Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2018

Open Access 01.12.2018 | Research

MiR-16 regulates the pro-tumorigenic potential of lung fibroblasts through the inhibition of HGF production in an FGFR-1- and MEK1-dependent manner

verfasst von: Francesca Andriani, Maria Teresa Majorini, Miguel Mano, Elena Landoni, Rosalba Miceli, Federica Facchinetti, Mavis Mensah, Enrico Fontanella, Matteo Dugo, Mauro Giacca, Ugo Pastorino, Gabriella Sozzi, Domenico Delia, Luca Roz, Daniele Lecis

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2018

Abstract

Background

Fibroblasts are crucial mediators of tumor-stroma cross-talk through synthesis and remodeling of the extracellular matrix and production of multiple soluble factors. Nonetheless, little is still known about specific determinants of fibroblast pro-tumorigenic activity in lung cancer. Here, we aimed at understanding the role of miRNAs, which are often altered in stromal cells, in reprogramming fibroblasts towards a tumor-supporting phenotype.

Methods

We employed a co-culture-based high-throughput screening to identify specific miRNAs modulating the pro-tumorigenic potential of lung fibroblasts. Multiplex assays and ELISA were instrumental to study the effect of miRNAs on the secretome of both primary and immortalized lung fibroblasts from lung cancer patients and to evaluate plasmatic levels of HGF in heavy smokers. Direct mRNA targeting by miRNAs was investigated through dual-luciferase reporter assay and western blot. Finally, the pro-tumorigenic activity of fibroblasts and their conditioned media was tested by employing in vitro migration experiments and mouse xenografts.

Results

We identified miR-16 as a master regulator of fibroblast secretome and showed that its upregulation reduces HGF secretion by fibroblasts, impairing their capacity to promote cancer cell migration. This effect is due to a pleiotropic activity of miR-16 which prevents HGF expression through direct inhibition of FGFR-1 signaling and targeting of HGF mRNA. Mechanistically, miR-16 targets FGFR-1 downstream mediator MEK1, thus reducing ERK1/2 activation. Consistently, chemical or genetic inhibition of FGFR-1 mimics miR-16 activity and prevents HGF production. Of note, we report that primary fibroblast cell lines derived from lungs of heavy smokers express reduced miR-16 levels compared to those from lungs not exposed to smoke and that HGF concentration in heavy smokers’ plasma correlates with levels of tobacco exposure. Finally, in vivo experiments confirmed that restoration of miR-16 expression in fibroblasts reduced their ability to promote tumor growth and that HGF plays a central role in the pro-tumorigenic activity of fibroblasts.

Conclusions

Overall, these results uncover a central role for miR-16 in regulating HGF production by lung fibroblasts, thus affecting their pro-tumorigenic potential. Correlation between smoking exposure and miR-16 levels could provide novel clues regarding the formation of a tumor-proficient milieu during the early phases of lung cancer development.
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s13045-018-0594-4) contains supplementary material, which is available to authorized users.
Francesca Andriani and Maria Teresa Majorini contributed equally to this work.
Luca Roz and Daniele Lecis share senior authorship.
Abkürzungen
3′UTR
3′ untranslated region
AF
Adjacent fibroblast
CAF
Cancer-associated fibroblast
CLL
Chronic lymphocytic leukemia
CM
Conditioned medium
EGFR
Epidermal growth factor receptor
ERK1/2
Extracellular signal-regulated kinases 1/2
FGF-2
Fibroblast growth factor-2
FGFR-1
Fibroblast growth factor receptor-1
GFP
Green fluorescent protein
HGF
Hepatocyte growth factor
HTS
High-throughput screening
MEK1/2
Mitogen-activated protein kinase/ERK kinase 1/2
NF
Normal fibroblast
NSCLC
Non-small cell lung cancer
TME
Tumor microenvironment

