Skip to main content
Erschienen in: Lasers in Medical Science 4/2013

01.07.2013 | Original Article

Low-level visible light (LLVL) irradiation promotes proliferation of mesenchymal stem cells

verfasst von: Anat Lipovsky, Uri Oron, Aharon Gedanken, Rachel Lubart

Erschienen in: Lasers in Medical Science | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

Abstract

Low-level visible light irradiation was found to stimulate proliferation potential of various types of cells in vitro. Stem cells in general are of significance for implantation in regenerative medicine. The aim of the present study was to investigate the effect of low-level light irradiation on the proliferation of mesenchymal stem cells (MSCs). MSCs were isolated from the bone marrow, and light irradiation was applied at energy densities of 2.4, 4.8, and 7.2 J/cm2. Illumination of the MSCs resulted in almost twofold increase in cell number as compared to controls. Elevated reactive oxygen species and nitric oxide production was also observed in MSCs cultures following illumination with broadband visible light. The present study clearly demonstrates the ability of broadband visible light illumination to promote proliferation of MSCs in vitro. These results may have an important impact on wound healing.
Literatur
1.
Zurück zum Zitat Baffour R, Pakala R, Hellinga D, Joner M, Okubagzi P, Epstein SE, Waksman R (2006) Bone marrow-derived stem cell interactions with adult cardiomyocytes and skeletal myoblasts in vitro. Cardiovasc Revasc Med 7:222–230PubMedCrossRef Baffour R, Pakala R, Hellinga D, Joner M, Okubagzi P, Epstein SE, Waksman R (2006) Bone marrow-derived stem cell interactions with adult cardiomyocytes and skeletal myoblasts in vitro. Cardiovasc Revasc Med 7:222–230PubMedCrossRef
2.
Zurück zum Zitat Broughton G 2nd, Janis JE, Attinger CE (2006) The basic science of wound healing. Plast Reconstr Surg 117:12S–34SPubMedCrossRef Broughton G 2nd, Janis JE, Attinger CE (2006) The basic science of wound healing. Plast Reconstr Surg 117:12S–34SPubMedCrossRef
3.
4.
Zurück zum Zitat Jeon YK, Jang YH, Yoo DR, Kim SN, Lee SK, Nam MJ (2010) Mesenchymal stem cells’ interaction with skin: wound-healing effect on fibroblast cells and skin tissue. Wound Repair Regen 18:655–661PubMedCrossRef Jeon YK, Jang YH, Yoo DR, Kim SN, Lee SK, Nam MJ (2010) Mesenchymal stem cells’ interaction with skin: wound-healing effect on fibroblast cells and skin tissue. Wound Repair Regen 18:655–661PubMedCrossRef
5.
Zurück zum Zitat Richardson GD, Arnott E, Whitehouse CJ, Lawrence CM, Hole N, Jahoda CAB (2005) Cultured cells from the adult human hair follicle dermis can be directed toward adipogenic and osteogenic differentiation. J Invest Dermatol 124:1090–1091PubMedCrossRef Richardson GD, Arnott E, Whitehouse CJ, Lawrence CM, Hole N, Jahoda CAB (2005) Cultured cells from the adult human hair follicle dermis can be directed toward adipogenic and osteogenic differentiation. J Invest Dermatol 124:1090–1091PubMedCrossRef
6.
Zurück zum Zitat Hanson SE, Bentz ML, Hematti P (2010) Mesenchymal stem cell therapy for nonhealing cutaneous wounds. Plast Reconstr Surg 125:510–516PubMedCrossRef Hanson SE, Bentz ML, Hematti P (2010) Mesenchymal stem cell therapy for nonhealing cutaneous wounds. Plast Reconstr Surg 125:510–516PubMedCrossRef
7.
Zurück zum Zitat Rochefort GY, Delorme B, Lopez A, Herault O, Bonnet P, Charbord P, Eder V, Domenech J (2006) Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells 24:2202–2208PubMedCrossRef Rochefort GY, Delorme B, Lopez A, Herault O, Bonnet P, Charbord P, Eder V, Domenech J (2006) Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells 24:2202–2208PubMedCrossRef
8.
Zurück zum Zitat Lubart R, Lavi R, Friedmann H, Rochkind S (2006) Photochemistry and photobiology of light absorption by living cells. Photomed Laser Surg 24:179–185PubMedCrossRef Lubart R, Lavi R, Friedmann H, Rochkind S (2006) Photochemistry and photobiology of light absorption by living cells. Photomed Laser Surg 24:179–185PubMedCrossRef
