Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 3/2010

01.06.2010

MicroRNAs and Ultraconserved Genes as Diagnostic Markers and Therapeutic Targets in Cancer and Cardiovascular Diseases

verfasst von: Julianna K. Edwards, Renata Pasqualini, Wadih Arap, George A. Calin

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 3/2010

Einloggen, um Zugang zu erhalten

Abstract

MicroRNAs (miRNAs), approximately 19–25 nucleotides in length, are posttranscriptional regulators of protein expression that target and inhibit translation of messenger (m) RNAs. Recent research on miRNAs has produced a plethora of new material on the role of miRNAs in disease. Deregulation or ablation of miRNA expression has led to major pathologies including heart disease and cancer. Signatures of differential miRNA expression have been uncovered for nearly every disease. Recent research has focused on exploitation of the selectivity of these signatures as markers of disease and for therapeutic applications. The significance of additional mechanisms of abnormal posttranscriptional regulation, such as ultraconserved genes (UCGs), has recently been recognized. This review focuses on the identification of aberrant posttranscriptional regulators (miRNAs and UCGs) in cancer and cardiovascular disease and addresses the applications of this work towards diagnosis and therapy.
Literatur
1.
Zurück zum Zitat Bagga, S., Bracht, J., Hunter, S., Massirer, K., Holtz, J., Eachus, R., et al. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell, 122(4), 553–563.CrossRefPubMed Bagga, S., Bracht, J., Hunter, S., Massirer, K., Holtz, J., Eachus, R., et al. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell, 122(4), 553–563.CrossRefPubMed
2.
Zurück zum Zitat Wang, Y., Liang, Y., & Lu, Q. (2008). MicroRNA epigenetic alterations: Predicting biomarkers and therapeutic targets in human diseases. Clinical Genetics, 74(4), 307–315.CrossRefPubMed Wang, Y., Liang, Y., & Lu, Q. (2008). MicroRNA epigenetic alterations: Predicting biomarkers and therapeutic targets in human diseases. Clinical Genetics, 74(4), 307–315.CrossRefPubMed
3.
Zurück zum Zitat Borchert, G. M., Lanier, W., & Davidson, B. L. (2006). RNA polymerase III transcribes human microRNAs. Nature Structural & Molecular Biology, 13(12), 1097–1101.CrossRef Borchert, G. M., Lanier, W., & Davidson, B. L. (2006). RNA polymerase III transcribes human microRNAs. Nature Structural & Molecular Biology, 13(12), 1097–1101.CrossRef
4.
Zurück zum Zitat Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., et al. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature, 432(7014), 235–40.CrossRefPubMed Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., et al. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature, 432(7014), 235–40.CrossRefPubMed
5.
Zurück zum Zitat Hutvágner, G., & Zamore, P. D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297(5589), 2056–2060.CrossRefPubMed Hutvágner, G., & Zamore, P. D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297(5589), 2056–2060.CrossRefPubMed
6.
Zurück zum Zitat Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W. J., Mattick, J. S., et al. (2004). Ultraconserved elements in the human genome. Science, 304(5675), 1321–1325.CrossRefPubMed Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W. J., Mattick, J. S., et al. (2004). Ultraconserved elements in the human genome. Science, 304(5675), 1321–1325.CrossRefPubMed
7.
8.
Zurück zum Zitat Calin, G. A., Liu, C. G., Ferracin, M., Hyslop, T., Spizzo, R., Sevignani, C., et al. (2007). Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell, 12(3), 215–229.CrossRefPubMed Calin, G. A., Liu, C. G., Ferracin, M., Hyslop, T., Spizzo, R., Sevignani, C., et al. (2007). Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell, 12(3), 215–229.CrossRefPubMed
9.
Zurück zum Zitat Strong, K., Mathers, C., Leeder, S., & Beaglehole, R. (2005). Preventing chronic diseases: How many lives can we save? Lancet, 366(9496), 1578–1582.CrossRefPubMed Strong, K., Mathers, C., Leeder, S., & Beaglehole, R. (2005). Preventing chronic diseases: How many lives can we save? Lancet, 366(9496), 1578–1582.CrossRefPubMed
10.