Background

Lung cancer is the leading cause of cancer deaths worldwide due to its high incidence and mortality [1]. Despite recent advances in immunotherapy [2] and targeted therapies [3], at present, less than 10% of non-small cell lung cancer (NSCLC) patients with metastatic disease reach a 5-year survival after diagnosis [4]. Effective treatment still represents a major challenge due to multiple layers of heterogeneity which lead to differential cancer cell aggressiveness and response to therapy [5, 6]. This variability is the result of many cancer cell autonomous mechanisms such as genetic and epigenetic alterations which lead to the perturbation of several pathways [7], but also derives from the influence of tumor microenvironment (TME) [8, 9]. Accordingly, there is growing evidence that development and biological behavior of tumors stem from an extremely complex cross-talk between cancer cells and the surrounding milieu constituted by the extracellular matrix (ECM), soluble factors, immune cell infiltrates [10], and cancer-associated fibroblasts (CAFs) [11]. The understanding of how these extracellular signals influence cancer cells could therefore provide new molecular targets of potential clinical relevance and/or improved prognostic tools [12].
MiRNAs, which are potent regulators of gene expression, add a further level of complexity to this process by controlling multiple pathways within the different cells of the TME and even allowing the cross-talk between distant cells when shuttled by extracellular vesicles [13]. This is the case, for example, of miR-16 which, together with miR-15, was the first miRNA described to be deleted in cancer, specifically in chronic lymphocytic leukemia (CLL) cells [14]. Loss or reduction of these miRNAs promotes several tumorigenic cancer cell features due to the consequent increase of their target genes BCL2 [15], CCND1, and WNT3A [16]. Interestingly, miR-16 also suppresses the fibroblast growth factor-2 (FGF-2)/FGF receptor-1 (FGFR-1) axis [17], and therefore, the loss of this miRNA can eventually enhance cancer cell survival, proliferation, and migration.
The pathological activation of the FGFR-1 receptor is often observed in cancer cells, and it is caused by gene amplification [18] or aberrant stimulation by its cognate ligands, thus contributing to lung cancer patients’ poor prognosis. Activated FGFR-1 in fact hampers the efficacy of therapies directed against epidermal growth factor receptor (EGFR) [19, 20] and cMet [21]. In some tumor types, cells have been shown to acquire resistance to the cMet inhibitor crizotinib through an FGFR-1-dependent compensatory upregulation of HGF [22]. This cytokine stimulates cMet and favors cancer development, angiogenesis, and tumorigenesis through activation of its downstream pathways [23, 24]. Importantly, also, the activation of cMet protects against FGFR-targeted therapy [21], thus suggesting a reciprocal functional interaction between these two receptors. Of note, several findings support the idea that CAFs represent a preferential source of soluble factors which promote cancer aggressiveness [25]. In this context, microenvironment-derived HGF plays a pivotal role in cancer cell resistance to therapy [26, 27], sustains cancer stem cells [28], and promotes invasive growth and dissemination [29].
In our work, we aimed at understanding the mechanisms by which miRNAs affect the pro-tumorigenic features of fibroblasts. After performing a genome-wide functional screening analysis, we focused specifically on miR-16, demonstrating that it regulates HGF secretion by fibroblasts in an FGFR-1-dependent manner. We further identify MEK1 as a novel direct target of miR-16. Our observation that fibroblast-derived HGF promotes cancer cell migration in vitro and tumor development in vivo supports the notion that both cancer and stromal miR-16 levels affect cancer aggressiveness. Importantly, we provide also evidence that tobacco smoking may promote the reduction of miR-16 expression in lung fibroblasts and favor the increase of systemic HGF levels.

