Skip to main content
Erschienen in: Lasers in Medical Science 1/2017

19.11.2016 | Original Article

Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway

verfasst von: Xiaodong Yan, Juanfang Liu, Zhengping Zhang, Wenhao Li, Siguo Sun, Jian Zhao, Xin Dong, Jixian Qian, Honghui Sun

Erschienen in: Lasers in Medical Science | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

Low-level laser (LLL) irradiation has been reported to promote neuronal differentiation, but the mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) has been confirmed to be one of the most important neurotrophic factors because it is critical for the differentiation and survival of neurons during development. Thus, this study aimed to investigate the effects of LLL irradiation on Bdnf messenger RNA (mRNA) transcription and the molecular pathway involved in LLL-induced Bdnf mRNA transcription in cultured dorsal root ganglion neurons (DRGNs) using Ca2+ imaging, pharmacological detections, RNA interference, immunocytochemistry assay, Western blot, and qPCR analysis. We show here that LLL induced increases in the [Ca2+] i level, Bdnf mRNA transcription, cAMP-response element-binding protein (CREB) phosphorylation, and extracellular signal-regulated kinase (ERK) phosphorylation, mediated by Ca2+ release via inositol triphosphate receptor (IP3R)-sensitive calcium (Ca2+) stores. Blockade of Ca2+ increase suppressed Bdnf mRNA transcription, CREB phosphorylation, and ERK phosphorylation. Downregulation of phosphorylated (p)-CREB reduced Bdnf mRNA transcription triggered by LLL. Furthermore, blockade of ERK using PD98059 inhibitor reduced p-CREB and Bdnf mRNA transcription induced by LLL. Taken together, these findings establish the Ca2+-ERK-CREB cascade as a potential signaling pathway involved in LLL-induced Bdnf mRNA transcription. To our knowledge, this is the first report of the mechanisms of Ca2+-dependent Bdnf mRNA transcription triggered by LLL. These findings may help further explore the complex molecular signaling networks in LLL-triggered nerve regeneration in vivo and may also provide experimental evidence for the development of LLL for clinical applications.
Literatur
2.
Zurück zum Zitat Maisonpierre PC, Le Beau MM, Espinosa R 3rd, Ip NY, Belluscio L et al (1991) Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosomal localizations. Genomics 10:558–568CrossRefPubMed Maisonpierre PC, Le Beau MM, Espinosa R 3rd, Ip NY, Belluscio L et al (1991) Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosomal localizations. Genomics 10:558–568CrossRefPubMed
3.
Zurück zum Zitat Dong M, Wu Y, Fan Y, Xu M, Zhang J (2006) c-fos modulates brain-derived neurotrophic factor mRNA expression in mouse hippocampal CA3 and dentate gyrus neurons. Neurosci Lett 400:177–180CrossRefPubMed Dong M, Wu Y, Fan Y, Xu M, Zhang J (2006) c-fos modulates brain-derived neurotrophic factor mRNA expression in mouse hippocampal CA3 and dentate gyrus neurons. Neurosci Lett 400:177–180CrossRefPubMed
4.
Zurück zum Zitat Imamura L, Hasegawa H, Kurashina K, Hamanishi A, Tabuchi A et al (2000) Repression of activity-dependent c-fos and brain-derived neurotrophic factor mRNA expression by pyrethroid insecticides accompanying a decrease in Ca(2+) influx into neurons. J Pharmacol Exp Ther 295:1175–1182PubMed Imamura L, Hasegawa H, Kurashina K, Hamanishi A, Tabuchi A et al (2000) Repression of activity-dependent c-fos and brain-derived neurotrophic factor mRNA expression by pyrethroid insecticides accompanying a decrease in Ca(2+) influx into neurons. J Pharmacol Exp Ther 295:1175–1182PubMed
5.
Zurück zum Zitat Rola P, Doroszko A, Derkacz A (2014) The use of low-level energy laser radiation in basic and clinical research. Adv Clin Exp Med 23:835–842CrossRefPubMed Rola P, Doroszko A, Derkacz A (2014) The use of low-level energy laser radiation in basic and clinical research. Adv Clin Exp Med 23:835–842CrossRefPubMed
6.
Zurück zum Zitat Takhtfooladi MA, Sharifi D (2015) A comparative study of red and blue light-emitting diodes and low-level laser in regeneration of the transected sciatic nerve after an end to end neurorrhaphy in rabbits. Lasers Med Sci 30:2319–2324CrossRefPubMed Takhtfooladi MA, Sharifi D (2015) A comparative study of red and blue light-emitting diodes and low-level laser in regeneration of the transected sciatic nerve after an end to end neurorrhaphy in rabbits. Lasers Med Sci 30:2319–2324CrossRefPubMed
7.
