (22.0)
.6 (1.0)
Control
51 (15.8)
9, 16.7%
5.7 (2.3)
35 (21.0)
.4 (.9)
Non-randomized controlled trials
Sekulić et al 2017
Intervention
53.9 (8.8)
5, 16.7%
84.2 (68.0)
NA
.9 (.6)
Control
51.3 (9.2)
6, 20%
72.6 (52.6)
NA
.9 (.88)
Oszukowska et al 2010
Intervention
52.1 (13.1)
29 (14.5%)
NA
NA
NA
Control
NA
NA
NA
TURNER et al 1976
Intervention
44 (10.3)
5, 31.3%
NA
NA
NA
Control
43 (7.8)
2, 12.5%
NA
NA
NA
Data is expressed as mean and standard deviation (SD) or frequency and percentage. NA: not availabe

Quality assessment

Regarding random sequence generation, only two studies—Lingudu et al. [21] and Thamcharoenvipas et al. [31]—reported an appropriate method of randomization. However, the rest of the studies were judged as unclear due to insufficient information. Allocation concealment risk was unclear for all of the included studies due to insufficient information except for the Hammond et al. study [29]. It was judged as high-risk potential because the investigators could intervene with the patients’ assignment to the groups. The study of Thamcharoenvipas et al. [31] was judged as low-risk potential due to proper allocation concealment.
Regarding the blinding risk of bias, the Thamcharoenvipas et al. [31] study was a high-risk study concerning participants and personnel blinding because the physicians were not blinded. The study of Boggazzi et al., [14] was considered low-risk of bias regarding outcome assessors blinding because the examiners were sufficiently blinded. The rest of the included studies were considered as an unclear risk due to insufficient data.
Regarding the Incomplete outcome data bias, the studies of Bal et al. [22], Hammond et al. [29], and Boggazzi et al. 1998 [14] were considered as sources of high-risk bias due to their high patient attrition percentages (10, 12, and 9%, respectively), without any use of ITT method in the analysis of their data. The rest of the studies were judged as low risk.
For selective reporting, all studies were judged low risk except for the Hammond et al. [29] study. It was judged as high-risk potential due to incomplete reporting of the baseline characters of the patients’ biochemical data. Moreover, all included studies were considered as high-risk potential in the domain of other bias due to the unavailability of the study protocols. All the included studies ranged from unclear to moderate concerning overall quality (Figs. 2 and 3).
On the other hand, of the nonrandomized trials, two (Oszukowska et al. 2010 and Sekulić et al. 2017 studies) were judged as low-risk, while one (Brownlie et al. 1979 study) was judged as high-risk bias [30, 34, 35].
Both Oszukowska et al. 2010 and Sekulić et al. 2017 had low-risk in most the ROBINS-I domains; however, Oszukowska et al. 2010 study had some variability in measuring outcomes among all included patients (bias in the measurement of outcomes). The study of Brownlie et al. 1979 was considered high-risk because of lacking information in multiple domains including confounding and in the selection of participants into the study; moderate to high-risk were found among the domains of missing data, measurement of outcomes, and selection of the reported results (Table 3).
Table 3
Quality assessment of the nonrandomized trials using ROBINS-I
Study
Domain
Oszukowska et al. 2010
Sekulić et al. 2017
Brownlie et al. 1979
Pre-intervention
 Bias due to confounding
Probably No
Probably No
No Information
 Bias in selection of participants into the study
Probably No
No
No Information
At intervention
 Bias in classification of interventions
No
No
No
Post-intervention
 Bias due to deviations from intended interventions
No
No
No
 Bias due to missing data
No Information
No Information
Probably Yes
 Bias in measurement of outcomes
Probably Yes
No
Probably No
 Bias in selection of the reported result
No
No
Probably Yes
Overall risk of bias
Low risk bias
Low risk of bias
High risk of bias

Publication bias

To assess the risk of bias across studies, a funnel plot was created for the main outcome. This analysis showed a significant risk of publication bias regarding the RCTs. On the other hand, the non-randomized controlled trials were nearly symmetrical in both sides of the middle line (Fig. 4).