Methods

Cell lines and reagents

Primary lung fibroblasts (“cancer-associated” (CAFs), obtained from the tumor site, and "adjacent" (AF) or “normal” (NFs), obtained from normal tissue proximal or at least 3 cm from the neoplastic lesion, respectively) were derived from surgical specimens and cultured as already described [8, 30]. All available samples were analyzed, and miRNA expression profiles were deposited in the Gene Expression Omnibus (GEO) Repository (accession number: GSE97545). Human NSCLC cell lines A549 (adenocarcinoma, CCL-185) and Calu-1 (squamous cell carcinoma, HTB-54) cells were purchased from American Type Culture Collection (ATCC, LGC Standards). LT73 primary cell line was derived in our laboratory from a surgical specimen of a male patient with lung adenocarcinoma [8]. Cancer cells were cultured in RPMI 1640 (Lonza) supplemented with 10% fetal calf serum (FCS) [30]; in vivo experiments were performed as described by Bertolini and colleagues [31]. HEK293FT (R700-07) cells were purchased from Invitrogen (Thermo Fisher Scientific, Waltham, MA, USA). All cell lines were routinely tested to exclude the presence of mycoplasma contamination, grown as adherent monolayer, and harvested at controlled density.
For immortalization, primary fibroblasts were transduced with retroviral particles produced as described [32] using the pLX-SP-hTERT vector and cultured in medium plus 1 μg/ml puromycin. The expression levels of the transgene were determined by real-time PCR using TERT TaqMan assay (Thermo Fisher Scientific) and normalized relative to HPRT. Fibroblasts expressing ectopic hTERT were characterized both in vitro (Additional file 1: Figure S1) and in vivo (Additional file 2: Figure S2) to exclude that the immortalization process affected their pro-tumorigenic features. Senescent cells were detected using the Senescence Cells Histochemical Staining Kit (Sigma-Aldrich), according to the manufacturer’s instruction.
Ectopic expression of FGFR-1 and mitogen-activated protein kinase/ERK kinase 1 (MEK1) was obtained by lentiviral particles prepared in HEK293FT cells as described [33] using the pWZL Neo Myr FLAG FGFR1, a gift from William Hahn & Jean Zhao (Addgene #20486) [34], and human Lenti-ORF pLenti-C-Myc-DDK clone of human mitogen-activated protein kinase kinase 1 (MAP2K1, OriGene #RC218460L1), respectively.
For fibroblast transfection, the negative control miRNA #1 (miR-C, #4464058) and hsa-miR-16-5p (miR-16, MC10339) miRNA mimics, the negative control miRNA #1 (miR-C inh, #4464076) and hsa-miR-16-5p (miR-16 inh, MC10339) miRNA inhibitor (Thermo Fisher Scientific), control siRNA (siCtr; 5′-CGUACGCGGAAUACUUCGATT-3′, Eurofins), siFGFR-1 #SI02224677 and #SI02224684, siHGF #SI03046946, siMEK1#6 #SI00300699, and siMEK1#7 #SI02222955 (Qiagen, Hilden, Germany) were used. Transfection of fibroblasts was performed by reverse transfection in 12-well plates, and small RNAs (50 nM final concentration for mimics, 100 nM for miRNA inhibitors) were mixed with Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher Scientific) to each well. After incubation, 1.5 × 105 fibroblasts were seeded, left to adhere, and incubated for 72 h. Conditioned medium (CM) was then collected for analysis and cancer cell stimulation, and cells were harvested for western blots. Small RNAs targeting essential genes were employed in parallel as internal transfection controls. Transfection efficiency was evaluated by real-time PCR using an hsa-miR-16 probe (391 assay ID, Thermo Fisher). Before stimulation with FGF-2 (ATCC, LGC Standards), fibroblasts were serum-starved for 48 h. Viability was evaluated using Cell TiterGlo reagent (Promega) according to the manufacturer’s instructions. The FGFR-1 inhibitor SU5402 was purchased from Calbiochem.

Patient and tissue sampling

The selection of cohorts analyzed was approved by the Fondazione IRCCS Istituto Nazionale dei Tumori Ethics Review Board. Written informed consent was obtained from each patient and healthy individual for blood collection. Whole blood samples (5–10 ml) were collected as first blood with spray-coated K2EDTA (BD-Becton, Dickinson and Company, Plymouth, UK). Within 2 h, plasma was separated by a first centrifugation step at 1258g at 4 °C for 10 min. The supernatant containing plasma was carefully collected avoiding the fraction closest to the lymphocytic ring. Plasma was then centrifuged a second time at 1258g at 4 °C for 10 min and collected for further analysis [35].

