Skip to main content
Erschienen in: Journal of Medical Systems 5/2019

01.05.2019 | Mobile & Wireless Health

Low-Cost and Active Control of Radiation of Wearable Medical Health Device for Wireless Body Area Network

verfasst von: Yong Jin

Erschienen in: Journal of Medical Systems | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

Wearable devices, wireless networks and body area networks have become an effective way to solve the problem of human health monitoring and care. However, the radiation problems of wireless devices, the power supply problems of wearable devices and the deployment of body area networks have become obstacles to their wide application in the field of health care. In order to solve the above problems, this paper studies and designs a wearable health medical body area network which is convenient for human health monitoring and medical care, starting from low-cost deployment of wireless wearable devices and active control of wireless radiation. Firstly, in order to avoid replacing equipment batteries, improve the relay and data aggregation capabilities of wireless body area network, and reduce the communication and computing load of edge devices, a deployment scheme of wireless medical health wearable devices is designed based on the optimal segmentation algorithm of Steiner spanning tree. Then, in order to minimize the charging cost and maximize the global charging utility of single source and multiple points in a finite time slot, an approximate algorithm for the optimal charging sequence based on 01 knapsack problem, i.e., the access path of wireless wearable devices, is designed. Then, an active radiation control algorithm for wearable medical health body area network is proposed, which can actively control the transmission power and radiation status of these wireless devices. Finally, simulation results show that the proposed algorithm is better than battery-powered wireless body area network and wireless rechargeable body area network, 16% and 44% reduction of devices, 25%和13% reduction of energy consumption, 26% reduction of radiation, and 5.18 and 1.13 times improvement of signal quality.
Literatur
1.
Zurück zum Zitat Latré, B., Braem, B., Moerman, I. et al., A survey on wireless body area networks. Wirel. Netw 17(1):1–18, 2011.CrossRef Latré, B., Braem, B., Moerman, I. et al., A survey on wireless body area networks. Wirel. Netw 17(1):1–18, 2011.CrossRef
2.
Zurück zum Zitat Jain, P. C., Wireless Body Area Network for Medical Healthcare. IETE Tech. Rev. 28(4):362–371, 2011.CrossRef Jain, P. C., Wireless Body Area Network for Medical Healthcare. IETE Tech. Rev. 28(4):362–371, 2011.CrossRef
3.
Zurück zum Zitat Ben Elhadj, H., Chaari, L., and Kamoun, L., A Survey of Routing Protocols in Wireless Body Area Networks for Healthcare Applications. International Journal of E-Health and Medical Communications (IJEHMC) 3(2):1–18, 2012.CrossRef Ben Elhadj, H., Chaari, L., and Kamoun, L., A Survey of Routing Protocols in Wireless Body Area Networks for Healthcare Applications. International Journal of E-Health and Medical Communications (IJEHMC) 3(2):1–18, 2012.CrossRef
4.
Zurück zum Zitat Rathee, D., Rangi, S., Chakarvarti, S. K. et al., Recent trends in Wireless Body Area Network (WBAN) research and cognition based adaptive WBAN architecture for healthcare. Heal. Technol. 4(3):239–244, 2014.CrossRef Rathee, D., Rangi, S., Chakarvarti, S. K. et al., Recent trends in Wireless Body Area Network (WBAN) research and cognition based adaptive WBAN architecture for healthcare. Heal. Technol. 4(3):239–244, 2014.CrossRef
5.
Zurück zum Zitat Tahir, S., Bakhsh, S. T., Alghamdi, R. et al., Fog-Based Healthcare Architecture for Wearable Body Area Network. Journal of Medical Imaging & Health Informatics 7(6):1409–1418, 2017.CrossRef Tahir, S., Bakhsh, S. T., Alghamdi, R. et al., Fog-Based Healthcare Architecture for Wearable Body Area Network. Journal of Medical Imaging & Health Informatics 7(6):1409–1418, 2017.CrossRef
6.
Zurück zum Zitat Varga, N., Piri, E., and Bokor, L., Network-assisted Smart Access Point Selection for Pervasive Real-time mHealth Applications. Procedia Computer Science 63:317–324, 2015.CrossRef Varga, N., Piri, E., and Bokor, L., Network-assisted Smart Access Point Selection for Pervasive Real-time mHealth Applications. Procedia Computer Science 63:317–324, 2015.CrossRef
7.
Zurück zum Zitat Gao, G. P., Hu, B., Wang, S. F. et al., Wearable Circular Ring Slot Antenna With EBG Structure for Wireless Body Area Network. IEEE Antennas & Wireless Propagation Letters 17(3):434–437, 2018.CrossRef Gao, G. P., Hu, B., Wang, S. F. et al., Wearable Circular Ring Slot Antenna With EBG Structure for Wireless Body Area Network. IEEE Antennas & Wireless Propagation Letters 17(3):434–437, 2018.CrossRef