Primary outcomes

The total number of patients being treated in the Intervention group is 477 with a cure rate of 84.7% (404 patients), while the number being treated in the control group is 451 patients with a cure rate of 78.5% (354 patients), (RR = 1.11, 95% CI, .96–1.28; P = .17), not favoring any of the two compared groups. Substantial heterogeneity was inspected among the pooled studies (P = .0001, I2 = 75%) (Fig. 5).
The pooled data from the RCTs alone (6 studies) as a sub-group did not favor any of the two groups with a cure rate of 85.4% in the intervention group and 80% in the control group (RR = 1.11, 95% CI, .89–1.39; P = .34). Considerable heterogeneity was detected among the pooled studies (P = .0001; I2 = 84%) (Fig. 5).
Pooling the data of the non-RCTs (3 studies) as a separate sub-group also did not favor any of the compared groups with a cure rate of 81.6% in the intervention group and 74.6% in the control group (RR = 1.09, 95% CI, .94–1.26; P = .25). The pooled studies were homogenous (Fig. 5).

Analysis of the studies according to the total dose

The overall cure rate of LiCO3 (optimized dose: 5000 to 6500 mg) significantly favored the Intervention (LiCO3) group over the control group—with the exclusion of extremely low [31] or extremely high [22, 33] doses of the study groups. The pooled results showed a cure rate of 83.7% in the intervention (221 patients) versus 66.3% in the control group (199 patients) (RR = 1.27, 95% CI, 1.13–1.42; P = .0001). The pooled studies were homogenous (P = .76, I2 = 0%) (Fig. 6).

Secondary outcomes

The effect of the intervention on serum total T4 of the patients was reported in three studies (120 patients). The overall pooled result did not favor either of the two groups (SMD = -24.26, 95% CI, − 0.6 – 0.12; P = .18). The pooled studies were homogenous (P = .82, I2 = 0%) (Fig. 7).

Discussion

This systematic review and meta-analysis study is based on nine clinical trials, including 928 patients with hyperthyroidism; 715 of them were randomly selected to RAI with lithium carbonate or RAI only. The rest of the studies were non-randomized. Our meta-analysis showed that the overall effect of LiCO3—5000 to 6500 mg for six or seven days—plus RAI led to better cure rates among hyperthyroidism patients than in the control group (RR = 1.24, 95% CI, 1.11–1.39). This result depends on the analysis of 420 patients in six trials [14, 21, 2830, 32]. Conversely, the last meta-analysis reported non-significant differences in the cure rate between two groups of four randomized trials, including Bal et al., [22].
When we sub-grouped the included studies regarding their randomization, we noted that there was no significant difference regarding the cure rate between the intervention group and the control group of both randomized and non-randomized studies. These non-significant results may be due to the presence of trials with extremities in doses and durations. For instance, Oszukowska et al. [33] is a non-randomized trial in which the cumulative dose was 7500 mg for ten days. Moreover, Bal et al., [22] and Thamcharoenvipas et al., [31] are randomized trials in which the doses were 18,600 mg for 21 days and 4200 mg for seven days, respectively.
LiCO3 is administrated orally, totally absorbed, not metabolized, excreted unchanged by the renal system, and has a 12-h half-life. All of the dose is distributed through the body fluid, interstitial fluid, and eventually, slowly enters the cells [36]. RAI worsened the cure rate status in participants with a large thyroid gland, quick iodine washout, and diminished iodine uptake [37]. Lithium increased the half-life of RAI [16] and prevented the discharge of TH [17]. However, Thamcharoenvipas et al. [31] reported LiCO3 was harmful in rapid turnover Graves’ disease. This might be due to the whole dose of LiCO3 being 18,600 mg for three weeks which is considered as a high dose. Moreover, using LiCO3 with 3.7 mBq/g of RAI for Graves’ cases with rapid turnover uptake was a standard of use at their institution.
Regarding the secondary outcome, three studies disclosed decreased serum T4 without meaningful statistical variation between both the LiCO3 group and the control group. Sekulic et al. [30] showed an increase in T4 level and a decrease of TSH level for seven days in patients treated with RAI only. This reflex resulted from gland irradiation, while this phenomenon was lost in the LiCO3 group. Lingudu et al. [21] explicated that at four months, the group treated with RAI had undergone an abrupt drop of T4 and T3 levels. Of note, this rapid control may be helpful in elderly and cardiac patients.
The quality of the current evidence was considered good due to rigorous adherence to the Cochrane Handbook about systematic reviews and the PRISMA checklist in all the steps performed. Furthermore, we included nine trials in nine; six of them were randomized.
The strengths of our study can be summarized as we included only clinical trials that considered first-class evidence and applied multiple scales to appraise the same result. We did subgroup analysis according to randomization. In studies that did not report the correlation coefficient, we assumed it is zero as a conservative approach to yield the highest standard deviation and to avoid significant false results.
The limitations were that we included trials published in the English language only. We obtained the outcome data of Turner et al. from Brownlie et al. [32, 38]. Only nine controlled trials with different LiCO3 dosage regimens (six randomized and three non-randomized) matched our criteria of inclusion, six of them only included the preferred dosage. The most frequent dose used among studies exhibited significant results. In addition, the bias assessment of individual studies revealed an unclear risk of bias for several important domains, which indicates that a high degree of bias within these studies is possible. The risk of bias across studies revealed an asymmetrical publication pattern, indicating a potential bias in the body of literature. Taken together these indications warrant caution in the interpretation of the results. Further studies are needed to confirm these finding.

