Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2018

Open Access 01.12.2018 | Letter to the Editor

Memory T cells skew toward terminal differentiation in the CD8+ T cell population in patients with acute myeloid leukemia

verfasst von: Ling Xu, Danlin Yao, Jiaxiong Tan, Zifan He, Zhi Yu, Jie Chen, Gengxin Luo, Chunli Wang, Fenfang Zhou, Xianfeng Zha, Shaohua Chen, Yangqiu Li

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2018

Abstract

Stem cell memory T (TSCM) and central memory T (TCM) cells can rapidly differentiate into effector memory (TEM) and terminal effector (TEF) T cells, and have the most potential for immunotherapy. In this study, we found that the frequency of TSCM and TCM cells in the CD8+ population dramatically decreased together with increases in TEM and TEF cells, particularly in younger patients with acute myeloid leukemia (AML) (< 60 years). These alterations persisted in patients who achieved complete remission after chemotherapy. The decrease in TSCM and TCM together with the increase in differentiated TEM and TEF subsets in CD8+ T cells may explain the reduced T cell response and subdued anti-leukemia capacity in AML patients.
Hinweise
Ling Xu and Danlin Yao contributed equally to this work.
Abkürzungen
AML
Acute myeloid leukemia
BM
Bone marrow
CML
Chronic myeloid leukemia
CR
Complete remission
HSCT
Hematopoietic stem cell transplantation
PB
Peripheral blood
PBMCs
Peripheral blood mononuclear cells
TCM
Central memory T cells
TEF
Terminal effector T cells
TEM
Effector memory T cells
TSCM
Stem cell memory T cells

To the editor

Clinical applications of immunotherapy for AML lag behind those for solid tumors and lymphocytic leukemia [13]. Recently, a new memory T cell subset, stem cell memory T (TSCM), which has stem cell-like capacity, has been discovered [46]. However, little is known about the role of these cells in AML. In this study, we assessed the distribution of CD4+ and CD8+ TSCM, central memory T (TCM), T effector memory (TEM), and T terminal effector (TEF) cells in peripheral blood (PB) and bone marrow (BM) from patients with AML and those with AML in complete remission (AML-CR) by multicolor flow cytometry. The gating strategy used in this study followed a published protocol [7]. The CD4+ and CD8+ T cells were divided into four subgroups according to the CCR7 and CD45RO expression pattern: naïve and TSCM cells (CCR7+CD45RO−), TCM cells (CCR7+CD45RO+), TEM cells (CCR7−CD45RO+), and TEF cells (CCR7−CD45RO−). The TSCM population was defined by double positive CD95 and CD28 expression.
The percentages of the TSCM, TCM, TEM, and TEF cells in the CD4+ and CD8+ populations were analyzed in 20 cases with AML (17 cases in newly diagnosed and 3 cases with AML relapse) (Fig. 1a, d) [8, 9]. The CD8+ TSCM and CD8+ TCM cells significantly decreased in the PB of these patients (Fig. 1e, g), whereas there was no significant change in the CD4+ population (Fig. 1b, g). Thus, the changes in the memory T cell subsets appeared to mainly involve CD8+ T cells. The shift from TSCM and TCM cells to a higher ratio of differentiated TEM and TEF cells is thought to be due to the constant exposure of T cells to AML cells and the leukemia environment, leading to T cell exhaustion and/or dysfunction [3].
To study the influence of the tumor microenvironment on the memory T cell distribution and function in leukemia patients, we collected seven pairs of PB and BM samples from AML patients at the time of diagnosis and compared the distributions of memory T cell subsets. The differences in each subset appeared to vary widely (Fig. 1c, f). A low percentage of CD4+ TCM cells and a corresponding high percentage of CD4+ TEM and TEF cells were observed in the BM compared with PB (Fig. 1c). In the CD8+ population, the changes appeared to be specific to each individual, and lower CD8+ TSCM and CD8+ TCM percentages were observed in the BM in half of the patients, whereas there were high percentages of CD8+ TSCM and CD8+ TCM cells in the BM compared with PB in the remaining samples. It has been reported that T cells in normal BM mainly possess a memory phenotype, particularly for CD8+ TCM cells [10], suggesting that alterations in the leukemic BM niche in different AML individuals and AML subtypes may have different impact on TCM homing.
Next, we compared the distribution of memory T cells in AML patients younger (AMLy) and older (AMLo) than 60 years [11]. Unlike healthy individuals (HIs), the memory T cell subset distribution in the AMLy cohort was strikingly different than that in younger HIs (HIy) and tended to have a similar distribution pattern as that detected in the HIo and AMLo groups with a more obvious difference in the CD8+ population (Figs. 1g and 2a, b). These findings indicate that the leukemia microenvironment might drive T cell differentiation in AMLy. Whether such a skewed T cell distribution in AMLy truly represents T cell senescence remains an open question [8]; however, T cells in AMLo patients may not be able to further differentiate due to inherent T cell senescence, which may be an immune factor underlying the inferior prognosis of AMLo patients. Together, these data may suggest that T cell exhaustion and senescence are involved in T cell immune impairment, leading to an inefficient anti-tumor response.
We next compared differences in the distribution of memory T cell subsets between the AMLy, AML-CR, and HIy groups. A persistent, skewed memory T cell distribution was demonstrated for AML patients who achieved CR after chemotherapy (Fig. 2c, d). CD4+ and CD8+ TSCM cells were predominantly increased at different time points after CR, while the change in other memory T cell subsets was relatively different (Fig. 2e, f). Overall, with the exception of incomplete recovery of the TSCM cells, the reduction in TCM cells and corresponding excessive accumulation of TEM and TEF cells were more evident in AML patients with CR (Fig. 1g), which may be related to the immune suppression of chemotherapy.