Statistical and bioinformatic analyses

In silico prediction of miRNA targets was obtained combining six different algorithms (DIANA microT-CDS [22285563], microrna.​org database [18158296], mirDB [18048393], PITA [17893677], RNA22 [16990141], and TargetScan v6.2 [15652477]). Putative mRNA targets predicted by at least five out of six algorithms were selected. The Jaccard Index was calculated for each pair of miRNAs as a measure of similarity between the lists of predicted targets. To identify clusters of miRNAs sharing common targets, we applied hierarchical clustering to the Jaccard Index matrix, with Euclidean distance and average linkage as clustering parameters. Graphs and statistical analysis were performed with GraphPad Prism 5.02.

Systemic HGF measurement

The analysis of HGF plasmatic levels was performed on a set of 90 healthy heavy smokers enrolled in a lung cancer screening program [36]. Circulating HGF was measured by using commercially available ELISA kits (R&D) according to the manufacturer’s instruction. Duplicate measures were performed for each sample. Protein levels were expressed in OD value measured by Microplate Reader Tecan Infinite® M1000. Raw absorbance values were corrected by exploiting the values of the ELISA standards. Boxplots and Wilcoxon test were used to evaluate the association between HGF and categorical variables; the association between HGF and continuous variables was assessed by means of scatter plots and the calculation of Spearman correlation coefficient. Analyses were carried out using R software, version 3.2.0 (http://​www.​r-project.​org/​). The test results were considered statistically significant whenever a two-sided P value below 0.05 was achieved.

High-throughput screening (HTS)

As the large-scale screening experiment was not feasible with primary CAFs due to the limited cell number, fibroblasts (CAFs, AFs, and NFs) from different patients were transduced with retroviral particles to stably express human TERT (hTERT) and immortalize cells (see above). For the high-throughput screening, at day 1, CAF154-hTERT fibroblasts were reverse transfected with a library of human miRNA mimics composed of 988 mature miRNAs arrayed on 96-well plates (875 unique sequences, miRBase v.13.0, miRIDIAN technology, Dharmacon). Briefly, 15 μl miRNA (500 nM) was spotted per well, and a mix of 35 μl Opti-MEM containing RNAiMAX (Thermo Fisher Scientific) was added. After 30 min of incubation, 100 μl of medium containing 8000 fibroblasts was added. A549-green fluorescent protein (GFP) cells (3500 cells/well) were seeded at day 3 (48 h after fibroblast transfection) and co-cultured for further 48 h. The experiment was stopped by fixing the cells with 4% paraformaldehyde, and nuclei were counterstained with Hoechst 33342. Image acquisition was performed using an ImageXpress Micro automated high-content screening fluorescence microscope (Molecular Devices) at a × 4 magnification; a total of four images were acquired per wavelength, well, and replicate, corresponding to ca. 10,000–15,000 cells analyzed per experimental condition and replicate. Image analysis to determine the number of fibroblasts (GFP-negative) and A549 cells (GFP-positive) was performed using the “Multi-Wavelength Cell Scoring” application module implemented in MetaXpress software (Molecular Devices). To score the effect of each miRNA in stimulating or decreasing fibroblast and A549 cell growth, results were normalized per plate, relative to the median of the samples. Screening was performed in duplicate, at the ICGEB High-Throughput Screening Facility (Trieste, Italy). In validation co-culture experiments, the same conditions of the HTS were applied, but plates were incubated in a Cell-IQ SLF instrument (CM Technology Oy, Tampere, Finland) for image acquisition and automated analysis.

Analysis of conditioned medium (CM) and plasma

For secretome analysis, 1.5 × 105 CAF154-hTERT cells were reverse transfected as described above in 12-well plates and CM was collected 72 h later. Biological triplicates were prepared for each condition, i.e., transfection with miR-C and miR-16. In this study, we quantified simultaneously 64 cytokine/chemokine/growth factor biomarkers by using the Human Cytokine Array/Chemokine Array 64-Plex Discovery Assay, 17 angiogenesis/growth factor biomarkers of the Human Angiogenesis Array and Growth Factor Array, and 13 matrix metalloproteinases/tissue inhibitors of metalloproteinases of the Human MMP and TIMP Panel (Eve Technologies Corp, Calgary, AB, Canada). To quantify HGF in different fibroblast cell lines, serum-free media conditioned for 24 h by 1 × 106 cells were collected and analyzed by ELISA (Human HGF Instant ELISA #BMS2069INST; eBioscience) according to the manufacturer’s instructions.

