Skip to main content
Erschienen in: Clinical & Experimental Metastasis 8/2011

01.12.2011 | Research Paper

Migration of MDA-MB-231 breast cancer cells depends on the availability of exogenous lipids and cholesterol esterification

verfasst von: Caryl J. Antalis, Aki Uchida, Kimberly K. Buhman, Rafat A. Siddiqui

Erschienen in: Clinical & Experimental Metastasis | Ausgabe 8/2011

Einloggen, um Zugang zu erhalten

Abstract

We previously described a lipid-accumulating phenotype of estrogen receptor negative (ER) breast cancer cells exemplified by the MDA-MB-231 and MDA-MB-436 cell lines. These cells had more lipid droplets, a higher uptake of oleic acid and LDL, a higher ratio of cholesteryl ester (CE) to triacylglycerol (TAG), and higher expression of acyl-CoA:cholesterol acyltransferase 1 (ACAT1) as compared to ER+ MCF-7 breast cancer cells. LDL stimulated proliferation of ER-cells only, and proliferation was reduced by inhibition of ACAT. We hypothesized that storage of exogenous lipids would confer an energetic advantage. We tested this by depriving cells of exogenous lipids and measuring chemotactic migration, an energy-intensive behavior. MDA-MB-231 cells were grown for 48 h in medium with either 5% FBS or 5% lipoprotein-depleted (LD) FBS. Growth in LD medium resulted in visibly reduced lipid droplets and an 85% decrease in cell migration. Addition of LDL to the LD medium dose-dependently restored the ability to migrate in an ACAT-sensitive manner. LDL receptor (LDLR) mRNA was 12-fold higher in MDA-MB-231 cells compared to nontumorigenic ER-MCF-10A breast epithelial cells grown in LD medium. Addition of LDL to the LD medium reduced LDLR mRNA levels in MCF-10A cells only. We asked if ACAT1 activity was associated with the expression of the LDLR in MDA-MB-231 cells. LDLR mRNA in MDA-MB-231 cells was substantially reduced by inhibition of ACAT, demonstrating that high ACAT1 activity permitted higher LDLR expression. This data substantiates the association of lipid accumulation with aggressive behavior in an ER-breast cancer cell line.
Literatur
1.
Zurück zum Zitat Sleeman J, Steeg PS (2010) Cancer metastasis as a therapeutic target. Eur J Cancer 46:1177–1180 Sleeman J, Steeg PS (2010) Cancer metastasis as a therapeutic target. Eur J Cancer 46:1177–1180
2.
Zurück zum Zitat Patterson RE, Cadmus LA, Emond JA, Pierce JP (2010) Physical activity, diet, adiposity and female breast cancer prognosis: a review of the epidemiologic literature. Maturitas 66:5–15 Patterson RE, Cadmus LA, Emond JA, Pierce JP (2010) Physical activity, diet, adiposity and female breast cancer prognosis: a review of the epidemiologic literature. Maturitas 66:5–15
3.
Zurück zum Zitat Cleary MP, Grossmann ME (2009) Minireview: obesity and breast cancer: the estrogen connection. Endocrinology 150:2537–2542PubMedCrossRef Cleary MP, Grossmann ME (2009) Minireview: obesity and breast cancer: the estrogen connection. Endocrinology 150:2537–2542PubMedCrossRef
4.
Zurück zum Zitat Renehan AG, Frystyk J, Flyvbjerg A (2006) Obesity and cancer risk: the role of the insulin-IGF axis. Trends Endocrinol Metab 17:328–336PubMedCrossRef Renehan AG, Frystyk J, Flyvbjerg A (2006) Obesity and cancer risk: the role of the insulin-IGF axis. Trends Endocrinol Metab 17:328–336PubMedCrossRef
5.
Zurück zum Zitat Rotheneder M, Kostner GM (1989) Effects of low- and high-density lipoproteins on the proliferation of human breast cancer cells in vitro: differences between hormone-dependent and hormone-independent cell lines. Int J Cancer 43:875–879PubMedCrossRef Rotheneder M, Kostner GM (1989) Effects of low- and high-density lipoproteins on the proliferation of human breast cancer cells in vitro: differences between hormone-dependent and hormone-independent cell lines. Int J Cancer 43:875–879PubMedCrossRef