Zurück zum Zitat Snyder SK, Byrnes KR, Borke RC, Sanchez A, Anders JJ (2002) Quantitation of calcitonin gene-related peptide mRNA and neuronal cell death in facial motor nuclei following axotomy and 633 nm low power laser treatment. Lasers Surg Med 31:216–222CrossRefPubMed Snyder SK, Byrnes KR, Borke RC, Sanchez A, Anders JJ (2002) Quantitation of calcitonin gene-related peptide mRNA and neuronal cell death in facial motor nuclei following axotomy and 633 nm low power laser treatment. Lasers Surg Med 31:216–222CrossRefPubMed
8.
Zurück zum Zitat Takhtfooladi MA, Jahanbakhsh F, Takhtfooladi HA, Yousefi K, Allahverdi A (2015) Effect of low-level laser therapy (685 nm, 3 J/cm(2)) on functional recovery of the sciatic nerve in rats following crushing lesion. Lasers Med Sci 30:1047–1052CrossRefPubMed Takhtfooladi MA, Jahanbakhsh F, Takhtfooladi HA, Yousefi K, Allahverdi A (2015) Effect of low-level laser therapy (685 nm, 3 J/cm(2)) on functional recovery of the sciatic nerve in rats following crushing lesion. Lasers Med Sci 30:1047–1052CrossRefPubMed
9.
Zurück zum Zitat Wang CZ, Chen YJ, Wang YH, Yeh ML, Huang MH et al (2014) Low-level laser irradiation improves functional recovery and nerve regeneration in sciatic nerve crush rat injury model. PLoS One 9:e103348CrossRefPubMedPubMedCentral Wang CZ, Chen YJ, Wang YH, Yeh ML, Huang MH et al (2014) Low-level laser irradiation improves functional recovery and nerve regeneration in sciatic nerve crush rat injury model. PLoS One 9:e103348CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Xuan W, Agrawal T, Huang L, Gupta GK, Hamblin MR (2014) Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J Biophotonics 8:502–511CrossRefPubMed Xuan W, Agrawal T, Huang L, Gupta GK, Hamblin MR (2014) Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J Biophotonics 8:502–511CrossRefPubMed
11.
Zurück zum Zitat Gomes LE, Dalmarco EM, Andre ES (2012) The brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3, and induced nitric oxide synthase expressions after low-level laser therapy in an axonotmesis experimental model. Photomed Laser Surg 30:642–647CrossRefPubMed Gomes LE, Dalmarco EM, Andre ES (2012) The brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3, and induced nitric oxide synthase expressions after low-level laser therapy in an axonotmesis experimental model. Photomed Laser Surg 30:642–647CrossRefPubMed
12.
Zurück zum Zitat Paviolo C, Haycock JW, Cadusch PJ, McArthur SL, Stoddart PR (2014) Laser exposure of gold nanorods can induce intracellular calcium transients. J Biophotonics 7:761–765CrossRefPubMed Paviolo C, Haycock JW, Cadusch PJ, McArthur SL, Stoddart PR (2014) Laser exposure of gold nanorods can induce intracellular calcium transients. J Biophotonics 7:761–765CrossRefPubMed
13.
Zurück zum Zitat Wayman GA, Lee YS, Tokumitsu H, Silva AJ, Soderling TR (2008) Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59:914–931CrossRefPubMedPubMedCentral Wayman GA, Lee YS, Tokumitsu H, Silva AJ, Soderling TR (2008) Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59:914–931CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Sakagami H, Kamata A, Nishimura H, Kasahara J, Owada Y et al (2005) Prominent expression and activity-dependent nuclear translocation of Ca2+/calmodulin-dependent protein kinase Idelta in hippocampal neurons. Eur J Neurosci 22:2697–2707CrossRefPubMed Sakagami H, Kamata A, Nishimura H, Kasahara J, Owada Y et al (2005) Prominent expression and activity-dependent nuclear translocation of Ca2+/calmodulin-dependent protein kinase Idelta in hippocampal neurons. Eur J Neurosci 22:2697–2707CrossRefPubMed
15.