Zurück zum Zitat Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., Ferguson, T. B., Ford, E., Furie, K., Gillespie, C., Go, A., Greenlund, K., Haase, N., Hailpern, S., Ho, P. M., Howard, V., Kissela, B., Kittner, S., Lackland, D., Lisabeth, L., Marelli, A., McDermott, M. M., Meigs, J., Mozaffarian, D., Mussolino, M., Nichol, G., Roger, V., Rosamond, W., Sacco, R, Sorlie, P., Stafford, R., Thom, T., Wasserthiel-Smoller, S., Wong, N. D., Wylie-Rosett, J., on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. (2009) Heart disease and stroke statistics—2010 update. A report from the American Heart Association. Circulation. Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., Ferguson, T. B., Ford, E., Furie, K., Gillespie, C., Go, A., Greenlund, K., Haase, N., Hailpern, S., Ho, P. M., Howard, V., Kissela, B., Kittner, S., Lackland, D., Lisabeth, L., Marelli, A., McDermott, M. M., Meigs, J., Mozaffarian, D., Mussolino, M., Nichol, G., Roger, V., Rosamond, W., Sacco, R, Sorlie, P., Stafford, R., Thom, T., Wasserthiel-Smoller, S., Wong, N. D., Wylie-Rosett, J., on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. (2009) Heart disease and stroke statistics—2010 update. A report from the American Heart Association. Circulation.
11.
Zurück zum Zitat Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., & Thun, M. J. (2007). Cancer statistics, 2007. CA: A Cancer Journal for Clinicians, 57(1), 43–66.CrossRef Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., & Thun, M. J. (2007). Cancer statistics, 2007. CA: A Cancer Journal for Clinicians, 57(1), 43–66.CrossRef
12.
Zurück zum Zitat Chen, J. F., Murchison, E. P., Tang, R., Callis, T. E., Tatsuguchi, M., Deng, Z., et al. (2008). Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2111–2116.CrossRefPubMed Chen, J. F., Murchison, E. P., Tang, R., Callis, T. E., Tatsuguchi, M., Deng, Z., et al. (2008). Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2111–2116.CrossRefPubMed
13.
Zurück zum Zitat Zhao, Y., Ransom, J. F., Li, A., Vedantham, V., von Drehle, M., Muth, A. N., et al. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129(2), 303–317.CrossRefPubMed Zhao, Y., Ransom, J. F., Li, A., Vedantham, V., von Drehle, M., Muth, A. N., et al. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129(2), 303–317.CrossRefPubMed
14.
Zurück zum Zitat Thum, T., Galuppo, P., Wolf, C., Fiedler, J., Kneitz, S., van Laake, L. W., et al. (2007). MicroRNAs in the human heart: A clue to fetal gene reprogramming in heart failure. Circulation, 116(3), 258–267.CrossRefPubMed Thum, T., Galuppo, P., Wolf, C., Fiedler, J., Kneitz, S., van Laake, L. W., et al. (2007). MicroRNAs in the human heart: A clue to fetal gene reprogramming in heart failure. Circulation, 116(3), 258–267.CrossRefPubMed
15.
Zurück zum Zitat van Rooij, E., Sutherland, L. B., Liu, N., Williams, A. H., McAnally, J., Gerard, R. D., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18255–18260.CrossRefPubMed van Rooij, E., Sutherland, L. B., Liu, N., Williams, A. H., McAnally, J., Gerard, R. D., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18255–18260.CrossRefPubMed
16.
Zurück zum Zitat Hunter, J. J., & Chien, K. R. (1999). Signaling pathways for cardiac hypertrophy and failure. New England Journal of Medicine, 341(17), 1276–1283.CrossRefPubMed Hunter, J. J., & Chien, K. R. (1999). Signaling pathways for cardiac hypertrophy and failure. New England Journal of Medicine, 341(17), 1276–1283.CrossRefPubMed
17.
Zurück zum Zitat Sayed, D., Hong, C., Chen, I. Y., Lypowy, J., & Abdellatif, M. (2007). MicroRNAs play an essential role in the development of cardiac hypertrophy. Circulation Research, 100(3), 416–424.CrossRefPubMed Sayed, D., Hong, C., Chen, I. Y., Lypowy, J., & Abdellatif, M. (2007). MicroRNAs play an essential role in the development of cardiac hypertrophy. Circulation Research, 100(3), 416–424.CrossRefPubMed
18.
Zurück zum Zitat Carè, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618.CrossRefPubMed Carè, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618.CrossRefPubMed
19.
Zurück zum Zitat Xu, C., Lu, Y., Pan, Z., Chu, W., Luo, X., Lin, H., et al. (2007). The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. Journal of Cell Science, 120(Pt 17), 3045–3052.CrossRefPubMed Xu, C., Lu, Y., Pan, Z., Chu, W., Luo, X., Lin, H., et al. (2007). The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. Journal of Cell Science, 120(Pt 17), 3045–3052.CrossRefPubMed
20.
Zurück zum Zitat Xiao, J., Luo, X., Lin, H., Zhang, Y., Lu, Y., Wang, N., et al. (2007). MicroRNA miR-133 represses HERG K+channel expression contributing to QT prolongation in diabetic hearts. Journal of Biological Chemistry, 282(17), 12363–12367.CrossRefPubMed Xiao, J., Luo, X., Lin, H., Zhang, Y., Lu, Y., Wang, N., et al. (2007). MicroRNA miR-133 represses HERG K+channel expression contributing to QT prolongation in diabetic hearts. Journal of Biological Chemistry, 282(17), 12363–12367.CrossRefPubMed
21.
