Skip to main content
Erschienen in: Breast Cancer Research and Treatment 3/2020

21.07.2020 | Preclinical study

Lysine oxidase exposes a dependency on the thioredoxin antioxidant pathway in triple-negative breast cancer cells

verfasst von: Olga E. Chepikova, Dmitry Malin, Elena Strekalova, Elena V. Lukasheva, Andrey A. Zamyatnin Jr., Vincent L. Cryns

Erschienen in: Breast Cancer Research and Treatment | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Transformed cells are vulnerable to depletion of certain amino acids. Lysine oxidase (LO) catalyzes the oxidative deamination of lysine, resulting in lysine depletion and hydrogen peroxide production. Although LO has broad antitumor activity in preclinical models, the cytotoxic mechanisms of LO are poorly understood.

Methods

Triple (ER/PR/HER2)-negative breast cancer (TNBC) cells were treated with control media, lysine-free media or control media supplemented with LO and examined for cell viability, caspase activation, induction of reactive oxygen species (ROS) and antioxidant signaling. To determine the role of nuclear factor erythroid 2-related factor 2 (NRF2) and thioredoxin reductase-1 (TXNRD1) in LO-induced cell death, NRF2 and TXNRD1 were individually silenced by RNAi. Additionally, the pan-TXNRD inhibitor auranofin was used in combination with LO.

Results

LO activates caspase-independent cell death that is suppressed by necroptosis and ferroptosis inhibitors, which are inactive against lysine depletion, pointing to fundamental differences between LO and lysine depletion. LO rapidly induces ROS with a return to baseline levels within 24 h that coincides temporally with induction of TXNRD activity, the rate-limiting enzyme in the thioredoxin antioxidant pathway. ROS induction is required for LO-mediated cell death and NRF2-dependent induction of TXNRD1. Silencing NRF2 or TXNRD1 enhances the cytotoxicity of LO. The pan-TXNRD inhibitor auranofin is synergistic with LO against transformed breast epithelial cells, but not untransformed cells, underscoring the tumor-selectivity of this strategy.