Zurück zum Zitat Fukuchi M, Kirikoshi Y, Mori A, Eda R, Ihara D et al (2014) Excitatory GABA induces BDNF transcription via CRTC1 and phosphorylated CREB-related pathways in immature cortical cells. J Neurochem 131:134–146CrossRefPubMed Fukuchi M, Kirikoshi Y, Mori A, Eda R, Ihara D et al (2014) Excitatory GABA induces BDNF transcription via CRTC1 and phosphorylated CREB-related pathways in immature cortical cells. J Neurochem 131:134–146CrossRefPubMed
16.
Zurück zum Zitat Rosen LB, Ginty DD, Weber MJ, Greenberg ME (1994) Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12:1207–1221CrossRefPubMed Rosen LB, Ginty DD, Weber MJ, Greenberg ME (1994) Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12:1207–1221CrossRefPubMed
17.
Zurück zum Zitat Jeon SJ, Rhee SY, Seo JE, Bak HR, Lee SH et al (2011) Oroxylin A increases BDNF production by activation of MAPK-CREB pathway in rat primary cortical neuronal culture. Neurosci Res 69:214–222CrossRefPubMed Jeon SJ, Rhee SY, Seo JE, Bak HR, Lee SH et al (2011) Oroxylin A increases BDNF production by activation of MAPK-CREB pathway in rat primary cortical neuronal culture. Neurosci Res 69:214–222CrossRefPubMed
18.
Zurück zum Zitat Huang J, Ye Z, Hu X, Lu L, Luo Z (2010) Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells. Glia 58:622–631PubMed Huang J, Ye Z, Hu X, Lu L, Luo Z (2010) Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells. Glia 58:622–631PubMed
19.
Zurück zum Zitat Morgado-Valle C, Verdugo-Diaz L, Garcia DE, Morales-Orozco C, Drucker-Colin R (1998) The role of voltage-gated Ca2+ channels in neurite growth of cultured chromaffin cells induced by extremely low frequency (ELF) magnetic field stimulation. Cell Tissue Res 291:217–230CrossRefPubMed Morgado-Valle C, Verdugo-Diaz L, Garcia DE, Morales-Orozco C, Drucker-Colin R (1998) The role of voltage-gated Ca2+ channels in neurite growth of cultured chromaffin cells induced by extremely low frequency (ELF) magnetic field stimulation. Cell Tissue Res 291:217–230CrossRefPubMed
20.
Zurück zum Zitat Li Y, Yan X, Liu J, Li L, Hu X et al (2014) Pulsed electromagnetic field enhances brain-derived neurotrophic factor expression through L-type voltage-gated calcium channel- and Erk-dependent signaling pathways in neonatal rat dorsal root ganglion neurons. Neurochem Int 75:96–104CrossRefPubMed Li Y, Yan X, Liu J, Li L, Hu X et al (2014) Pulsed electromagnetic field enhances brain-derived neurotrophic factor expression through L-type voltage-gated calcium channel- and Erk-dependent signaling pathways in neonatal rat dorsal root ganglion neurons. Neurochem Int 75:96–104CrossRefPubMed
21.
Zurück zum Zitat Yan X, Liu J, Huang J, Huang M, He F et al (2014) Electrical stimulation induces calcium-dependent neurite outgrowth and immediate early genes expressions of dorsal root ganglion neurons. Neurochem Res 39:129–141CrossRefPubMed Yan X, Liu J, Huang J, Huang M, He F et al (2014) Electrical stimulation induces calcium-dependent neurite outgrowth and immediate early genes expressions of dorsal root ganglion neurons. Neurochem Res 39:129–141CrossRefPubMed
22.
Zurück zum Zitat Meng C, He Z, Xing D (2013) Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: implications for Alzheimer’s disease. J Neurosci 33:13505–13517CrossRefPubMed Meng C, He Z, Xing D (2013) Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: implications for Alzheimer’s disease. J Neurosci 33:13505–13517CrossRefPubMed
23.
Zurück zum Zitat Liang J, Liu L, Xing D (2012) Photobiomodulation by low-power laser irradiation attenuates Abeta-induced cell apoptosis through the Akt/GSK3beta/beta-catenin pathway. Free Radic Biol Med 53:1459–1467CrossRefPubMed Liang J, Liu L, Xing D (2012) Photobiomodulation by low-power laser irradiation attenuates Abeta-induced cell apoptosis through the Akt/GSK3beta/beta-catenin pathway. Free Radic Biol Med 53:1459–1467CrossRefPubMed
24.