Zurück zum Zitat Chan, J. A., Krichevsky, A. M., & Kosik, K. S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research, 65(14), 6029–6033.CrossRefPubMed Chan, J. A., Krichevsky, A. M., & Kosik, K. S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research, 65(14), 6029–6033.CrossRefPubMed
22.
Zurück zum Zitat Si, M. L., Zhu, S., Wu, H., Lu, Z., Wu, F., & Mo, Y. Y. (2007). miR-21-mediated tumor growth. Oncogene, 26(19), 2799–2803.CrossRefPubMed Si, M. L., Zhu, S., Wu, H., Lu, Z., Wu, F., & Mo, Y. Y. (2007). miR-21-mediated tumor growth. Oncogene, 26(19), 2799–2803.CrossRefPubMed
23.
Zurück zum Zitat Cheng, Y., Ji, R., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNAs are aberrantly expressed in hypertrophic heart: Do they play a role in cardiac hypertrophy? American Journal of Pathology, 170(6), 1831–1840.CrossRefPubMed Cheng, Y., Ji, R., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNAs are aberrantly expressed in hypertrophic heart: Do they play a role in cardiac hypertrophy? American Journal of Pathology, 170(6), 1831–1840.CrossRefPubMed
24.
Zurück zum Zitat Tatsuguchi, M., Seok, H. Y., Callis, T. E., Thomson, J. M., Chen, J. F., Newman, M., et al. (2007). Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 42(6), 1137–1141.CrossRefPubMed Tatsuguchi, M., Seok, H. Y., Callis, T. E., Thomson, J. M., Chen, J. F., Newman, M., et al. (2007). Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 42(6), 1137–1141.CrossRefPubMed
25.
Zurück zum Zitat Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224), 980–984.CrossRefPubMed Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224), 980–984.CrossRefPubMed
26.
Zurück zum Zitat Calin, G. A., & Croce, C. M. (2009). Chronic lymphocytic leukemia: Interplay between noncoding RNAs and protein-coding genes. Blood, 114(23), 4761–4770.CrossRefPubMed Calin, G. A., & Croce, C. M. (2009). Chronic lymphocytic leukemia: Interplay between noncoding RNAs and protein-coding genes. Blood, 114(23), 4761–4770.CrossRefPubMed
27.
Zurück zum Zitat Liu, C. G., Spizzo, R., Calin, G. A., & Croce, C. M. (2008). Expression profiling of microRNA using oligo DNA arrays. Methods, 44(1), 22–30.CrossRefPubMed Liu, C. G., Spizzo, R., Calin, G. A., & Croce, C. M. (2008). Expression profiling of microRNA using oligo DNA arrays. Methods, 44(1), 22–30.CrossRefPubMed
28.
Zurück zum Zitat Volinia, S., Calin, G. A., Liu, C. G., Ambs, S., Cimmino, A., Petrocca, F., et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2257–2261.CrossRefPubMed Volinia, S., Calin, G. A., Liu, C. G., Ambs, S., Cimmino, A., Petrocca, F., et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2257–2261.CrossRefPubMed
29.
Zurück zum Zitat Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature ReviewsCancer, 6(11), 857–866.CrossRef Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature ReviewsCancer, 6(11), 857–866.CrossRef
30.
Zurück zum Zitat Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs-microRNAs with a role in cancer. Nature ReviewsCancer, 6(4), 259–269.CrossRef Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs-microRNAs with a role in cancer. Nature ReviewsCancer, 6(4), 259–269.CrossRef
31.
Zurück zum Zitat Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15524–15529.CrossRefPubMed Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15524–15529.CrossRefPubMed
32.
Zurück zum Zitat Aqeilan, R. I., Calin, G. A., & Croce, C. M. (2010). miR-15a and miR-16-1 in cancer: Discovery, function and future perspectives. Cell Death and Differentiation, 17(2), 215–220.CrossRefPubMed Aqeilan, R. I., Calin, G. A., & Croce, C. M. (2010). miR-15a and miR-16-1 in cancer: Discovery, function and future perspectives. Cell Death and Differentiation, 17(2), 215–220.CrossRefPubMed
33.
Zurück zum Zitat Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S., & Calin, G. A. (2009). MicroRNAs—The micro steering wheel of tumour metastases. Nature ReviewsCancer, 9(4), 293–302.CrossRef Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S., & Calin, G. A. (2009). MicroRNAs—The micro steering wheel of tumour metastases. Nature ReviewsCancer, 9(4), 293–302.CrossRef
34.
Zurück zum Zitat Schetter, A. J., Leung, S. Y., Sohn, J. J., Zanetti, K. A., Bowman, E. D., Yanaihara, N., et al. (2008). MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA, 299(4), 425–436.CrossRefPubMed Schetter, A. J., Leung, S. Y., Sohn, J. J., Zanetti, K. A., Bowman, E. D., Yanaihara, N., et al. (2008). MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA, 299(4), 425–436.CrossRefPubMed
35.
Zurück zum Zitat Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772), 901–906.CrossRefPubMed Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772), 901–906.CrossRefPubMed