Western blot

Western blots were performed as already described [33]. The following primary antibodies were employed: α-cMet #sc-10 (Santacruz); α-Actin #A1978 and α-pERK1/2 #M8159 (Sigma-Aldrich); α-p-cMet #44888G (Life Technologies); α-FGFR-1 #9740, α-MEK1/2 #4694, α-MEK1 #12671, and α-pAKT #9275 (Cell Signaling Technologies); and α-HGF #10679 (Abcam).

Dual-luciferase reporter assay

For miRNA target validation, the firefly luciferase-expressing pMirTarget plasmids containing the 3′ untranslated region (UTR) of HGF #SC206339, of MEK1 #SC211301, and of FGFR-1 #SC211347 were employed (OriGene). The pMirTarget 3′UTR HGF was mutagenized using QuikChange II XL Site-Directed Mutagenesis Kit (Agilent, Santa Clara, CA) to delete the putative binding site for miR-16. Target sequences are shown in Additional file 3: Figure S3. The HEK293T cells were seeded (5 × 105 cells/well) in 96-well plates and left to adhere overnight. Then, miRNA transfection was performed using Lipofectamine 2000 reagent (100 nM final miRNA concentration) and pMirTarget plasmid (0.1 μg/well), together with the Renilla luciferase-expressing pGL4.74 plasmid (0.01 μg/well). After 24 h, both the firefly and Renilla luciferase activities were measured by dual-luciferase reporter assay (Promega) according to the manufacturer’s instructions.

Migration

Cell motility was studied in wound-healing experiments by seeding 6 × 104 A549 cells in each chamber of a culture insert (Ibidi) and left to adhere overnight in medium with 0.1% serum. The day after, medium was replaced with the CM collected from fibroblasts diluted 1:1 in fresh medium and left for 6 h before removing the inserts and starting the image acquisition using a Cell-IQ SLF instrument as already described [37].

Animal studies

In vivo studies to characterize the immortalized fibroblasts were performed as already described [8, 30]. Experiments were approved by Ethics Committee for Animal Experimentation of the Fondazione IRCCS Istituto Nazionale dei Tumori (Milan, Italy) according to EU directive 2010/63/EU. CD1-Nude female mice, 5–10 weeks old, were divided in uniform groups on the basis of their weight. No engrafted animal was excluded from the analysis.
For tumorigenic assays, viable A549 tumor cells (5 × 105) were exposed to CM of fibroblasts transfected with miR-C or miR-16 or CM supplemented with HGF-neutralizing antibody. After 2 days, cancer cells were injected subcutaneously (s.c.) into both flanks of nude mice with Matrigel 1:1 v/v (BD Biosciences) in a final volume of 200 μl. For co-injection experiments, A549 cells (1 × 103) were injected s.c. with fibroblasts transfected with miR-C or miR-16. At the end of the observation period or when the tumor volume reached at least 300 mm3, lungs were removed and dissociated for the analysis of disseminated cancer cells as previously described [8].

Results

Identification of miRNAs regulating fibroblast pro-tumorigenic potential

To study the effect of individual miRNAs on fibroblast pro-tumorigenic features, we performed a high-throughput screening employing the patient-derived CAF154-hTERT cell line (see the “Methods” section for a detailed description). Fibroblasts were transfected with a library of 875 unique mature miRNAs, and after 48 h, GFP-expressing A549 lung cancer cells were added (Fig. 1a). MiRNAs were ranked on the basis of their capability to inhibit or stimulate the growth of co-cultured A549-GFP cells (Fig. 1b, c). Although the correlation was not very marked (Spearman r = 0.35), a significant number of miRNAs had the same effect on both A549 and CAF154-hTERT cell growth (Fig. 1d). However, a number of miRNAs produced opposite outcomes on the growth of these cell lines (Fig. 1d).
The 60 miRNA candidates displaying the strongest stimulatory effect on co-cultured A549 cells and the top 60 miRNAs which resulted in an inhibitory effect were then clustered according to their predicted ability to interact with the same mRNAs. Using this approach, these miRNAs could be grouped into six pro-stimulatory (Table 1) and five pro-inhibitory (Table 2) clusters, characterized by common seed regions.
Table 1
Clusters of miRNAs displaying a stimulatory effect on A549 cells in the HTS
Stimulatory miRNAs
#1
#2
#3
#4
#5
#6
hsa-miR-302b (1.221)
hsa-miR-519d (1.307)
hsa-miR-519c-3p (1.305)
hsa-miR-199a-5p (1.214)
hsa-miR-146b-5p (1.261)
hsa-miR-520 h (1.191)
hsa-miR-302c (1.374)
hsa-miR-106a (1.238)
hsa-miR-519a (1.308)
hsa-miR-199b-5p (1.225)
hsa-miR-146a (1.266)
hsa-miR-520 g (1.257)
hsa-miR-302d (1.182)
hsa-miR-106b (1.288)
hsa-miR-519b-3p (1.291)
   
