Skip to main content
Erschienen in: Journal of Medical Systems 4/2012

01.08.2012 | ORIGINAL PAPER

Lossless Compression of Threshold-Segmented Medical Images

verfasst von: Denis Špelič, Borut Žalik

Erschienen in: Journal of Medical Systems | Ausgabe 4/2012

Einloggen, um Zugang zu erhalten

Abstract

This paper introduces a new algorithm for losslessly compressing voxel-based 3D CT medical images. Firstly, medical data is segmented according to selected ranges of the Hounsfield scale. The data is then arranged into two data streams. The first stream identifies the positions of the remaining data after segmentation. This information is compressed by the JBIG standard. The second stream contains the exact data values and it is losslessly compressed by our algorithm. The efficiency of this approach has been evaluated by a prototype application. This approach represents an interesting alternative for the long-term storage of medical 2D and 3D images, and for applications in telemedicine. The compression method can be used either for 2D or 3D medical data.
Literatur
1.
Zurück zum Zitat Oppelt, A., Imaging system for medical diagnostics. Publicis Corporate Publishing, Erlangen, 2005. Oppelt, A., Imaging system for medical diagnostics. Publicis Corporate Publishing, Erlangen, 2005.
2.
Zurück zum Zitat Maintz, J., and Viergever, M., A survey of medical image registration. Med. Image Anal. 2(1):1–36, 1998.CrossRef Maintz, J., and Viergever, M., A survey of medical image registration. Med. Image Anal. 2(1):1–36, 1998.CrossRef
3.
Zurück zum Zitat Mortenson, M. E., Geometric modeling. John Wiley & Sons Inc.; 1985. Mortenson, M. E., Geometric modeling. John Wiley & Sons Inc.; 1985.
4.
Zurück zum Zitat Dougherty, G., Digital image processing for medical applications. Cambridge University Press, New York, 2009. Dougherty, G., Digital image processing for medical applications. Cambridge University Press, New York, 2009.
5.
Zurück zum Zitat Correa, C., and Ma, K. L., The occlusion spectrum for volume classification and visualization. IEEE Trans. Vis. Comput. Graph. 15(6):1465–1472, 2009.CrossRef Correa, C., and Ma, K. L., The occlusion spectrum for volume classification and visualization. IEEE Trans. Vis. Comput. Graph. 15(6):1465–1472, 2009.CrossRef
6.
Zurück zum Zitat Cortes, J., Barbe, S., Erard, M., Simeon, T., Encoding molecular motions in voxel maps. IEEE International Conference on Robotics and Automation; May 12–17; Kobe, Japan, 2009. Cortes, J., Barbe, S., Erard, M., Simeon, T., Encoding molecular motions in voxel maps. IEEE International Conference on Robotics and Automation; May 12–17; Kobe, Japan, 2009.
7.
Zurück zum Zitat Goksel, O., and Salcudean, S. E., B-mode ultrasound image simulation in deformable 3-D medium. IEEE Trans. Med. Imag. 28(11):1657–1669, 2009.CrossRef Goksel, O., and Salcudean, S. E., B-mode ultrasound image simulation in deformable 3-D medium. IEEE Trans. Med. Imag. 28(11):1657–1669, 2009.CrossRef
8.
Zurück zum Zitat Agrawal, A., Kohout, J., Clapworthy, G. J., McFarlane, N. J. B., Dong, F., Viceconti, M., Taddei, F., and Testi, D., Enabling the interactive display of large medical volume datasets by multiresolution bricking. J. Supercomput. 51:3–19, 2010.CrossRef Agrawal, A., Kohout, J., Clapworthy, G. J., McFarlane, N. J. B., Dong, F., Viceconti, M., Taddei, F., and Testi, D., Enabling the interactive display of large medical volume datasets by multiresolution bricking. J. Supercomput. 51:3–19, 2010.CrossRef
9.
Zurück zum Zitat Dong, F., Clapworthy, J. G., Krokos, M., Volume rendering of fine details within medical data. Proceeding of the Conference on Visualization’01. Washington DC, USA; pp. 387–394, 2001. Dong, F., Clapworthy, J. G., Krokos, M., Volume rendering of fine details within medical data. Proceeding of the Conference on Visualization’01. Washington DC, USA; pp. 387–394, 2001.
10.
Zurück zum Zitat DICOM Standards Committee, Digital imaging and communications in medicine, 2006. DICOM Standards Committee, Digital imaging and communications in medicine, 2006.