36.
Zurück zum Zitat Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Research, 64(11), 3753–3756.CrossRefPubMed Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Research, 64(11), 3753–3756.CrossRefPubMed
37.
Zurück zum Zitat Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.CrossRefPubMed Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.CrossRefPubMed
38.
Zurück zum Zitat Eccles, S. A., & Welch, D. R. (2007). Metastasis: Recent discoveries and novel treatment strategies. Lancet, 369(9574), 1742–1757.CrossRefPubMed Eccles, S. A., & Welch, D. R. (2007). Metastasis: Recent discoveries and novel treatment strategies. Lancet, 369(9574), 1742–1757.CrossRefPubMed
39.
Zurück zum Zitat Tavazoie, S. F., Alarcón, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.CrossRefPubMed Tavazoie, S. F., Alarcón, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.CrossRefPubMed
40.
Zurück zum Zitat Wang, S., Aurora, A. B., Johnson, B. A., Qi, X., McAnally, J., Hill, J. A., et al. (2008). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developments Cell, 15(2), 261–271.CrossRef Wang, S., Aurora, A. B., Johnson, B. A., Qi, X., McAnally, J., Hill, J. A., et al. (2008). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developments Cell, 15(2), 261–271.CrossRef
41.
Zurück zum Zitat Wang, S., & Olson, E. N. (2009). AngiomiRs—Key regulators of angiogenesis. Current Opinion in Genetics and Development, 19(3), 205–211.CrossRefPubMed Wang, S., & Olson, E. N. (2009). AngiomiRs—Key regulators of angiogenesis. Current Opinion in Genetics and Development, 19(3), 205–211.CrossRefPubMed
42.
Zurück zum Zitat Fish, J. E., Santoro, M. M., Morton, S. U., Yu, S., Yeh, R. F., Wythe, J. D., et al. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Developments Cell, 15(2), 272–284.CrossRef Fish, J. E., Santoro, M. M., Morton, S. U., Yu, S., Yeh, R. F., Wythe, J. D., et al. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Developments Cell, 15(2), 272–284.CrossRef
43.
Zurück zum Zitat Ullah, M. F., & Aatif, M. (2009). The footprints of cancer development: Cancer biomarkers. Cancer Treatment Reviews, 35(3), 193–200.CrossRefPubMed Ullah, M. F., & Aatif, M. (2009). The footprints of cancer development: Cancer biomarkers. Cancer Treatment Reviews, 35(3), 193–200.CrossRefPubMed
44.
Zurück zum Zitat Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.CrossRefPubMed Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.CrossRefPubMed
45.
Zurück zum Zitat Rosenfeld, N., Aharonov, R., Meiri, E., Rosenwald, S., Spector, Y., Zepeniuk, M., et al. (2008). MicroRNAs accurately identify cancer tissue origin. Nature Biotechnology, 26(4), 462–469.CrossRefPubMed Rosenfeld, N., Aharonov, R., Meiri, E., Rosenwald, S., Spector, Y., Zepeniuk, M., et al. (2008). MicroRNAs accurately identify cancer tissue origin. Nature Biotechnology, 26(4), 462–469.CrossRefPubMed
46.
Zurück zum Zitat Mercer, T. R., Dinger, M. E., & Mattick, J. S. (2009). Long non-coding RNAs: Insights into functions. Nature Reviews Genetics, 10(3), 155–159.CrossRefPubMed Mercer, T. R., Dinger, M. E., & Mattick, J. S. (2009). Long non-coding RNAs: Insights into functions. Nature Reviews Genetics, 10(3), 155–159.CrossRefPubMed
47.
Zurück zum Zitat Reis, E. M., Nakaya, H. I., Louro, R., Canavez, F. C., Flatschart, A. V., Almeida, G. T., et al. (2004). Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer. Oncogene, 23(39), 6684–6692.CrossRefPubMed Reis, E. M., Nakaya, H. I., Louro, R., Canavez, F. C., Flatschart, A. V., Almeida, G. T., et al. (2004). Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer. Oncogene, 23(39), 6684–6692.CrossRefPubMed
48.
Zurück zum Zitat Calin, G. A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S. E., et al. (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. New England Journal of Medicine, 353(17), 1793–1801. Erratum in: N Engl J Med355(5):533.CrossRefPubMed Calin, G. A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S. E., et al. (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. New England Journal of Medicine, 353(17), 1793–1801. Erratum in: N Engl J Med355(5):533.CrossRefPubMed
49.
Zurück zum Zitat Girard, A., Sachidanandam, R., Hannon, G. J., & Carmell, M. A. (2006). A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature, 442(7099), 199–202.PubMed Girard, A., Sachidanandam, R., Hannon, G. J., & Carmell, M. A. (2006). A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature, 442(7099), 199–202.PubMed
50.
