Skip to main content
Erschienen in: Tumor Biology 1/2016

22.08.2015 | Original Article

Loss of β-arrestin1 expression predicts unfavorable prognosis for non-small cell lung cancer patients

verfasst von: Honghai Ma, Liguang Wang, Tiehong Zhang, Hongchang Shen, Jiajun Du

Erschienen in: Tumor Biology | Ausgabe 1/2016

Einloggen, um Zugang zu erhalten

Abstract

We aimed to study the expression status of β-arrestin1 in non-small cell lung cancer (NSCLC) specimens and its clinicopathologic significance. The correlation between β-arrestin1 and the tumor migration biomarker E-cadherin, as well as smoking index were studied. A total of 152 patients with NSCLC who undergone surgery were enrolled. Altogether, 88 lung squamous cell lung cancer (SCC) specimens and 64 adenocarcinoma (ADC) specimens were tested for immunohistochemistry. Patients’ survival was analyzed by the Kaplan–Meier method. Univariate and multivariate analyses were performed to determine independent prognostic factors. Spearman rank correlation test was used to show data associations. For SCC patients, the expression of β-arrestin1 was either lost (56 of 88, 63.6 %) or low (32 of 88, 36.4 %), which was significantly and negatively associated with E-cadherin expression (P = 0.017). The similar correlation existed between smoking index and β-arrestin1 expression (P = 0.044). For ADC patients, the deletion of β-arrestin1 expression was rare (4 of 64, 6.3 %). Loss of β-arrestin1 expression indicated poorer survival for both SCC (P = 0.026) and ADC patients (P = 0.006). β-arrestin1 expression was detected in the other ADC specimens but showed no significant correlation with survival. In SCC patients, the loss expression of β-arrestin1 was frequently observed, and β-arrestin1 expression was significantly correlated with the smoking index and E-cadherin expression, which all indicated β-arrestin1’s significant clinicopathologic role. However, β-arrestin1 was expressed in most ADC patients, but its clinicopathologic role seemed to be obscure and might need further exploration.
Literatur
1.
Zurück zum Zitat Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed
2.
Zurück zum Zitat Cagle PT, Chirieac LR. Advances in treatment of lung cancer with targeted therapy. Arch Pathol Lab Med. 2012;136:504–9.CrossRefPubMed Cagle PT, Chirieac LR. Advances in treatment of lung cancer with targeted therapy. Arch Pathol Lab Med. 2012;136:504–9.CrossRefPubMed
3.
Zurück zum Zitat Krupnick JG, Benovic JL. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol. 1998;38:289–319.CrossRefPubMed Krupnick JG, Benovic JL. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol. 1998;38:289–319.CrossRefPubMed
4.
Zurück zum Zitat Moore CA, Milano SK, Benovic JL. Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol. 2007;69:451–82.CrossRefPubMed Moore CA, Milano SK, Benovic JL. Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol. 2007;69:451–82.CrossRefPubMed
5.
6.
Zurück zum Zitat Kovacs JJ, Hara MR, Davenport CL, et al. Arrestin development: emerging roles for beta arrestins in developmental signaling pathways. Dev Cell. 2009;17:443–58.CrossRefPubMedPubMedCentral Kovacs JJ, Hara MR, Davenport CL, et al. Arrestin development: emerging roles for beta arrestins in developmental signaling pathways. Dev Cell. 2009;17:443–58.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Ge L, Ly Y, Hollenberg M, DeFea K. Beta-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2-induced chemotaxis. J Biol Chem. 2003;278:34418–26.CrossRefPubMed Ge L, Ly Y, Hollenberg M, DeFea K. Beta-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2-induced chemotaxis. J Biol Chem. 2003;278:34418–26.CrossRefPubMed
8.
Zurück zum Zitat Sun Y, Cheng Z, Ma L, et al. Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem. 2002;277:49212–9.CrossRefPubMed Sun Y, Cheng Z, Ma L, et al. Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem. 2002;277:49212–9.CrossRefPubMed
9.
Zurück zum Zitat Zoudilova M, Kumar P, Ge L, et al. Beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. J Biol Chem. 2007;282:20634–46.CrossRefPubMed Zoudilova M, Kumar P, Ge L, et al. Beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. J Biol Chem. 2007;282:20634–46.CrossRefPubMed