Conclusion

This study suggests that the use of LiCO3 with a cumulative dose of 5000 to 6500 mg for approximately seven days, as adjuvant therapy to RAI, may be effective in hyperthyroid conditions, while the extremities doses of lithium may not be beneficial.

Code availability

Not applicable.

Declarations

Not applicable.

Ethics approval

Not applicable.
Not applicable.

Competing interests

Dr. Abd-ElGawad has nothing to disclose. All the authors also declare no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Supplementary Information

Literatur
6.
Zurück zum Zitat Franklyn JA. The management of hyperthyroidism. N Engl J Med. 1994;25(331):559. Franklyn JA. The management of hyperthyroidism. N Engl J Med. 1994;25(331):559.
7.
Zurück zum Zitat Liu J, Jing F, Xu Y, Wang G. Antithyroid drug therapy for graves’ disease and implications for recurrence. Int J Endocrinol. 2017;2017:1–8. Liu J, Jing F, Xu Y, Wang G. Antithyroid drug therapy for graves’ disease and implications for recurrence. Int J Endocrinol. 2017;2017:1–8.
8.
Zurück zum Zitat Stokkel MPM, Junak DH, Lassmann M, Dietlein M, Luster M. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging. 2010;37:2218–28.CrossRef Stokkel MPM, Junak DH, Lassmann M, Dietlein M, Luster M. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging. 2010;37:2218–28.CrossRef
9.
Zurück zum Zitat Becker DV, Sawin CT. Radioiodine and thyroid disease: the beginning. Semin Nucl Med. 1996;26(3):155–64.CrossRef Becker DV, Sawin CT. Radioiodine and thyroid disease: the beginning. Semin Nucl Med. 1996;26(3):155–64.CrossRef
10.
Zurück zum Zitat Sawin CT, Becker DV. Radioiodine and the treatment of hyperthyroidism: the early history. Thyroid. 1997;7(2):163–76.CrossRef Sawin CT, Becker DV. Radioiodine and the treatment of hyperthyroidism: the early history. Thyroid. 1997;7(2):163–76.CrossRef
12.
Zurück zum Zitat Bartalena L, Marcocci C, Bogazzi F, Manetti L, Tanda ML, Dell'Unto E, Bruno-Bossio G, Nardi M, Bartolomei MP, Lepri A, Rossi G, Martino E, Pinchera A. Relation between therapy for hyperthyroidism and the course of Graves' ophthalmopathy. N Engl J Med. 1998;338(2):73–8. https://doi.org/10.1056/NEJM199801083380201. PMID: 9420337. Bartalena L, Marcocci C, Bogazzi F, Manetti L, Tanda ML, Dell'Unto E, Bruno-Bossio G, Nardi M, Bartolomei MP, Lepri A, Rossi G, Martino E, Pinchera A. Relation between therapy for hyperthyroidism and the course of Graves' ophthalmopathy. N Engl J Med. 1998;338(2):73–8. https://​doi.​org/​10.​1056/​NEJM199801083380​201. PMID: 9420337.
18.
Zurück zum Zitat Bogazzi F, Bartalena L, Brogioni S, Scarcello G, Burelli A, Campomori A, et al. Comparison of radioiodine with radioiodine plus Lithium in the treatment of graves’ Hyperthyroidism1. J Clin Endocrinol Metab. 1999;84(2):499–503.PubMed Bogazzi F, Bartalena L, Brogioni S, Scarcello G, Burelli A, Campomori A, et al. Comparison of radioiodine with radioiodine plus Lithium in the treatment of graves’ Hyperthyroidism1. J Clin Endocrinol Metab. 1999;84(2):499–503.PubMed
19.
Zurück zum Zitat Atmaca A, Dogan S, Dagdelen S, Gurlek A, Bayraktar M, Adalar N. Symptomatic Treatment of Graves Hyperthyroidism With Lithium in States of Thionamide Adverse Reactions: A Retrospective Analysis. The Endocrinol. 2004;14(6). Atmaca A, Dogan S, Dagdelen S, Gurlek A, Bayraktar M, Adalar N. Symptomatic Treatment of Graves Hyperthyroidism With Lithium in States of Thionamide Adverse Reactions: A Retrospective Analysis. The Endocrinol. 2004;14(6).
20.