Zurück zum Zitat Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino, N., et al. (2006). A novel class of small RNAs bind to MILI protein in mouse testes. Nature, 442(7099), 203–207.PubMed Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino, N., et al. (2006). A novel class of small RNAs bind to MILI protein in mouse testes. Nature, 442(7099), 203–207.PubMed
51.
Zurück zum Zitat Saito, K., Nishida, K. M., Mori, T., Kawamura, Y., Miyoshi, K., Nagami, T., et al. (2006). Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes and Development, 20(16), 2214–2222.CrossRefPubMed Saito, K., Nishida, K. M., Mori, T., Kawamura, Y., Miyoshi, K., Nagami, T., et al. (2006). Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes and Development, 20(16), 2214–2222.CrossRefPubMed
52.
Zurück zum Zitat O’Donnell, K. A., & Boeke, J. D. (2007). Mighty Piwis defend the germline against genome intruders. Cell, 129(1), 37–44.CrossRefPubMed O’Donnell, K. A., & Boeke, J. D. (2007). Mighty Piwis defend the germline against genome intruders. Cell, 129(1), 37–44.CrossRefPubMed
53.
Zurück zum Zitat Klattenhoff, C., & Theurkauf, W. (2008). Biogenesis and germline functions of piRNAs. Development, 135(1), 3–9.CrossRefPubMed Klattenhoff, C., & Theurkauf, W. (2008). Biogenesis and germline functions of piRNAs. Development, 135(1), 3–9.CrossRefPubMed
54.
Zurück zum Zitat Lau, N. C., Seto, A. G., Kim, J., Kuramochi-Miyagawa, S., Nakano, T., Bartel, D. P., et al. (2006). Characterization of the piRNA complex from rat testes. Science, 313(5785), 363–367.CrossRefPubMed Lau, N. C., Seto, A. G., Kim, J., Kuramochi-Miyagawa, S., Nakano, T., Bartel, D. P., et al. (2006). Characterization of the piRNA complex from rat testes. Science, 313(5785), 363–367.CrossRefPubMed
55.
Zurück zum Zitat Gunawardane, L. S., Saito, K., Nishida, K. M., Miyoshi, K., Kawamura, Y., Nagami, T., et al. (2007). A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science, 315(5818), 1587–1590.CrossRefPubMed Gunawardane, L. S., Saito, K., Nishida, K. M., Miyoshi, K., Kawamura, Y., Nagami, T., et al. (2007). A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science, 315(5818), 1587–1590.CrossRefPubMed
56.
Zurück zum Zitat Wurdinger, T., & Costa, F. F. (2007). Molecular therapy in the microRNA era. Pharmacogenomics Journal, 7(5), 297–304.CrossRefPubMed Wurdinger, T., & Costa, F. F. (2007). Molecular therapy in the microRNA era. Pharmacogenomics Journal, 7(5), 297–304.CrossRefPubMed
57.
Zurück zum Zitat Aravin, A., & Tuschl, T. (2005). Identification and characterization of small RNAs involved in RNA silencing. FEBS Letters, 579(26), 5830–5840.CrossRefPubMed Aravin, A., & Tuschl, T. (2005). Identification and characterization of small RNAs involved in RNA silencing. FEBS Letters, 579(26), 5830–5840.CrossRefPubMed
58.
Zurück zum Zitat Rossi, S., Sevignani, C., Nnadi, S. C., Siracusa, L. D., & Calin, G. A. (2008). Cancer-associated genomic regions (CAGRs) and noncoding RNAs: Bioinformatics and therapeutic implications. Mammalian Genome, 19(7–8), 526–540.CrossRefPubMed Rossi, S., Sevignani, C., Nnadi, S. C., Siracusa, L. D., & Calin, G. A. (2008). Cancer-associated genomic regions (CAGRs) and noncoding RNAs: Bioinformatics and therapeutic implications. Mammalian Genome, 19(7–8), 526–540.CrossRefPubMed
59.
Zurück zum Zitat Weiler, J., Hunziker, J., & Hall, J. (2006). Anti-miRNA oligonucleotides (AMOs): Ammunition to target miRNAs implicated in human disease? Gene Therapy, 13(6), 496–502.CrossRefPubMed Weiler, J., Hunziker, J., & Hall, J. (2006). Anti-miRNA oligonucleotides (AMOs): Ammunition to target miRNAs implicated in human disease? Gene Therapy, 13(6), 496–502.CrossRefPubMed
60.
Zurück zum Zitat Krützfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438(7068), 685–689.CrossRefPubMed Krützfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438(7068), 685–689.CrossRefPubMed
61.
Zurück zum Zitat Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R., & Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 110(5), 563–574.CrossRefPubMed Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R., & Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 110(5), 563–574.CrossRefPubMed
62.
Zurück zum Zitat Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949.CrossRefPubMed Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949.CrossRefPubMed
63.
Zurück zum Zitat Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., et al. (2008). miR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 5166–5171.CrossRefPubMed Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., et al. (2008). miR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 5166–5171.CrossRefPubMed
64.