10.
Zurück zum Zitat Zoudilova M, Min J, Richards HL, et al. Beta-arrestins scaffold cofilin with chronophin to direct localized actin filament severing and membrane protrusions downstream of protease-activated receptor-2. J Biol Chem. 2010;285:14318–29.CrossRefPubMedPubMedCentral Zoudilova M, Min J, Richards HL, et al. Beta-arrestins scaffold cofilin with chronophin to direct localized actin filament severing and membrane protrusions downstream of protease-activated receptor-2. J Biol Chem. 2010;285:14318–29.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Wang P, DeFea KA. Protease-activated receptor-2 simultaneously directs beta-arrestin-1-dependent inhibition and Galphaq-dependent activation of phosphatidylinositol 3-kinase. Biochemistry. 2006;45:9374–85.CrossRefPubMed Wang P, DeFea KA. Protease-activated receptor-2 simultaneously directs beta-arrestin-1-dependent inhibition and Galphaq-dependent activation of phosphatidylinositol 3-kinase. Biochemistry. 2006;45:9374–85.CrossRefPubMed
12.
Zurück zum Zitat Girnita L, Shenoy SK, Sehat B, et al. Beta-arrestin is crucial for ubiquitination and down-regulation of the insulin-like growth factor-1 receptor by acting as adaptor for the MDM2 E3 ligase. J Biol Chem. 2005;280:24412–9.CrossRefPubMed Girnita L, Shenoy SK, Sehat B, et al. Beta-arrestin is crucial for ubiquitination and down-regulation of the insulin-like growth factor-1 receptor by acting as adaptor for the MDM2 E3 ligase. J Biol Chem. 2005;280:24412–9.CrossRefPubMed
13.
Zurück zum Zitat Shenoy SK, Lefkowitz RJ. β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmcol Sci. 2011;32:521–33.CrossRef Shenoy SK, Lefkowitz RJ. β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmcol Sci. 2011;32:521–33.CrossRef
14.
Zurück zum Zitat Lakshmikanthan V, Zou L, Kim JI, et al. Identification of beta-arrestin2 as a corepressor of androgen receptor signaling in prostate cancer. Proc Natl Acad Sci USA. 2009;106:9379–84.CrossRefPubMedPubMedCentral Lakshmikanthan V, Zou L, Kim JI, et al. Identification of beta-arrestin2 as a corepressor of androgen receptor signaling in prostate cancer. Proc Natl Acad Sci USA. 2009;106:9379–84.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Michal AM, Peck AR, Tran TH, et al. Differential expression of arrestins is a predictor of breast cancer progression and survival. Breast Cancer Res Treat. 2011;130:791–807.CrossRefPubMedPubMedCentral Michal AM, Peck AR, Tran TH, et al. Differential expression of arrestins is a predictor of breast cancer progression and survival. Breast Cancer Res Treat. 2011;130:791–807.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Wang LG, Su BH, Du JJ. Expression of β-arrestin1 in gastric cardiac adenocarcinoma and its relation with progression. Asian Pacific J Cancer Prev. 2012;13:5671–5.CrossRef Wang LG, Su BH, Du JJ. Expression of β-arrestin1 in gastric cardiac adenocarcinoma and its relation with progression. Asian Pacific J Cancer Prev. 2012;13:5671–5.CrossRef
17.
Zurück zum Zitat Ueda Y, Neel NF, Schutyser E, et al. Deletion of the COOH-terminal domain of CXC chemokine receptor 4 leads to the down-regulation of cell-to-cell contact, enhanced motility and proliferation in breast carcinoma cells. Cancer Res. 2006;66:5665–565.CrossRefPubMedPubMedCentral Ueda Y, Neel NF, Schutyser E, et al. Deletion of the COOH-terminal domain of CXC chemokine receptor 4 leads to the down-regulation of cell-to-cell contact, enhanced motility and proliferation in breast carcinoma cells. Cancer Res. 2006;66:5665–565.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Rosanò L, Cianfrocca R, Tocci P, et al. β-arrestin-1 is a nuclear transcriptional regulator of endothelin-1-induced β-catenin signaling. Oncogene. 2013;32:5066–77.CrossRefPubMed Rosanò L, Cianfrocca R, Tocci P, et al. β-arrestin-1 is a nuclear transcriptional regulator of endothelin-1-induced β-catenin signaling. Oncogene. 2013;32:5066–77.CrossRefPubMed
19.