hsa-miR-302a (1.250)
hsa-miR-20a (1.317)
    
hsa-miR-520e (1.219)
hsa-miR-93 (1.384)
    
hsa-miR-520b (1.215)
hsa-miR-20b (1.285)
    
hsa-miR-520c-3p (1.274)
hsa-miR-17 (1.246)
    
hsa-miR-372 (1.242)
     
hsa-miR-520d-3p (1.278)
     
hsa-miR-373 (1.188)
     
Relative growth of A549 cells co-cultured with fibroblasts transfected with the indicated miRNAs is shown in brackets
Table 2
Clusters of miRNAs displaying an inhibitory effect on A549 cells in the HTS
Inhibitory miRNAs
#1
#2
#3
#4
#5
hsa-miR-16 (0.729)
hsa-miR-28-5p (0.730)
hsa-miR-193a-3p (0.797)
hsa-miR-429 (0.689)
hsa-miR-620 (0.795)
hsa-miR-497 (0.783)
hsa-miR-708 (0.681)
hsa-miR-193b (0.743)
hsa-miR-200b (0.754)
hsa-miR-1270 (0.797)
hsa-miR-15b (0.787)
  
hsa-miR-200c (0.797)
 
Relative growth of A549 cells co-cultured with fibroblasts transfected with the indicated miRNAs is shown in brackets

Smoking correlates with reduced levels of miR-16 in lung fibroblasts

In an attempt to identify clinically relevant miRNAs, we focused on cluster #1 (Table 2) of the inhibitory miRNAs, which contains miR-16. In fact, by analyzing the levels of this miRNA in 47 primary cell lines of lung fibroblasts established from fresh tumor biopsies obtained from lung cancer patients (including 21 matched samples from both cancer tissue—cancer-associated fibroblasts (CAFs)—and non-involved lung parenchyma—normal fibroblasts (NFs)—for a total of 26 CAF lines and 21 NF lines), we explored the correlations between miR-16 expression levels and clinical parameters (Table 3). In detail, miR-16 levels in fibroblasts were not statistically associated with sex or age of patients, tissue of origin (cancer vs. normal), histology, and stage or grade of disease, but lower levels of miR-16 were detected in fibroblasts from smoke-exposed lungs compared to fibroblasts from non-exposed lungs [median intensity value 860 (IQ range 310–1437) vs. 1470 (IQ range 733–2120); p = 0.215], and in NF, this difference was statistically significant [324 (223–972) vs. 1589 (1494–2237); p = 0.006]. Interestingly, strongly reduced levels of miR-16 were also detected in fibroblasts from patients with chronic obstructive pulmonary disease (p = 0.048), in particular in NF (p = 0.004).
Table 3
Patients’ characteristics
Subgroup
No. of subjects
miR16 levelsa
All
p value
CAF
p value
NF
p value
Sex
 Male
19
925 [441–2120]
0.746
925 [487–1961]
0.570
1180 [312–2109]
0.855
 Female
7
1330 [966–1641]
 
1314 [1012–2427]
 
1347 [700–1494]
 
Age
 < 70
15
1227 [384–1979]
0.567
1307 [649–2069]
0.750
1120 [252–1774]
0.470
 > 70
11
1105 [528–2120]
 
919 [531–2095]
 
1519 [606–1987]
 