Zurück zum Zitat Weidhaas, J. B., Babar, I., Nallur, S. M., Trang, P., Roush, S., Boehm, M., et al. (2007). MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Research, 67(23), 11111–11116.CrossRefPubMed Weidhaas, J. B., Babar, I., Nallur, S. M., Trang, P., Roush, S., Boehm, M., et al. (2007). MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Research, 67(23), 11111–11116.CrossRefPubMed
65.
Zurück zum Zitat Duisters, R. F., Tijsen, A. J., Schroen, B., Leenders, J. J., Lentink, V., van der Made, I., et al. (2009). miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circulation Research, 104(2), 170–178. 6p following 178.CrossRefPubMed Duisters, R. F., Tijsen, A. J., Schroen, B., Leenders, J. J., Lentink, V., van der Made, I., et al. (2009). miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circulation Research, 104(2), 170–178. 6p following 178.CrossRefPubMed
66.
Zurück zum Zitat van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J., & Olson, E. N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316(5824), 575–579.CrossRefPubMed van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J., & Olson, E. N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316(5824), 575–579.CrossRefPubMed
67.
Zurück zum Zitat Meng, F., Henson, R., Wehbe-Janek, H., Ghoshal, K., Jacob, S. T., & Patel, T. (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 133(2), 647–658.CrossRefPubMed Meng, F., Henson, R., Wehbe-Janek, H., Ghoshal, K., Jacob, S. T., & Patel, T. (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 133(2), 647–658.CrossRefPubMed
68.
Zurück zum Zitat Asangani, I. A., Rasheed, S. A., Nikolova, D. A., Leupold, J. H., Colburn, N. H., Post, S., et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27(15), 2128–2136.CrossRefPubMed Asangani, I. A., Rasheed, S. A., Nikolova, D. A., Leupold, J. H., Colburn, N. H., Post, S., et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27(15), 2128–2136.CrossRefPubMed
69.
Zurück zum Zitat Zhu, S., Si, M. L., Wu, H., & Mo, Y. Y. (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). Journal of Biological Chemistry, 282(19), 14328–14336.CrossRefPubMed Zhu, S., Si, M. L., Wu, H., & Mo, Y. Y. (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). Journal of Biological Chemistry, 282(19), 14328–14336.CrossRefPubMed
70.
Zurück zum Zitat Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., Sabbioni, S., et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Research, 65(16), 7065–7070.CrossRefPubMed Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., Sabbioni, S., et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Research, 65(16), 7065–7070.CrossRefPubMed
71.
Zurück zum Zitat Gironella, M., Seux, M., Xie, M. J., Cano, C., Tomasini, R., Gommeaux, J., et al. (2007). Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16170–16175.CrossRefPubMed Gironella, M., Seux, M., Xie, M. J., Cano, C., Tomasini, R., Gommeaux, J., et al. (2007). Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16170–16175.CrossRefPubMed
72.
Zurück zum Zitat Harris, T. A., Yamakuchi, M., Ferlito, M., Mendell, J. T., & Lowenstein, C. J. (2008). MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 1516–1521.CrossRefPubMed Harris, T. A., Yamakuchi, M., Ferlito, M., Mendell, J. T., & Lowenstein, C. J. (2008). MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 1516–1521.CrossRefPubMed
73.
Zurück zum Zitat Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.CrossRefPubMed Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.CrossRefPubMed
74.
Zurück zum Zitat He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature, 435(7043), 828–833.CrossRefPubMed He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature, 435(7043), 828–833.CrossRefPubMed
75.
Zurück zum Zitat Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 38(9), 1060–1065.CrossRefPubMed Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 38(9), 1060–1065.CrossRefPubMed
76.
Zurück zum Zitat Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., et al. (2009). MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science, 324(5935), 1710–1713.CrossRefPubMed Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., et al. (2009). MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science, 324(5935), 1710–1713.CrossRefPubMed
Metadaten
Titel
MicroRNAs and Ultraconserved Genes as Diagnostic Markers and Therapeutic Targets in Cancer and Cardiovascular Diseases
verfasst von
Julianna K. Edwards
Renata Pasqualini
Wadih Arap
George A. Calin
Publikationsdatum
01.06.2010
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 3/2010
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-010-9179-5