Zurück zum Zitat Yang JY, Zong CS, Xia W, et al. MDM2 promotes cell motility and invasiveness by regulating E-cadherin degradation. Mol Cell Biol. 2006;26:7269–82.CrossRefPubMedPubMedCentral Yang JY, Zong CS, Xia W, et al. MDM2 promotes cell motility and invasiveness by regulating E-cadherin degradation. Mol Cell Biol. 2006;26:7269–82.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Lymperopoulos A, Negussie S. β-Arrestins in cardiac G protein-coupled receptor signaling and function: partners in crime or “good cop, bad cop”? Int J Mol Sci. 2013;14:24726–41.CrossRefPubMedPubMedCentral Lymperopoulos A, Negussie S. β-Arrestins in cardiac G protein-coupled receptor signaling and function: partners in crime or “good cop, bad cop”? Int J Mol Sci. 2013;14:24726–41.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Lymperopoulos A, Bathgate A. Arrestins in the cardiovascular system. Prog Mol Biol Transl Sci. 2013;118:297–334.CrossRefPubMed Lymperopoulos A, Bathgate A. Arrestins in the cardiovascular system. Prog Mol Biol Transl Sci. 2013;118:297–334.CrossRefPubMed
22.
Zurück zum Zitat Hu S, Wang D, Wu J, et al. Involvement of β-arrestins in cancer progression. Mol Biol Rep. 2013;40:1065–71.CrossRefPubMed Hu S, Wang D, Wu J, et al. Involvement of β-arrestins in cancer progression. Mol Biol Rep. 2013;40:1065–71.CrossRefPubMed
23.
Zurück zum Zitat Dasgupta P, Rastogi S, Pillai S, et al. Nicotine induces cell proliferation by beta-arrestin mediated activation of Src and Rb-Raf-1 pathways. J Clin Invest. 2006;116:2208–17.CrossRefPubMedPubMedCentral Dasgupta P, Rastogi S, Pillai S, et al. Nicotine induces cell proliferation by beta-arrestin mediated activation of Src and Rb-Raf-1 pathways. J Clin Invest. 2006;116:2208–17.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Dasgupta P, Rizwani W, Pillai S, et al. β-arrestin1 mediated regulation of E2F target genes in nicotine-induced growth of lung tumors. J Natl Cancer Inst. 2011;103:317–33.CrossRefPubMedPubMedCentral Dasgupta P, Rizwani W, Pillai S, et al. β-arrestin1 mediated regulation of E2F target genes in nicotine-induced growth of lung tumors. J Natl Cancer Inst. 2011;103:317–33.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Saunders W. Centrosomal amplification and spindle multipolarity in cancer cells. Semin Cancer Biol. 2005;15:25–32.CrossRefPubMed Saunders W. Centrosomal amplification and spindle multipolarity in cancer cells. Semin Cancer Biol. 2005;15:25–32.CrossRefPubMed
26.
Zurück zum Zitat Doxsey S, Zimmerman W, Mikule K. Centrosome control of the cell cycle. Trends Cell Biol. 2005;15:303–11.CrossRefPubMed Doxsey S, Zimmerman W, Mikule K. Centrosome control of the cell cycle. Trends Cell Biol. 2005;15:303–11.CrossRefPubMed
27.
Zurück zum Zitat Molla-Herman A, Boularan C, Ghossoub R, et al. Targeting of beta-arrestin2 to the centrosome and primary cilium: role in cell proliferation control. PLoS ONE. 2008;3:e3728.CrossRefPubMedPubMedCentral Molla-Herman A, Boularan C, Ghossoub R, et al. Targeting of beta-arrestin2 to the centrosome and primary cilium: role in cell proliferation control. PLoS ONE. 2008;3:e3728.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Shankar H, Michal A, Kern RC, et al. Non-visual arrestins are constitutively associated with the centrosome and regulate centrosome function. J Biol Chem. 2010;285:8316–9.CrossRefPubMedPubMedCentral Shankar H, Michal A, Kern RC, et al. Non-visual arrestins are constitutively associated with the centrosome and regulate centrosome function. J Biol Chem. 2010;285:8316–9.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Perumal D, Pillai S, Nguyen J, et al. Nicotinic acetylcholine receptors induce c-Kit ligand/stem cell factor and promote stemness in an ARRB1/β-arrestin-1 dependent manner in NSCLC. Oncotarget. 2014;5:10486–502.CrossRefPubMedPubMedCentral Perumal D, Pillai S, Nguyen J, et al. Nicotinic acetylcholine receptors induce c-Kit ligand/stem cell factor and promote stemness in an ARRB1/β-arrestin-1 dependent manner in NSCLC. Oncotarget. 2014;5:10486–502.CrossRefPubMedPubMedCentral
Metadaten
Titel
Loss of β-arrestin1 expression predicts unfavorable prognosis for non-small cell lung cancer patients
verfasst von
Honghai Ma
Liguang Wang
Tiehong Zhang
Hongchang Shen
Jiajun Du
Publikationsdatum
22.08.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 1/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3886-0

Weitere Artikel der Ausgabe 1/2016

Tumor Biology 1/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.