9.
Zurück zum Zitat Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:4PubMedCrossRef Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:4PubMedCrossRef
10.
Zurück zum Zitat Demidova-Rice TN, Salomatina EV, Yaroslavsky AN, Herman IM, Hamblin MR (2007) Low-level light stimulates excisional wound healing in mice. Lasers Surg Med 39:706–715PubMedCrossRef Demidova-Rice TN, Salomatina EV, Yaroslavsky AN, Herman IM, Hamblin MR (2007) Low-level light stimulates excisional wound healing in mice. Lasers Surg Med 39:706–715PubMedCrossRef
11.
Zurück zum Zitat Passarella S, Casamassima E, Molinari S, Pastore D, Quagliariello E, Catalano IM, Cingolani A (1984) Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium–neon laser. FEBS Lett 175:95–99PubMedCrossRef Passarella S, Casamassima E, Molinari S, Pastore D, Quagliariello E, Catalano IM, Cingolani A (1984) Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium–neon laser. FEBS Lett 175:95–99PubMedCrossRef
12.
Zurück zum Zitat Wu C, Yue Y, Deng X, Hua W, Gao Z (2004) Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations. Catal Today 93–95:863–869CrossRef Wu C, Yue Y, Deng X, Hua W, Gao Z (2004) Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations. Catal Today 93–95:863–869CrossRef
13.
Zurück zum Zitat Landau Z, Migdal M, Lipovsky A, Lubart R (2011) Visible light-induced healing of diabetic or venous foot ulcers: a placebo-controlled double-blind study. Photomed Laser Surg 29:399–404PubMedCrossRef Landau Z, Migdal M, Lipovsky A, Lubart R (2011) Visible light-induced healing of diabetic or venous foot ulcers: a placebo-controlled double-blind study. Photomed Laser Surg 29:399–404PubMedCrossRef
14.
Zurück zum Zitat Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I, Vago R (2005) Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20:138–146PubMedCrossRef Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I, Vago R (2005) Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20:138–146PubMedCrossRef
15.
Zurück zum Zitat Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G (2012) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts-an in vitro study. Lasers Med Sci 27:423–430PubMedCrossRef Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G (2012) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts-an in vitro study. Lasers Med Sci 27:423–430PubMedCrossRef
16.
Zurück zum Zitat Alghamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249PubMedCrossRef Alghamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249PubMedCrossRef
17.
Zurück zum Zitat Tuby H, Maltz L, Oron U (2007) Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med 39:373–378PubMedCrossRef Tuby H, Maltz L, Oron U (2007) Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med 39:373–378PubMedCrossRef
18.
Zurück zum Zitat Lubart R, Friedman H, Lavie R (2000) Photobiostimulation as a function of different wavelengths. Laser Ther 12:38–41CrossRef Lubart R, Friedman H, Lavie R (2000) Photobiostimulation as a function of different wavelengths. Laser Ther 12:38–41CrossRef
19.
Zurück zum Zitat Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 23:492–496PubMedCrossRef Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 23:492–496PubMedCrossRef
20.
Zurück zum Zitat Lavi R, Shainberg A, Friedmann H, Shneyvays V, Rickover O, Eichler M, Kaplan D, Lubart R (2003) Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem 278:40917–40922PubMedCrossRef Lavi R, Shainberg A, Friedmann H, Shneyvays V, Rickover O, Eichler M, Kaplan D, Lubart R (2003) Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem 278:40917–40922PubMedCrossRef
21.
Zurück zum Zitat Friedmann H, Solodeeva I, Sinyakov M, Grossman N, Zurgil Z, Lubart R, Belosky S (1999) Photobiostimulation by visible light: involvement of hydrogen peroxide. Trends Photochem Photobiol 6:169–174 Friedmann H, Solodeeva I, Sinyakov M, Grossman N, Zurgil Z, Lubart R, Belosky S (1999) Photobiostimulation by visible light: involvement of hydrogen peroxide. Trends Photochem Photobiol 6:169–174