6.
Zurück zum Zitat Chajes V, Mahon M, Kostner GM (1996) Influence of LDL oxidation on the proliferation of human breast cancer cells. Free Radic Biol Med 20:113–120PubMedCrossRef Chajes V, Mahon M, Kostner GM (1996) Influence of LDL oxidation on the proliferation of human breast cancer cells. Free Radic Biol Med 20:113–120PubMedCrossRef
7.
Zurück zum Zitat Hardy S, El-Assaad W, Przybytkowski E, Joly E, Prentki M, Langelier Y (2003) Saturated fatty acid-induced apoptosis in MDA-MB-231 breast cancer cells. A role for cardiolipin. J Biol Chem 278:31861–31870PubMedCrossRef Hardy S, El-Assaad W, Przybytkowski E, Joly E, Prentki M, Langelier Y (2003) Saturated fatty acid-induced apoptosis in MDA-MB-231 breast cancer cells. A role for cardiolipin. J Biol Chem 278:31861–31870PubMedCrossRef
8.
Zurück zum Zitat Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777PubMedCrossRef Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777PubMedCrossRef
9.
Zurück zum Zitat Antalis CJ, Arnold T, Rasool T, Lee B, Buhman KK, Siddiqui RA (2010) High ACAT1 expression in estrogen receptor negative basal-like breast cancer cells is associated with LDL-induced proliferation. Breast Cancer Res Treat 122:661–670PubMedCrossRef Antalis CJ, Arnold T, Rasool T, Lee B, Buhman KK, Siddiqui RA (2010) High ACAT1 expression in estrogen receptor negative basal-like breast cancer cells is associated with LDL-induced proliferation. Breast Cancer Res Treat 122:661–670PubMedCrossRef
10.
Zurück zum Zitat Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, Liao X, Iglehart JD, Livingston DM, Ganesan S (2006) X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9:121–132PubMedCrossRef Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, Liao X, Iglehart JD, Livingston DM, Ganesan S (2006) X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9:121–132PubMedCrossRef
11.
Zurück zum Zitat van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedCrossRef van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedCrossRef
12.
Zurück zum Zitat Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, Macgrogan G, Bergh J, Cameron D, Goldstein D, Duss S, Nicoulaz AL, Brisken C, Fiche M, Delorenzi M, Iggo R (2005) Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24:4660–4671PubMedCrossRef Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, Macgrogan G, Bergh J, Cameron D, Goldstein D, Duss S, Nicoulaz AL, Brisken C, Fiche M, Delorenzi M, Iggo R (2005) Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24:4660–4671PubMedCrossRef
13.
Zurück zum Zitat van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRef van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRef
14.
Zurück zum Zitat Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527PubMedCrossRef Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527PubMedCrossRef
15.
Zurück zum Zitat Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948 Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948
16.
Zurück zum Zitat Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68:989–997PubMedCrossRef Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68:989–997PubMedCrossRef
17.
Zurück zum Zitat Antalis CJ, Arnold T, Lee B, Buhman KK, Siddiqui RA (2009) Docosahexanoic acid is a substrate for ACAT1 and inhibits cholesteryl ester formation from oleic acid in MCF-10A cells. Prostaglandins Leukot Essent Fatty Acids 80:165–171PubMedCrossRef Antalis CJ, Arnold T, Lee B, Buhman KK, Siddiqui RA (2009) Docosahexanoic acid is a substrate for ACAT1 and inhibits cholesteryl ester formation from oleic acid in MCF-10A cells. Prostaglandins Leukot Essent Fatty Acids 80:165–171PubMedCrossRef
18.