Conclusions

LO exposes a redox vulnerability of TNBC cells to TXNRD inhibition by rendering tumor cells dependent on the thioredoxin antioxidant pathway for survival.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337CrossRef Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337CrossRef
2.
Zurück zum Zitat Vander Heiden MG, DeBerardinis RJ (2017) Understanding the intersections between metabolism and cancer biology. Cell 168:657–669CrossRef Vander Heiden MG, DeBerardinis RJ (2017) Understanding the intersections between metabolism and cancer biology. Cell 168:657–669CrossRef
3.
Zurück zum Zitat DeBerardinis RJ, Cheng T (2010) Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313–324CrossRef DeBerardinis RJ, Cheng T (2010) Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313–324CrossRef
4.
Zurück zum Zitat Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35:427–433CrossRef Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35:427–433CrossRef
5.
Zurück zum Zitat Pokrovsky VS, Chepikova OE, Davydov DZ et al (2019) Amino acid degrading enzymes and their application in cancer therapy. Curr Med Chem 26:446–464CrossRef Pokrovsky VS, Chepikova OE, Davydov DZ et al (2019) Amino acid degrading enzymes and their application in cancer therapy. Curr Med Chem 26:446–464CrossRef
6.
Zurück zum Zitat Egler RA, Ahuja SP, Matloub Y (2016) L-asparaginase in the treatment of patients with acute lymphoblastic leukemia. J Pharmacol Pharmacother 7:62–71CrossRef Egler RA, Ahuja SP, Matloub Y (2016) L-asparaginase in the treatment of patients with acute lymphoblastic leukemia. J Pharmacol Pharmacother 7:62–71CrossRef
7.
Zurück zum Zitat Jeon H, Kim JH, Lee E et al (2016) Methionine deprivation suppresses triple-negative breast cancer metastasis in vitro and in vivo. Oncotarget 7:67223–67234CrossRef Jeon H, Kim JH, Lee E et al (2016) Methionine deprivation suppresses triple-negative breast cancer metastasis in vitro and in vivo. Oncotarget 7:67223–67234CrossRef
8.
Zurück zum Zitat Cavuoto P, Fenech MF (2012) A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev 38:726–736CrossRef Cavuoto P, Fenech MF (2012) A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev 38:726–736CrossRef
9.
Zurück zum Zitat Yong W, Zheng W, Zhang Y et al (2003) L-asparaginase-based regimen in the treatment of refractory midline nasal/nasal-type T/NK-cell lymphoma. Int J Hematol 78:163–167CrossRef Yong W, Zheng W, Zhang Y et al (2003) L-asparaginase-based regimen in the treatment of refractory midline nasal/nasal-type T/NK-cell lymphoma. Int J Hematol 78:163–167CrossRef
10.
Zurück zum Zitat Kusakabe H, Kodama K, Kuninaka A et al (1980) A new antitumor enzyme, L-lysine alpha-oxidase from Trichoderma viride. Purification and enzymological properties. J Biol Chem 255:976–981PubMed Kusakabe H, Kodama K, Kuninaka A et al (1980) A new antitumor enzyme, L-lysine alpha-oxidase from Trichoderma viride. Purification and enzymological properties. J Biol Chem 255:976–981PubMed
11.
Zurück zum Zitat Lukasheva EV, Efremova AA, Treshchalina EM et al (2012) L-amino acid oxidases: properties and molecular mechanisms of action. Biomed Khim 58:372–384CrossRef Lukasheva EV, Efremova AA, Treshchalina EM et al (2012) L-amino acid oxidases: properties and molecular mechanisms of action. Biomed Khim 58:372–384CrossRef
12.
Zurück zum Zitat Pokrovsky VS, Treshalina HM, Lukasheva EV et al (2013) Enzymatic properties and anticancer activity of L-lysine alpha-oxidase from Trichoderma cf. aureoviride Rifai BKMF-4268D. Anticancer Drugs 24:846–851CrossRef Pokrovsky VS, Treshalina HM, Lukasheva EV et al (2013) Enzymatic properties and anticancer activity of L-lysine alpha-oxidase from Trichoderma cf. aureoviride Rifai BKMF-4268D. Anticancer Drugs 24:846–851CrossRef
13.
Zurück zum Zitat Lukasheva EV, Ribakova YS, Fedorova TN et al (2015) Effect of L-lysine alpha-oxidase from Trichoderma cf. aureoviride Rifai capital VE, Cyrilliccapital KA, Cyrilliccapital EM, CyrillicF-4268D on pheochromocytoma PC12 cell line. Biomed Khim 61:99–104CrossRef Lukasheva EV, Ribakova YS, Fedorova TN et al (2015) Effect of L-lysine alpha-oxidase from Trichoderma cf. aureoviride Rifai capital VE, Cyrilliccapital KA, Cyrilliccapital EM, CyrillicF-4268D on pheochromocytoma PC12 cell line. Biomed Khim 61:99–104CrossRef