Acknowledgements

We want to thank the flow facility of the Biological Translational Research Institute of Jinan University as well as Yanqiong Jia, a research assistant from the Translational Research Institute of Jinan University. We also would like to thank the volunteers who donated blood for this project.

Funding

This study was supported by grants from the National Natural Science Foundation of China (Nos. 91642111, 81770152, and 81570143), the Guangdong Provincial Basic Research Program (No. 2015B020227003), the Guangdong Provincial Applied Science and Technology Research & Development Program (No. 2016B020237006), the Guangzhou Science and Technology Project (Nos. 201510010211, 201807010004, and 201803040017), and Special Funds for the Cultivation of Guangdong College Students’ Scientific and Technological Innovation (No. pdjh2017b0065).

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
This study was approved by the ethics committee of The First Affiliated Hospital of Jinan University.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Lichtenegger FS, Krupka C, Haubner S, Kohnke T, Subklewe M. Recent developments in immunotherapy of acute myeloid leukemia. J Hematol Oncol. 2017;10(1):142.CrossRefPubMedPubMedCentral Lichtenegger FS, Krupka C, Haubner S, Kohnke T, Subklewe M. Recent developments in immunotherapy of acute myeloid leukemia. J Hematol Oncol. 2017;10(1):142.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Li Y, Yin Q, Yang L, Chen S, Geng S, Wu X, et al. Reduced levels of recent thymic emigrants in acute myeloid leukemia patients. Cancer Immunol Immunother. 2009;58(7):1047–55.CrossRefPubMed Li Y, Yin Q, Yang L, Chen S, Geng S, Wu X, et al. Reduced levels of recent thymic emigrants in acute myeloid leukemia patients. Cancer Immunol Immunother. 2009;58(7):1047–55.CrossRefPubMed
3.
Zurück zum Zitat Tan J, Chen S, Lu Y, Yao D, Xu L, Zhang Y, et al. Higher PD-1 expression concurrent with exhausted CD8+ T cells in patients with de novo acute myeloid leukemia. Chin J Cancer Res. 2017;29(5):463–70.CrossRefPubMedPubMedCentral Tan J, Chen S, Lu Y, Yao D, Xu L, Zhang Y, et al. Higher PD-1 expression concurrent with exhausted CD8+ T cells in patients with de novo acute myeloid leukemia. Chin J Cancer Res. 2017;29(5):463–70.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Zhang Y, Joe G, Hexner E, Zhu J, Emerson SG. Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nat Med. 2005;11(12):1299–305.CrossRefPubMed Zhang Y, Joe G, Hexner E, Zhu J, Emerson SG. Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nat Med. 2005;11(12):1299–305.CrossRefPubMed
5.
Zurück zum Zitat Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011;17(10):1290–7.CrossRefPubMedPubMedCentral Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011;17(10):1290–7.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Lugli E, Gattinoni L, Roberto A, Mavilio D, Price DA, Restifo NP, et al. Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells. Nat Protoc. 2013;8(1):33–42.CrossRefPubMed Lugli E, Gattinoni L, Roberto A, Mavilio D, Price DA, Restifo NP, et al. Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells. Nat Protoc. 2013;8(1):33–42.CrossRefPubMed
8.
Zurück zum Zitat Saule P, Trauet J, Dutriez V, Lekeux V, Dessaint JP, Labalette M. Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4(+) versus effector memory and terminally differentiated memory cells in CD8(+) compartment. Mech Ageing Dev. 2006;127(3):274–81.CrossRefPubMed Saule P, Trauet J, Dutriez V, Lekeux V, Dessaint JP, Labalette M. Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4(+) versus effector memory and terminally differentiated memory cells in CD8(+) compartment. Mech Ageing Dev. 2006;127(3):274–81.CrossRefPubMed
9.
Zurück zum Zitat Yao DL, Xu L, Tan JX, Zhang YK, Lu S, Li MD, et al. Re-balance of memory T cell subsets in peripheral blood from patients with CML after TKI treatment. Oncotarget. 2017;8(47):81852–9.CrossRefPubMedPubMedCentral Yao DL, Xu L, Tan JX, Zhang YK, Lu S, Li MD, et al. Re-balance of memory T cell subsets in peripheral blood from patients with CML after TKI treatment. Oncotarget. 2017;8(47):81852–9.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Mazo IB, Honczarenko M, Leung H, Cavanagh LL, Bonasio R, Weninger W, et al. Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity. 2005;22(2):259–70.CrossRefPubMed Mazo IB, Honczarenko M, Leung H, Cavanagh LL, Bonasio R, Weninger W, et al. Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity. 2005;22(2):259–70.CrossRefPubMed
11.
Zurück zum Zitat O'Donnell MR, Tallman MS, Abboud CN, Altman JK, Appelbaum FR, Arber DA, et al. Acute myeloid leukemia, version 3.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15:926–57.CrossRef O'Donnell MR, Tallman MS, Abboud CN, Altman JK, Appelbaum FR, Arber DA, et al. Acute myeloid leukemia, version 3.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15:926–57.CrossRef
Metadaten
Titel
Memory T cells skew toward terminal differentiation in the CD8+ T cell population in patients with acute myeloid leukemia
verfasst von
Ling Xu
Danlin Yao
Jiaxiong Tan
Zifan He
Zhi Yu
Jie Chen
Gengxin Luo
Chunli Wang
Fenfang Zhou
Xianfeng Zha
Shaohua Chen
Yangqiu Li
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2018
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-018-0636-y

Weitere Artikel der Ausgabe 1/2018

Journal of Hematology & Oncology 1/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.