Zurück zum Zitat Feng J, Zhang Y, Xing D (2012) Low-power laser irradiation (LPLI) promotes VEGF expression and vascular endothelial cell proliferation through the activation of ERK/Sp1 pathway. Cell Signal 24:1116–1125CrossRefPubMed Feng J, Zhang Y, Xing D (2012) Low-power laser irradiation (LPLI) promotes VEGF expression and vascular endothelial cell proliferation through the activation of ERK/Sp1 pathway. Cell Signal 24:1116–1125CrossRefPubMed
25.
Zurück zum Zitat Lallemend F, Lefebvre PP, Hans G, Rigo JM, Van de Water TR et al (2003) Substance P protects spiral ganglion neurons from apoptosis via PKC-Ca2+-MAPK/ERK pathways. J Neurochem 87:508–521CrossRefPubMed Lallemend F, Lefebvre PP, Hans G, Rigo JM, Van de Water TR et al (2003) Substance P protects spiral ganglion neurons from apoptosis via PKC-Ca2+-MAPK/ERK pathways. J Neurochem 87:508–521CrossRefPubMed
26.
Zurück zum Zitat Ulmann L, Rodeau JL, Danoux L, Contet-Audonneau JL, Pauly G et al (2009) Dehydroepiandrosterone and neurotrophins favor axonal growth in a sensory neuron-keratinocyte coculture model. Neuroscience 159:514–525CrossRefPubMed Ulmann L, Rodeau JL, Danoux L, Contet-Audonneau JL, Pauly G et al (2009) Dehydroepiandrosterone and neurotrophins favor axonal growth in a sensory neuron-keratinocyte coculture model. Neuroscience 159:514–525CrossRefPubMed
27.
Zurück zum Zitat Roehm PC, Xu N, Woodson EA, Green SH, Hansen MR (2008) Membrane depolarization inhibits spiral ganglion neurite growth via activation of multiple types of voltage sensitive calcium channels and calpain. Mol Cell Neurosci 37:376–387CrossRefPubMed Roehm PC, Xu N, Woodson EA, Green SH, Hansen MR (2008) Membrane depolarization inhibits spiral ganglion neurite growth via activation of multiple types of voltage sensitive calcium channels and calpain. Mol Cell Neurosci 37:376–387CrossRefPubMed
28.
Zurück zum Zitat Peirson SN, Butler JN, Foster RG (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31:e73CrossRefPubMedPubMedCentral Peirson SN, Butler JN, Foster RG (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31:e73CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Cheng LZ, Lu N, Zhang YQ, Zhao ZQ (2010) Ryanodine receptors contribute to the induction of nociceptive input-evoked long-term potentiation in the rat spinal cord slice. Mol Pain 6:1CrossRefPubMedPubMedCentral Cheng LZ, Lu N, Zhang YQ, Zhao ZQ (2010) Ryanodine receptors contribute to the induction of nociceptive input-evoked long-term potentiation in the rat spinal cord slice. Mol Pain 6:1CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Lee ES, Ryu JH, Kim EJ, Kim GT, Cho YW et al (2013) Lamotrigine increases intracellular Ca(2+) levels and Ca(2+)/calmodulin-dependent kinase II activation in mouse dorsal root ganglion neurones. Acta Physiol (Oxf) 207:397–404CrossRef Lee ES, Ryu JH, Kim EJ, Kim GT, Cho YW et al (2013) Lamotrigine increases intracellular Ca(2+) levels and Ca(2+)/calmodulin-dependent kinase II activation in mouse dorsal root ganglion neurones. Acta Physiol (Oxf) 207:397–404CrossRef
31.
Zurück zum Zitat Rohra DK, Saito SY, Ohizumi Y (2003) Functional role of ryanodine-sensitive Ca2+ stores in acidic pH-induced contraction in Wistar Kyoto rat aorta. Life Sci 72:1259–1269CrossRefPubMed Rohra DK, Saito SY, Ohizumi Y (2003) Functional role of ryanodine-sensitive Ca2+ stores in acidic pH-induced contraction in Wistar Kyoto rat aorta. Life Sci 72:1259–1269CrossRefPubMed
32.
Zurück zum Zitat Chen YS, Hsu SF, Chiu CW, Lin JG, Chen CT et al (2005) Effect of low-power pulsed laser on peripheral nerve regeneration in rats. Microsurgery 25:83–89CrossRefPubMed Chen YS, Hsu SF, Chiu CW, Lin JG, Chen CT et al (2005) Effect of low-power pulsed laser on peripheral nerve regeneration in rats. Microsurgery 25:83–89CrossRefPubMed
33.