14.
Zurück zum Zitat Treshalina HM, Lukasheva EV, Sedakova LA et al (2000) Anticancer enzyme L-lysine α-oxidase. Biotechnol Appl Biochem 88:267–273CrossRef Treshalina HM, Lukasheva EV, Sedakova LA et al (2000) Anticancer enzyme L-lysine α-oxidase. Biotechnol Appl Biochem 88:267–273CrossRef
15.
Zurück zum Zitat Kusakabe H, Kodama K, Kuninaka A et al (1980) Effect of L-lysine α-oxidase on growth of mouse leukemic cells. Agric Biol Chem 44:387–392 Kusakabe H, Kodama K, Kuninaka A et al (1980) Effect of L-lysine α-oxidase on growth of mouse leukemic cells. Agric Biol Chem 44:387–392
16.
Zurück zum Zitat Munoz-Pinedo C, El Mjiyad N, Ricci JE (2012) Cancer metabolism: current perspectives and future directions. Cell Death Dis 3:e248CrossRef Munoz-Pinedo C, El Mjiyad N, Ricci JE (2012) Cancer metabolism: current perspectives and future directions. Cell Death Dis 3:e248CrossRef
17.
Zurück zum Zitat Burns JS, Manda G (2017) Metabolic pathways of the Warburg effect in health and disease: perspectives of choice, chain or chance. Int J Mol Sci 18pii:E2755 Burns JS, Manda G (2017) Metabolic pathways of the Warburg effect in health and disease: perspectives of choice, chain or chance. Int J Mol Sci 18pii:E2755
18.
Zurück zum Zitat Avramis VI (2012) Asparaginases: biochemical pharmacology and modes of drug resistance. Anticancer Res 32:2423–2437PubMed Avramis VI (2012) Asparaginases: biochemical pharmacology and modes of drug resistance. Anticancer Res 32:2423–2437PubMed
19.
Zurück zum Zitat Strekalova E, Malin D, Good DM et al (2015) Methionine deprivation induces a targetable vulnerability in triple-negative breast cancer cells by enhancing TRAIL receptor-2 expression. Clin Cancer Res 21:2780–2791CrossRef Strekalova E, Malin D, Good DM et al (2015) Methionine deprivation induces a targetable vulnerability in triple-negative breast cancer cells by enhancing TRAIL receptor-2 expression. Clin Cancer Res 21:2780–2791CrossRef
20.
Zurück zum Zitat Tonjes M, Barbus S, Park YJ et al (2013) BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med 19:901–908CrossRef Tonjes M, Barbus S, Park YJ et al (2013) BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med 19:901–908CrossRef
21.
Zurück zum Zitat Sheen JH, Zoncu R, Kim D et al (2011) Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell 19:613–628CrossRef Sheen JH, Zoncu R, Kim D et al (2011) Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell 19:613–628CrossRef
22.
Zurück zum Zitat Ananieva E (2015) Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World J Biol Chem 6:281–289CrossRef Ananieva E (2015) Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World J Biol Chem 6:281–289CrossRef
23.
Zurück zum Zitat Vanhove K, Derveaux E, Graulus GJ et al (2019) Glutamine addiction and therapeutic strategies in lung cancer. Int J Mol Sci 20:252CrossRef Vanhove K, Derveaux E, Graulus GJ et al (2019) Glutamine addiction and therapeutic strategies in lung cancer. Int J Mol Sci 20:252CrossRef
24.
Zurück zum Zitat Strekalova E, Malin D, Rajanala H et al (2019) Preclinical breast cancer models to investigate metabolic priming by methionine restriction. Methods Mol Biol 1866:61–73CrossRef Strekalova E, Malin D, Rajanala H et al (2019) Preclinical breast cancer models to investigate metabolic priming by methionine restriction. Methods Mol Biol 1866:61–73CrossRef
25.
Zurück zum Zitat Strekalova E, Malin D, Weisenhorn EMM et al (2019) S-adenosylmethionine biosynthesis is a targetable metabolic vulnerability of cancer stem cells. Breast Cancer Res Treat 175:39–50CrossRef Strekalova E, Malin D, Weisenhorn EMM et al (2019) S-adenosylmethionine biosynthesis is a targetable metabolic vulnerability of cancer stem cells. Breast Cancer Res Treat 175:39–50CrossRef
26.
Zurück zum Zitat Malin D, Chen F, Schiller C et al (2011) Enhanced metastasis suppression by targeting TRAIL receptor 2 in a murine model of triple-negative breast cancer. Clin Cancer Res 17:5005–5015CrossRef Malin D, Chen F, Schiller C et al (2011) Enhanced metastasis suppression by targeting TRAIL receptor 2 in a murine model of triple-negative breast cancer. Clin Cancer Res 17:5005–5015CrossRef