Zurück zum Zitat Vitols S, Gunven P, Gruber A, Larsson O (1996) Expression of the low-density lipoprotein receptor, HMG-CoA reductase, and multidrug resistance (Mdr1) genes in colorectal carcinomas. Biochem Pharmacol 52:127–131PubMedCrossRef Vitols S, Gunven P, Gruber A, Larsson O (1996) Expression of the low-density lipoprotein receptor, HMG-CoA reductase, and multidrug resistance (Mdr1) genes in colorectal carcinomas. Biochem Pharmacol 52:127–131PubMedCrossRef
19.
Zurück zum Zitat Haeffner EW, Hoffmann CJ, Stoehr M, Scherf H (1984) Cholesterol-induced growth stimulation, cell aggregation, and membrane properties of ascites tumor cells in culture. Cancer Res 44:2668–2676PubMed Haeffner EW, Hoffmann CJ, Stoehr M, Scherf H (1984) Cholesterol-induced growth stimulation, cell aggregation, and membrane properties of ascites tumor cells in culture. Cancer Res 44:2668–2676PubMed
20.
Zurück zum Zitat Vitols S, Gahrton G, Ost A, Peterson C (1984) Elevated low density lipoprotein receptor activity in leukemic cells with monocytic differentiation. Blood 63:1186–1193PubMed Vitols S, Gahrton G, Ost A, Peterson C (1984) Elevated low density lipoprotein receptor activity in leukemic cells with monocytic differentiation. Blood 63:1186–1193PubMed
21.
Zurück zum Zitat Paillasse MR, de Medina P, Amouroux G, Mhamdi L, Poirot M, Silvente-Poirot S (2009) Signaling through cholesterol esterification: a new pathway for the cholecystokinin 2 receptor involved in cell growth and invasion. J Lipid Res 50:2203–2211PubMedCrossRef Paillasse MR, de Medina P, Amouroux G, Mhamdi L, Poirot M, Silvente-Poirot S (2009) Signaling through cholesterol esterification: a new pathway for the cholecystokinin 2 receptor involved in cell growth and invasion. J Lipid Res 50:2203–2211PubMedCrossRef
22.
Zurück zum Zitat Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340PubMedCrossRef Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340PubMedCrossRef
23.
Zurück zum Zitat Chen JK, Li L, McClure DB (1988) Altered low density lipoprotein receptor regulation is associated with cholesteryl ester accumulation in Simian virus 40 transformed rodent fibroblast cell lines. In Vitro Cell Dev Biol 24:353–358PubMedCrossRef Chen JK, Li L, McClure DB (1988) Altered low density lipoprotein receptor regulation is associated with cholesteryl ester accumulation in Simian virus 40 transformed rodent fibroblast cell lines. In Vitro Cell Dev Biol 24:353–358PubMedCrossRef
24.
Zurück zum Zitat Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68 Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68
25.
Zurück zum Zitat Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6:1–6PubMed Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6:1–6PubMed
26.
Zurück zum Zitat Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291–3310PubMedCrossRef Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291–3310PubMedCrossRef
27.
Zurück zum Zitat Krueger JS, Keshamouni VG, Atanaskova N, Reddy KB (2001) Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene 20:4209–4218PubMedCrossRef Krueger JS, Keshamouni VG, Atanaskova N, Reddy KB (2001) Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene 20:4209–4218PubMedCrossRef
28.
Zurück zum Zitat Kapoor GS, Atkins BA, Mehta KD (2002) Activation of Raf-1/MEK-1/2/p42/44(MAPK) cascade alone is sufficient to uncouple LDL receptor expression from cell growth. Mol Cell Biochem 236:13–22PubMedCrossRef Kapoor GS, Atkins BA, Mehta KD (2002) Activation of Raf-1/MEK-1/2/p42/44(MAPK) cascade alone is sufficient to uncouple LDL receptor expression from cell growth. Mol Cell Biochem 236:13–22PubMedCrossRef
29.
Zurück zum Zitat Abeyweera TP, Chen X, Rotenberg SA (2009) Phosphorylation of alpha6-tubulin by protein kinase Calpha activates motility of human breast cells. J Biol Chem 284:17648–17656PubMedCrossRef Abeyweera TP, Chen X, Rotenberg SA (2009) Phosphorylation of alpha6-tubulin by protein kinase Calpha activates motility of human breast cells. J Biol Chem 284:17648–17656PubMedCrossRef