22.
Zurück zum Zitat Davani S, Marandin A, Mersin N, Royer B, Kantelip B, Herve P, Etievent JP, Kantelip JP (2003) Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation 108(Suppl 1):II253–II258PubMed Davani S, Marandin A, Mersin N, Royer B, Kantelip B, Herve P, Etievent JP, Kantelip JP (2003) Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation 108(Suppl 1):II253–II258PubMed
23.
Zurück zum Zitat Lubart R (2009) A new method for stimulating the fertilizing capability of sperm cells. Recent Patents Biomed Eng 2:193–197CrossRef Lubart R (2009) A new method for stimulating the fertilizing capability of sperm cells. Recent Patents Biomed Eng 2:193–197CrossRef
24.
Zurück zum Zitat Grossman N, Kleitman V, Meller J, Kaufmann R, Akgun N, Ruck A, Livneh E, Lubart R (2000) Role of PKC isozymes in low-power light-stimulated proliferation of cultured skin cells. Proc SPIE-Int Soc Opt Eng 4159:34–40CrossRef Grossman N, Kleitman V, Meller J, Kaufmann R, Akgun N, Ruck A, Livneh E, Lubart R (2000) Role of PKC isozymes in low-power light-stimulated proliferation of cultured skin cells. Proc SPIE-Int Soc Opt Eng 4159:34–40CrossRef
25.
Zurück zum Zitat Lubart R, Breitbart H, Sofer Y, Lavie R (1999) He-Ne irradiation of human spermatozoa: enhancement in hamster egg penetration. Laser Ther 11:171–176 Lubart R, Breitbart H, Sofer Y, Lavie R (1999) He-Ne irradiation of human spermatozoa: enhancement in hamster egg penetration. Laser Ther 11:171–176
26.
Zurück zum Zitat Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R (1998) 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: Involvement of reactive oxygen species. Lasers Surg Med 22:212–218PubMedCrossRef Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R (1998) 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: Involvement of reactive oxygen species. Lasers Surg Med 22:212–218PubMedCrossRef
27.
Zurück zum Zitat Lubart R, Friedmann H, Sinykov M, Grossman N (1995) Biostimulation of photosensitized fibroblasts by low incident levels of visible light energy. Laser Ther 7:101–106CrossRef Lubart R, Friedmann H, Sinykov M, Grossman N (1995) Biostimulation of photosensitized fibroblasts by low incident levels of visible light energy. Laser Ther 7:101–106CrossRef
28.
Zurück zum Zitat Grossman N, Reuveni H, Halevy S, Lubart R (1994) Visible-light promotes proliferation of normal skin cells. J Invest Dermatol 102:649 Grossman N, Reuveni H, Halevy S, Lubart R (1994) Visible-light promotes proliferation of normal skin cells. J Invest Dermatol 102:649
29.
Zurück zum Zitat Lubart R, Friedmann H, Peled I, Grossman N (1993) Light effect on fibroblast proliferation. Laser Ther 5:55–57CrossRef Lubart R, Friedmann H, Peled I, Grossman N (1993) Light effect on fibroblast proliferation. Laser Ther 5:55–57CrossRef
30.
Zurück zum Zitat Eichler M, Lavi R, Shainberg A, Lubart R (2005) Flavins are source of visible-light-induced free radical formation in cells. Lasers Surg Med 37:314–319PubMedCrossRef Eichler M, Lavi R, Shainberg A, Lubart R (2005) Flavins are source of visible-light-induced free radical formation in cells. Lasers Surg Med 37:314–319PubMedCrossRef
31.
Zurück zum Zitat Ankri R, Friedman H, Savion N, Kotev-Emeth S, Breitbart H, Lubart R (2009) Visible light induces nitric oxide (NO) formation in sperm and endothelial cells. Lasers Surg Med 42:348–352CrossRef Ankri R, Friedman H, Savion N, Kotev-Emeth S, Breitbart H, Lubart R (2009) Visible light induces nitric oxide (NO) formation in sperm and endothelial cells. Lasers Surg Med 42:348–352CrossRef
Metadaten
Titel
Low-level visible light (LLVL) irradiation promotes proliferation of mesenchymal stem cells
verfasst von
Anat Lipovsky
Uri Oron
Aharon Gedanken
Rachel Lubart
Publikationsdatum
01.07.2013
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 4/2013
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-012-1207-z

Weitere Artikel der Ausgabe 4/2013

Lasers in Medical Science 4/2013 Zur Ausgabe