Zurück zum Zitat Bogazzi F, Giovannetti C, Fessehatsion R, Tanda ML, Campomori A, Compri E, et al. Impact of Lithium on efficacy of radioactive iodine therapy for graves’ disease: a cohort study on cure rate, time to cure, and frequency of increased serum Thyroxine after Antithyroid drug withdrawal. J Clin Endocrinol Metab. 2010;95(1):201–8. https://doi.org/10.1210/jc.2009-1655.CrossRefPubMed Bogazzi F, Giovannetti C, Fessehatsion R, Tanda ML, Campomori A, Compri E, et al. Impact of Lithium on efficacy of radioactive iodine therapy for graves’ disease: a cohort study on cure rate, time to cure, and frequency of increased serum Thyroxine after Antithyroid drug withdrawal. J Clin Endocrinol Metab. 2010;95(1):201–8. https://​doi.​org/​10.​1210/​jc.​2009-1655.CrossRefPubMed
23.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097-e.CrossRef Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097-e.CrossRef
26.
Zurück zum Zitat AD HJPT, JAC S. Chapter 8: assessing risk of bias in included studies. In: JPT H, Green S, editors. Cochrane handbook for systematic reviews of interventions version 5.1.0 (updated March 2011): The Cochrane Collaboration; 2011. AD HJPT, JAC S. Chapter 8: assessing risk of bias in included studies. In: JPT H, Green S, editors. Cochrane handbook for systematic reviews of interventions version 5.1.0 (updated March 2011): The Cochrane Collaboration; 2011.
27.
Zurück zum Zitat Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ (Clinical research ed). 2016;355:i4919. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ (Clinical research ed). 2016;355:i4919.
28.
32.
Zurück zum Zitat JGT BEWB, Ovenden BM, Rogers TGH. Results of lithium-1311 treatment of thyrotoxicosis. J Endocrinol Invest. 1979;2(303). JGT BEWB, Ovenden BM, Rogers TGH. Results of lithium-1311 treatment of thyrotoxicosis. J Endocrinol Invest. 1979;2(303).
33.
Zurück zum Zitat Oszukowska L, Knapska-Kucharska M, Makarewicz J, Lewiński A. The influence of thiamazole, lithium carbonate, or prednisone administration on the efficacy of radioiodine treatment (131I) in hyperthyroid patients. Endokrynologia Polska/Polish J Endocrinols. 2010;61(1):56–61. Oszukowska L, Knapska-Kucharska M, Makarewicz J, Lewiński A. The influence of thiamazole, lithium carbonate, or prednisone administration on the efficacy of radioiodine treatment (131I) in hyperthyroid patients. Endokrynologia Polska/Polish J Endocrinols. 2010;61(1):56–61.
34.
Zurück zum Zitat Oszukowska L, Knapska-Kucharska M, Makarewicz J, Lewiński A. The influence of thiamazole, lithium carbonate, or prednisone administration on the efficacy of radioiodine treatment ((131) I) in hyperthyroid patients. Endokrynologia Polska. 2010;61(1):56–61.PubMed Oszukowska L, Knapska-Kucharska M, Makarewicz J, Lewiński A. The influence of thiamazole, lithium carbonate, or prednisone administration on the efficacy of radioiodine treatment ((131) I) in hyperthyroid patients. Endokrynologia Polska. 2010;61(1):56–61.PubMed
Metadaten
Titel
Lithium carbonate as add-on therapy to radioiodine in the treatment on hyperthyroidism: a systematic review and meta-analysis
verfasst von
Mohamed Abd-ElGawad
Mohamed Abdelmonem
Ahmed Eissa Ahmed
Omar Magdy Mohammed
Mohamed Sayed Zaazouee
Ahmed Assar
Mohamed Gadelkarim
Ahmed M. Afifi
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Endocrine Disorders / Ausgabe 1/2021
Elektronische ISSN: 1472-6823
DOI
https://doi.org/10.1186/s12902-021-00729-2

Weitere Artikel der Ausgabe 1/2021

BMC Endocrine Disorders 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.