Zurück zum Zitat Akgul T, Gulsoy M, Gulcur HO (2014) Effects of early and delayed laser application on nerve regeneration. Lasers Med Sci 29:351–357CrossRefPubMed Akgul T, Gulsoy M, Gulcur HO (2014) Effects of early and delayed laser application on nerve regeneration. Lasers Med Sci 29:351–357CrossRefPubMed
34.
Zurück zum Zitat Wollman Y, Rochkind S, Simantov R (1996) Low power laser irradiation enhances migration and neurite sprouting of cultured rat embryonal brain cells. Neurol Res 18:467–470CrossRefPubMed Wollman Y, Rochkind S, Simantov R (1996) Low power laser irradiation enhances migration and neurite sprouting of cultured rat embryonal brain cells. Neurol Res 18:467–470CrossRefPubMed
35.
Zurück zum Zitat Rochkind S, El-Ani D, Nevo Z, Shahar A (2009) Increase of neuronal sprouting and migration using 780 nm laser phototherapy as procedure for cell therapy. Lasers Surg Med 41:277–281CrossRefPubMed Rochkind S, El-Ani D, Nevo Z, Shahar A (2009) Increase of neuronal sprouting and migration using 780 nm laser phototherapy as procedure for cell therapy. Lasers Surg Med 41:277–281CrossRefPubMed
36.
Zurück zum Zitat Naeser MA, Hamblin MR (2011) Potential for transcranial laser or LED therapy to treat stroke, traumatic brain injury, and neurodegenerative disease. Photomed Laser Surg 29:443–446CrossRefPubMedPubMedCentral Naeser MA, Hamblin MR (2011) Potential for transcranial laser or LED therapy to treat stroke, traumatic brain injury, and neurodegenerative disease. Photomed Laser Surg 29:443–446CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Lavi R, Shainberg A, Friedmann H, Shneyvays V, Rickover O et al (2003) Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem 278:40917–40922CrossRefPubMed Lavi R, Shainberg A, Friedmann H, Shneyvays V, Rickover O et al (2003) Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem 278:40917–40922CrossRefPubMed
38.
Zurück zum Zitat Lan CC, Wu SB, Wu CS, Shen YC, Chiang TY et al (2012) Induction of primitive pigment cell differentiation by visible light (helium-neon laser): a photoacceptor-specific response not replicable by UVB irradiation. J Mol Med (Berl) 90:321–330CrossRef Lan CC, Wu SB, Wu CS, Shen YC, Chiang TY et al (2012) Induction of primitive pigment cell differentiation by visible light (helium-neon laser): a photoacceptor-specific response not replicable by UVB irradiation. J Mol Med (Berl) 90:321–330CrossRef
39.
Zurück zum Zitat Fields RD, Lee PR, Cohen JE (2005) Temporal integration of intracellular Ca2+ signaling networks in regulating gene expression by action potentials. Cell Calcium 37:433–442CrossRefPubMed Fields RD, Lee PR, Cohen JE (2005) Temporal integration of intracellular Ca2+ signaling networks in regulating gene expression by action potentials. Cell Calcium 37:433–442CrossRefPubMed
40.
Zurück zum Zitat Wayman GA, Impey S, Marks D, Saneyoshi T, Grant WF et al (2006) Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50:897–909CrossRefPubMed Wayman GA, Impey S, Marks D, Saneyoshi T, Grant WF et al (2006) Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50:897–909CrossRefPubMed
41.
Zurück zum Zitat Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63:71–124CrossRefPubMed Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63:71–124CrossRefPubMed
42.
Zurück zum Zitat Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T (2007) Mouse and rat BDNF gene structure and expression revisited. J Neurosci Res 85:525–535CrossRefPubMed Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T (2007) Mouse and rat BDNF gene structure and expression revisited. J Neurosci Res 85:525–535CrossRefPubMed
43.
Zurück zum Zitat Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20:709–726CrossRefPubMed Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20:709–726CrossRefPubMed
44.
Zurück zum Zitat Ou LC, Gean PW (2007) Transcriptional regulation of brain-derived neurotrophic factor in the amygdala during consolidation of fear memory. Mol Pharmacol 72:350–358CrossRefPubMed Ou LC, Gean PW (2007) Transcriptional regulation of brain-derived neurotrophic factor in the amygdala during consolidation of fear memory. Mol Pharmacol 72:350–358CrossRefPubMed
45.