12.
Zurück zum Zitat Ghrare, S. E., Ali, M. A., Jumari, K., and Ismail, M., An efficient low complexity lossless coding algorithm for medical images. Am. J. Appl. Sci. 6(8):1502–1508, 2009.CrossRef Ghrare, S. E., Ali, M. A., Jumari, K., and Ismail, M., An efficient low complexity lossless coding algorithm for medical images. Am. J. Appl. Sci. 6(8):1502–1508, 2009.CrossRef
13.
Zurück zum Zitat Shannon, C. E., A mathematical theory of communication. Bell Syst. Tech. J. 27:379–423, 1948.MathSciNetMATH Shannon, C. E., A mathematical theory of communication. Bell Syst. Tech. J. 27:379–423, 1948.MathSciNetMATH
14.
Zurück zum Zitat Huffman, D., A method for the construction of minimum redundancy codes. Proc. IRE 40:1089–1101, 1952.CrossRef Huffman, D., A method for the construction of minimum redundancy codes. Proc. IRE 40:1089–1101, 1952.CrossRef
15.
Zurück zum Zitat Salomon, D., Data compression—The complete reference, 4th edition. Springer, New York, 2007.MATH Salomon, D., Data compression—The complete reference, 4th edition. Springer, New York, 2007.MATH
16.
Zurück zum Zitat Fowler, J. E., Yagel, R., Lossless compression of volume data. Proceedings of the symposium on volume visualization; 1994. Tysons Corner, Virginia; p. 43–50, 1994. Fowler, J. E., Yagel, R., Lossless compression of volume data. Proceedings of the symposium on volume visualization; 1994. Tysons Corner, Virginia; p. 43–50, 1994.
17.
Zurück zum Zitat Muraki, S., Volume data and wavelet transforms. IEEE Comput. Graph. Appl. 13:50–56, 1993.CrossRef Muraki, S., Volume data and wavelet transforms. IEEE Comput. Graph. Appl. 13:50–56, 1993.CrossRef
18.
Zurück zum Zitat Chiueh, T., Yang, C., He, T., Pfister, H., Kaufman, A., Integrated volume compression and visualization. Proceedings of the 8th Conference on Visualization. Phoenix, Arizona; p. 329–336, 1997. Chiueh, T., Yang, C., He, T., Pfister, H., Kaufman, A., Integrated volume compression and visualization. Proceedings of the 8th Conference on Visualization. Phoenix, Arizona; p. 329–336, 1997.
19.
Zurück zum Zitat Ma, K. L., Shen, H. W., Compression and accelerated rendering of time-varying volume data. Proceedings of the workshop on computer graphics and virtual reality. Taipei, Taiwan; p. 263–270, 2001. Ma, K. L., Shen, H. W., Compression and accelerated rendering of time-varying volume data. Proceedings of the workshop on computer graphics and virtual reality. Taipei, Taiwan; p. 263–270, 2001.
20.
Zurück zum Zitat Saffor, A., Ramli, A., and Ng, K., A Comparative Study of Image Compression Between JPEG and Wavelet. Malays. J. Comput. Sci. 14:39–45, 2001. Saffor, A., Ramli, A., and Ng, K., A Comparative Study of Image Compression Between JPEG and Wavelet. Malays. J. Comput. Sci. 14:39–45, 2001.
21.
Zurück zum Zitat Saffor, A., Ramli, A., and Ng, K., Objective and subjective evaluation of compressed computed tomography CT images. Internet J. Radiol. 2:1–5, 2002. Saffor, A., Ramli, A., and Ng, K., Objective and subjective evaluation of compressed computed tomography CT images. Internet J. Radiol. 2:1–5, 2002.
22.
Zurück zum Zitat Taubman, D., Marcellin, M., JPEG2000: Image compression fundamentals, standards and practice. Kluwer Academic Publishers, 2002. Taubman, D., Marcellin, M., JPEG2000: Image compression fundamentals, standards and practice. Kluwer Academic Publishers, 2002.
23.
Zurück zum Zitat Hui, T., and Besar, R., Medical image compression using JPEG2000 and JPEG: A comparative study. World Sci. J. Mech. Med. Biol. 2:313–328, 2002. Hui, T., and Besar, R., Medical image compression using JPEG2000 and JPEG: A comparative study. World Sci. J. Mech. Med. Biol. 2:313–328, 2002.
24.
Zurück zum Zitat Carlender, M. L., and Christopoulos, C., Region of interest coding in JPEG 2000. Signal Process. Image Commun. J. 17:105–111, 2002.CrossRef Carlender, M. L., and Christopoulos, C., Region of interest coding in JPEG 2000. Signal Process. Image Commun. J. 17:105–111, 2002.CrossRef