30.
Zurück zum Zitat Brenneman DE, McGee R, Spector AA (1974) Cholesterol metabolism in the Ehrlich ascites tumor. Cancer Res 34:2605–2611PubMed Brenneman DE, McGee R, Spector AA (1974) Cholesterol metabolism in the Ehrlich ascites tumor. Cancer Res 34:2605–2611PubMed
31.
Zurück zum Zitat Bostrom P, Rutberg M, Ericsson J, Holmdahl P, Andersson L, Frohman MA, Boren J, Olofsson SO (2005) Cytosolic lipid droplets increase in size by microtubule-dependent complex formation. Arterioscler Thromb Vasc Biol 25:1945–1951PubMedCrossRef Bostrom P, Rutberg M, Ericsson J, Holmdahl P, Andersson L, Frohman MA, Boren J, Olofsson SO (2005) Cytosolic lipid droplets increase in size by microtubule-dependent complex formation. Arterioscler Thromb Vasc Biol 25:1945–1951PubMedCrossRef
32.
Zurück zum Zitat Welte MA (2009) Fat on the move: intracellular motion of lipid droplets. Biochem Soc Trans 37:991–996PubMedCrossRef Welte MA (2009) Fat on the move: intracellular motion of lipid droplets. Biochem Soc Trans 37:991–996PubMedCrossRef
33.
Zurück zum Zitat Zehmer JK, Huang Y, Peng G, Pu J, Anderson RG, Liu P (2009) A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9:914–921PubMedCrossRef Zehmer JK, Huang Y, Peng G, Pu J, Anderson RG, Liu P (2009) A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9:914–921PubMedCrossRef
34.
Zurück zum Zitat Binns D, Januszewski T, Chen Y, Hill J, Markin VS, Zhao Y, Gilpin C, Chapman KD, Anderson RG, Goodman JM (2006) An intimate collaboration between peroxisomes and lipid bodies. J Cell Biol 173:719–731PubMedCrossRef Binns D, Januszewski T, Chen Y, Hill J, Markin VS, Zhao Y, Gilpin C, Chapman KD, Anderson RG, Goodman JM (2006) An intimate collaboration between peroxisomes and lipid bodies. J Cell Biol 173:719–731PubMedCrossRef
35.
Zurück zum Zitat Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, Kaufmann C, Morgado-Diaz JA, Bozza PT, Viola JP (2008) Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res 68:1732–1740PubMedCrossRef Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, Kaufmann C, Morgado-Diaz JA, Bozza PT, Viola JP (2008) Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res 68:1732–1740PubMedCrossRef
36.
Zurück zum Zitat Navarro-Tito N, Soto-Guzman A, Castro-Sanchez L, Martinez-Orozco R, Salazar EP (2010) Oleic acid promotes migration on MDA-MB-231 breast cancer cells through an arachidonic acid-dependent pathway. Int J Biochem Cell Biol 42:306-317 Navarro-Tito N, Soto-Guzman A, Castro-Sanchez L, Martinez-Orozco R, Salazar EP (2010) Oleic acid promotes migration on MDA-MB-231 breast cancer cells through an arachidonic acid-dependent pathway. Int J Biochem Cell Biol 42:306-317
37.
Zurück zum Zitat Soto-Guzman A, Navarro-Tito N, Castro-Sanchez L, Martinez-Orozco R, Salazar EP (2010) Oleic acid promotes MMP-9 secretion and invasion in breast cancer cells. Clin Exp Metastasis 27:505–515 Soto-Guzman A, Navarro-Tito N, Castro-Sanchez L, Martinez-Orozco R, Salazar EP (2010) Oleic acid promotes MMP-9 secretion and invasion in breast cancer cells. Clin Exp Metastasis 27:505–515
Metadaten
Titel
Migration of MDA-MB-231 breast cancer cells depends on the availability of exogenous lipids and cholesterol esterification
verfasst von
Caryl J. Antalis
Aki Uchida
Kimberly K. Buhman
Rafat A. Siddiqui
Publikationsdatum
01.12.2011
Verlag
Springer Netherlands
Erschienen in
Clinical & Experimental Metastasis / Ausgabe 8/2011
Print ISSN: 0262-0898
Elektronische ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-011-9405-9

Weitere Artikel der Ausgabe 8/2011

Clinical & Experimental Metastasis 8/2011 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.