Zurück zum Zitat Tan J, Widjaja S, Xu J, Shepherd RK (2008) Cochlear implants stimulate activity-dependent CREB pathway in the deaf auditory cortex: implications for molecular plasticity induced by neural prosthetic devices. Cereb Cortex 18:1799–1813CrossRefPubMed Tan J, Widjaja S, Xu J, Shepherd RK (2008) Cochlear implants stimulate activity-dependent CREB pathway in the deaf auditory cortex: implications for molecular plasticity induced by neural prosthetic devices. Cereb Cortex 18:1799–1813CrossRefPubMed
46.
Zurück zum Zitat Shieh PB, Hu SC, Bobb K, Timmusk T, Ghosh A (1998) Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron 20:727–740CrossRefPubMed Shieh PB, Hu SC, Bobb K, Timmusk T, Ghosh A (1998) Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron 20:727–740CrossRefPubMed
47.
Zurück zum Zitat Kamata A, Takeuchi Y, Fukunaga K (2006) Identification of the isoforms of Ca2+/calmodulin-dependent protein kinase II and expression of brain-derived neurotrophic factor mRNAs in the substantia nigra. J Neurochem 96:195–203CrossRefPubMed Kamata A, Takeuchi Y, Fukunaga K (2006) Identification of the isoforms of Ca2+/calmodulin-dependent protein kinase II and expression of brain-derived neurotrophic factor mRNAs in the substantia nigra. J Neurochem 96:195–203CrossRefPubMed
48.
Zurück zum Zitat Zha XM, Bishop JF, Hansen MR, Victoria L, Abbas PJ et al (2001) BDNF synthesis in spiral ganglion neurons is constitutive and CREB-dependent. Hear Res 156:53–68CrossRefPubMed Zha XM, Bishop JF, Hansen MR, Victoria L, Abbas PJ et al (2001) BDNF synthesis in spiral ganglion neurons is constitutive and CREB-dependent. Hear Res 156:53–68CrossRefPubMed
49.
Zurück zum Zitat Staaf S, Maxvall I, Lind U, Husmark J, Mattsson JP et al (2009) Down regulation of TRPC1 by shRNA reduces mechanosensitivity in mouse dorsal root ganglion neurons in vitro. Neurosci Lett 457:3–7CrossRefPubMed Staaf S, Maxvall I, Lind U, Husmark J, Mattsson JP et al (2009) Down regulation of TRPC1 by shRNA reduces mechanosensitivity in mouse dorsal root ganglion neurons in vitro. Neurosci Lett 457:3–7CrossRefPubMed
50.
Zurück zum Zitat Zhaleh H, Azadbakht M, Bidmeshki Pour A (2012) Possible involvement of calcium channels and plasma membrane receptors on Staurosporine-induced neurite outgrowth. Bosn J Basic Med Sci 12:20–25PubMedPubMedCentral Zhaleh H, Azadbakht M, Bidmeshki Pour A (2012) Possible involvement of calcium channels and plasma membrane receptors on Staurosporine-induced neurite outgrowth. Bosn J Basic Med Sci 12:20–25PubMedPubMedCentral
51.
Zurück zum Zitat Zheng JQ, Felder M, Connor JA, Poo MM (1994) Turning of nerve growth cones induced by neurotransmitters. Nature 368:140–144CrossRefPubMed Zheng JQ, Felder M, Connor JA, Poo MM (1994) Turning of nerve growth cones induced by neurotransmitters. Nature 368:140–144CrossRefPubMed
52.
Zurück zum Zitat Barbosa RI, Marcolino AM, de Jesus Guirro RR, Mazzer N, Barbieri CH et al (2010) Comparative effects of wavelengths of low-power laser in regeneration of sciatic nerve in rats following crushing lesion. Lasers Med Sci 25:423–430CrossRefPubMed Barbosa RI, Marcolino AM, de Jesus Guirro RR, Mazzer N, Barbieri CH et al (2010) Comparative effects of wavelengths of low-power laser in regeneration of sciatic nerve in rats following crushing lesion. Lasers Med Sci 25:423–430CrossRefPubMed
53.
Zurück zum Zitat Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L et al (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36:171–185CrossRefPubMed Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L et al (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36:171–185CrossRefPubMed
54.
Metadaten
Titel
Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway
verfasst von
Xiaodong Yan
Juanfang Liu
Zhengping Zhang
Wenhao Li
Siguo Sun
Jian Zhao
Xin Dong
Jixian Qian
Honghui Sun
Publikationsdatum
19.11.2016
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 1/2017
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-016-2099-0

Weitere Artikel der Ausgabe 1/2017

Lasers in Medical Science 1/2017 Zur Ausgabe