25.
Zurück zum Zitat Kocsis, O., Costardidou, L., Varaki, L., Kalogeroulou, C., and Panayiotakis, G., Compression assessment based on medical image quality concepts using computer generated test images. Comput. Meth. Programs Biomed. 71:105–115, 2003.CrossRef Kocsis, O., Costardidou, L., Varaki, L., Kalogeroulou, C., and Panayiotakis, G., Compression assessment based on medical image quality concepts using computer generated test images. Comput. Meth. Programs Biomed. 71:105–115, 2003.CrossRef
26.
Zurück zum Zitat Asraf, R., Akbar, M., Jafri, N., Statistical analysis of difference image for absolute lossless compression of medical images. Proceedings of the 28th IEEE EMBS Annual International Conference. New York City, USA; p. 4767–4770, 2006. Asraf, R., Akbar, M., Jafri, N., Statistical analysis of difference image for absolute lossless compression of medical images. Proceedings of the 28th IEEE EMBS Annual International Conference. New York City, USA; p. 4767–4770, 2006.
27.
Zurück zum Zitat Yao, X., Xiao, T., Mao, S., Image compression based on classification row by row and LZW encoding. Proceedings of the congress on image and signal processing. China; p. 617–621, 2008. Yao, X., Xiao, T., Mao, S., Image compression based on classification row by row and LZW encoding. Proceedings of the congress on image and signal processing. China; p. 617–621, 2008.
28.
Zurück zum Zitat Fang, S., Srinivasan, R., Huang, S., Raghavan, R., Deformable volume rendering by 3D texture mapping and octree encoding. Proceedings of the 7th conference on visualization. San Francisco: California; p. 73–80, 1996. Fang, S., Srinivasan, R., Huang, S., Raghavan, R., Deformable volume rendering by 3D texture mapping and octree encoding. Proceedings of the 7th conference on visualization. San Francisco: California; p. 73–80, 1996.
29.
Zurück zum Zitat Guthe, S., Straßer, W., Real time decompression and visualization of animated volume data. Proceedings of the conference on Visualization. San Diego: California; p. 349–356, 2001. Guthe, S., Straßer, W., Real time decompression and visualization of animated volume data. Proceedings of the conference on Visualization. San Diego: California; p. 349–356, 2001.
30.
Zurück zum Zitat Klajnšek, G., and Žalik, B., Progressive lossless compression of volumetric data using small memory load. Comput. Med. Imaging Graph. 29(4):305–312, 2005.CrossRef Klajnšek, G., and Žalik, B., Progressive lossless compression of volumetric data using small memory load. Comput. Med. Imaging Graph. 29(4):305–312, 2005.CrossRef
31.
Zurück zum Zitat Witten, I. H., Neal, R. M., and Cleary, J. G., Arithmetic coding for data compression. Commun. ACM 30(6):520–540, 1987.CrossRef Witten, I. H., Neal, R. M., and Cleary, J. G., Arithmetic coding for data compression. Commun. ACM 30(6):520–540, 1987.CrossRef
33.
Zurück zum Zitat Information technology—Coded representation of picture and audio information—Progressive Bi-level image compression ISO/IEC; International Standard ISO/IEC 11544 and ITU-T Recommendation T.82, 1993. Information technology—Coded representation of picture and audio information—Progressive Bi-level image compression ISO/IEC; International Standard ISO/IEC 11544 and ITU-T Recommendation T.82, 1993.
35.
Zurück zum Zitat Obrul, D., Liu, Y. K., Žalik, B., Progressive visualization of losslessly compressed DICOM files over the internet. J. Med. Syst.; in press; available on-line at doi:10.1007/s10916-011-9652-y. Obrul, D., Liu, Y. K., Žalik, B., Progressive visualization of losslessly compressed DICOM files over the internet. J. Med. Syst.; in press; available on-line at doi:10.​1007/​s10916-011-9652-y.
Metadaten
Titel
Lossless Compression of Threshold-Segmented Medical Images
verfasst von
Denis Špelič
Borut Žalik
Publikationsdatum
01.08.2012
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 4/2012
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-011-9702-5

Weitere Artikel der Ausgabe 4/2012

Journal of Medical Systems 4/2012 Zur Ausgabe