Weitere Artikel der Ausgabe 3/2010

Journal of Cardiovascular Translational Research 3/2010 Zur Ausgabe

Das Risiko für Vorhofflimmern in der Bevölkerung steigt

02.05.2024 Vorhofflimmern Nachrichten

Das Risiko, im Lauf des Lebens an Vorhofflimmern zu erkranken, ist in den vergangenen 20 Jahren gestiegen: Laut dänischen Zahlen wird es drei von zehn Personen treffen. Das hat Folgen weit über die Schlaganfallgefährdung hinaus.

VHF-Ablation nützt wohl nur bei reduzierter Auswurfleistung

02.05.2024 Ablationstherapie Nachrichten

Ob die Katheterablation von Vorhofflimmern bei Patienten mit Herzinsuffizienz die Komplikationsraten senkt, scheint davon abzuhängen, ob die Auswurfleistung erhalten ist oder nicht. Das legen die Ergebnisse einer Metaanalyse nahe.

Weniger Extremitätenischämien mit dualer Plättchenhemmung

02.05.2024 Thrombozytenaggregationshemmer Nachrichten

Eine Behandlung mit Ticagrelor zusätzlich zu ASS kann das Risiko für Revaskularisierungen und Amputationen von Extremitäten bei Diabetikern mit stabiler KHK deutlich reduzieren, vor allem für solche mit PAVK. Dafür spricht eine Auswertung der Interventionsstudie THEMIS.

Beutel versus Maschine: Beste Beatmungstechnik bei Herzstillstand gesucht

02.05.2024 Kardiopulmonale Reanimation Nachrichten

Stehen die Chancen auf eine Rückkehr der Spontanzirkulation nach Herz-Kreislauf-Stillstand bei manueller oder maschineller Beatmung besser? Und unterscheidet sich das neurologische Outcome nach der Reanimation? Das belgische Herzstillstand-Register liefert die Daten für einen direkten Vergleich zwischen Beutel und Beatmungsgerät.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.