8.
Zurück zum Zitat Gao, G., Hu, B., Tian, X. et al., Experimental study of a wearable aperture-coupled patch antenna for wireless body area network. Microw. Opt. Technol. Lett. 59(4):761–766, 2017.CrossRef Gao, G., Hu, B., Tian, X. et al., Experimental study of a wearable aperture-coupled patch antenna for wireless body area network. Microw. Opt. Technol. Lett. 59(4):761–766, 2017.CrossRef
9.
Zurück zum Zitat Gil, I., and Fernándezgarcía, R., Wearable PIFA antenna implemented on jean substrate for wireless body area network. Journal of Electromagnetic Waves & Applications 31(11-12):1–11, 2017.CrossRef Gil, I., and Fernándezgarcía, R., Wearable PIFA antenna implemented on jean substrate for wireless body area network. Journal of Electromagnetic Waves & Applications 31(11-12):1–11, 2017.CrossRef
10.
Zurück zum Zitat Sharma, J., Optimised design and development of a bio-medical healthcare device through quality function deployment (QFD). Int. J. Electron. Healthc. 7(1):68–87, 2012.CrossRef Sharma, J., Optimised design and development of a bio-medical healthcare device through quality function deployment (QFD). Int. J. Electron. Healthc. 7(1):68–87, 2012.CrossRef
11.
Zurück zum Zitat Arakawa, T., Xie, R., Seshima, F. et al., Air bio-battery with a gas/liquid porous diaphragm cell for medical and health care devices. Biosens. Bioelectron. 103:171–175, 2018.CrossRef Arakawa, T., Xie, R., Seshima, F. et al., Air bio-battery with a gas/liquid porous diaphragm cell for medical and health care devices. Biosens. Bioelectron. 103:171–175, 2018.CrossRef
12.
Zurück zum Zitat Marassi, V., Di, L. C., Smith, S. et al., Silver nanoparticles as a medical device in healthcare settings: a five-step approach for candidate screening of coating agents. R. Soc. Open Sci. 5(1):171113, 2018.CrossRef Marassi, V., Di, L. C., Smith, S. et al., Silver nanoparticles as a medical device in healthcare settings: a five-step approach for candidate screening of coating agents. R. Soc. Open Sci. 5(1):171113, 2018.CrossRef
13.
Zurück zum Zitat Chaudhari, K., Ukil, A., Kumar, K. N. et al., Hybrid Optimization for Economic Deployment of ESS in PV-Integrated EV Charging Stations. IEEE Transactions on Industrial Informatics 14(1):106–116, 2018.CrossRef Chaudhari, K., Ukil, A., Kumar, K. N. et al., Hybrid Optimization for Economic Deployment of ESS in PV-Integrated EV Charging Stations. IEEE Transactions on Industrial Informatics 14(1):106–116, 2018.CrossRef
14.
Zurück zum Zitat Pevec, D., Babic, J., Kayser, M. A. et al., A data-driven statistical approach for extending electric vehicle charging infrastructure. Int. J. Energy Res. 42(4):3102–3120, 2018.CrossRef Pevec, D., Babic, J., Kayser, M. A. et al., A data-driven statistical approach for extending electric vehicle charging infrastructure. Int. J. Energy Res. 42(4):3102–3120, 2018.CrossRef
15.
Zurück zum Zitat Jandak, V., Svec, P., Jiricek, O. et al., Piezoelectric line moment actuator for active radiation control from light-weight structures. Mech. Syst. Signal Process. 96:260–272, 2017.CrossRef Jandak, V., Svec, P., Jiricek, O. et al., Piezoelectric line moment actuator for active radiation control from light-weight structures. Mech. Syst. Signal Process. 96:260–272, 2017.CrossRef
16.
Zurück zum Zitat Malyshevsky, V. S., and Fomin, G. V., Electromagnetic Radiation in the Atmosphere Generated by Excess Negative Charge in a Nuclear-Electromagnetic Cascade. Russ. Phys. J. 59(9):1–6, 2017.CrossRef Malyshevsky, V. S., and Fomin, G. V., Electromagnetic Radiation in the Atmosphere Generated by Excess Negative Charge in a Nuclear-Electromagnetic Cascade. Russ. Phys. J. 59(9):1–6, 2017.CrossRef
17.
Zurück zum Zitat Sambo, Y. A., Héliot, F., and Imran, M. A., A Survey and Tutorial of Electromagnetic Radiation and Reduction in Mobile Communication Systems. IEEE Communications Surveys & Tutorials 17(2):790–802, 2017.CrossRef Sambo, Y. A., Héliot, F., and Imran, M. A., A Survey and Tutorial of Electromagnetic Radiation and Reduction in Mobile Communication Systems. IEEE Communications Surveys & Tutorials 17(2):790–802, 2017.CrossRef
18.
Zurück zum Zitat YU, S. et al., Case Analysis and Application of MATLAB Optimized Algorithms (Advanced Version). Beijing: Tsinghua University Press, 2015. YU, S. et al., Case Analysis and Application of MATLAB Optimized Algorithms (Advanced Version). Beijing: Tsinghua University Press, 2015.
Metadaten
Titel
Low-Cost and Active Control of Radiation of Wearable Medical Health Device for Wireless Body Area Network
verfasst von
Yong Jin
Publikationsdatum
01.05.2019
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 5/2019
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-019-1254-0

Weitere Artikel der Ausgabe 5/2019

Journal of Medical Systems 5/2019 Zur Ausgabe