27.
Zurück zum Zitat Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30:256–268CrossRef Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30:256–268CrossRef
28.
Zurück zum Zitat Shin S, Wakabayashi N, Misra V et al (2007) NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Mol Cell Biol 27:7188–7197CrossRef Shin S, Wakabayashi N, Misra V et al (2007) NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Mol Cell Biol 27:7188–7197CrossRef
29.
Zurück zum Zitat Lu M, Strohecker A, Chen F et al (2008) Aspirin sensitizes cancer cells to TRAIL-induced apoptosis by reducing survivin levels. Clin Cancer Res 14:3168–3176CrossRef Lu M, Strohecker A, Chen F et al (2008) Aspirin sensitizes cancer cells to TRAIL-induced apoptosis by reducing survivin levels. Clin Cancer Res 14:3168–3176CrossRef
30.
Zurück zum Zitat Moyano JV, Evans JR, Chen F et al (2006) αB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 116:261–270CrossRef Moyano JV, Evans JR, Chen F et al (2006) αB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 116:261–270CrossRef
31.
Zurück zum Zitat Degterev A, Hitomi J, Germscheid M et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321CrossRef Degterev A, Hitomi J, Germscheid M et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321CrossRef
32.
Zurück zum Zitat Skouta R, Dixon SJ, Wang J et al (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136:4551–4556CrossRef Skouta R, Dixon SJ, Wang J et al (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136:4551–4556CrossRef
33.
Zurück zum Zitat Zhang J, Li X, Han X, Liu R, Fang J (2017) Targeting the thioredoxin system for cancer therapy. Trends Pharmacol Sci 38:794–808CrossRef Zhang J, Li X, Han X, Liu R, Fang J (2017) Targeting the thioredoxin system for cancer therapy. Trends Pharmacol Sci 38:794–808CrossRef
34.
Zurück zum Zitat Cloer EW, Goldfarb D, Schrank TP et al (2019) NRF2 activation in cancer: from DNA to protein. Cancer Res 79:889–898CrossRef Cloer EW, Goldfarb D, Schrank TP et al (2019) NRF2 activation in cancer: from DNA to protein. Cancer Res 79:889–898CrossRef
35.
Zurück zum Zitat Roder C, Thomson MJ (2015) Auranofin: repurposing an old drug for a golden new age. Drugs R&D 15:13–20CrossRef Roder C, Thomson MJ (2015) Auranofin: repurposing an old drug for a golden new age. Drugs R&D 15:13–20CrossRef
36.
Zurück zum Zitat Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254:7558–7560PubMed Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254:7558–7560PubMed
37.
Zurück zum Zitat Kocher R (1944) Effects of a low lysine diet on the growth of spontaneous mammary tumors in mice and on the N2 balance in man. Cancer Res 4:251–256 Kocher R (1944) Effects of a low lysine diet on the growth of spontaneous mammary tumors in mice and on the N2 balance in man. Cancer Res 4:251–256
38.
Zurück zum Zitat Harris IS, Treloar AE, Inoue S et al (2015) Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27:211–222CrossRef Harris IS, Treloar AE, Inoue S et al (2015) Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27:211–222CrossRef
39.
Zurück zum Zitat Yan X, Zhang X, Wang L et al (2019) Inhibition of thioredoxin/thioredoxin reductase induces synthetic lethality in lung cancers with compromised glutathione homeostasis. Cancer Res 79:125–132CrossRef Yan X, Zhang X, Wang L et al (2019) Inhibition of thioredoxin/thioredoxin reductase induces synthetic lethality in lung cancers with compromised glutathione homeostasis. Cancer Res 79:125–132CrossRef
Metadaten
Titel
Lysine oxidase exposes a dependency on the thioredoxin antioxidant pathway in triple-negative breast cancer cells
verfasst von
Olga E. Chepikova
Dmitry Malin
Elena Strekalova
Elena V. Lukasheva
Andrey A. Zamyatnin Jr.
Vincent L. Cryns
Publikationsdatum
21.07.2020
Verlag
Springer US
Erschienen in
Breast Cancer Research and Treatment / Ausgabe 3/2020
Print ISSN: 0167-6806
Elektronische ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-020-05801-4

Weitere Artikel der Ausgabe 3/2020

Breast Cancer Research and Treatment 3/2020 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.