Histology
 Adenocarcinoma
19
1112 [475–1519]
0.488
1105 [733–1466]
0.960
1120 [290–1519]
0.147
 Others
7
2078 [493–2475]
 
1307 [487–2966]
 
2216 [916–2442]
 
Stage
 I–II
9
1105 [528–1520]
0.566
800 [486–1224]
0.520
1433 [762–1537]
0.950
 III–IV
17
1227 [384–2295]
 
1307 [733–2456]
 
1120 [281–2120]
 
Grade
 G2
4
1217 [916–1479]]
0.946
1390 [1261–2230]
0.628
734 [277–1219]
0.490
 G3
16
922 [452–1658]
 
922 [553–2003]
 
1094 [286–1572]
 
Smoking
 Current
12
860 [310–1437]
0.215
1074 [722–2584]
0.980
324 [223–972]
0.006
 Formerb/Never
14
1470 [733–2120]
 
1126 [517–1590]
 
1589 [1494–2237]
 
COPD (GOLD)
 0
15
1553 [826–2467]
0.048
1307 [616–2711]
0.456
2078 [1494–2412]
0.004
 1–2
10
800 [324–1233]
 
860 [508–1331]
 
349 [281–1120]
 
aData are median [IQR] of gTotalGeneSignal (Agilent Array)
bFormer smoker > 12 months
We therefore speculated that inflammation and smoke-related miR-16 reduction found in patients could contribute to generation of a microenvironment conductive to cancer proliferation and aggressiveness, while its restoration in fibroblasts could reduce the growth of cancer cell. Accordingly, transfection of CAF154-hTERT cells with miR-16 resulted in the inhibition of both fibroblast and adjacent A549 cell proliferation (Fig. 1e, upper panel) in our HTS, and the effect on A549 cells co-cultured with transfected fibroblasts was further confirmed in independent experiments (Fig. 1e (lower panel), f). Importantly, also, miR-497 and miR-15b, which target the same seed region of miR-16, were found among the top candidates (cluster #1, Table 2), and the other miRNAs belonging to the same family (miR-195, miR-15a, and miR-424), even if less efficiently, all showed an inhibitory effect on A549 cells (0.902, 0.837, and 0.834 normalized A549 cell number, respectively).

Expression of miR-16 affects CAF secretome and massively decreases HGF levels

To investigate the mechanisms underlying the inhibitory effect of miR-16 on cancer cells, we first considered the possibility that miR-16 could be released from fibroblasts and taken up by A549 cells. However, with experiments on transfected fibroblasts conditioned medium (CM), we estimated a concentration of released miR-16 ranging between 0.1 and 0.05 nM and found that similar amounts of miRNA did not influence A549 cell proliferation (data not shown).
We next investigated therefore whether miR-16 ectopic expression in CAF154-hTERT fibroblasts could affect the secretome profile of the transfected cells, thereby influencing the growth of A549 cells. CAF154-hTERT fibroblasts were transfected with control miRNA (miR-C) or miR-16, and CM analyzed after 72 h by multiplex array to quantify 91 unique soluble factors, belonging to three human protein sets: (i) cytokines, (ii) MMPs and TIMPs, and (iii) angiogenetic factors. We observed marked differences in the CM obtained from fibroblasts transfected with miR-16, finding 26 out of 91 soluble factors with concentrations < 75 or > 125% compared to miR-C transfected fibroblasts (Fig. 2a).
Among the perturbed factors, HGF was the most affected by miR-16 transfection and was almost completely depleted in the CM (Fig. 2a, b). Moreover, HGF expression was reduced also at the cellular level (Fig. 2b, right), suggesting a reduction of its expression rather than an inhibition of its release. Conversely, the levels of its cognate receptor cMet increased, compatibly with a stalled turnover due to reduced paracrine or autocrine stimulation (Fig. 2b, right). Importantly, inhibition of miR-16 resulted in an opposite effect and caused the accumulation of HGF both in the CM (Fig. 2c, left) and intracellularly (Fig. 2c, right). To rule out the possibility that miR-16 regulates HGF levels in a cell-type-specific manner, we transfected a number of patient-derived primary fibroblasts with miR-16 and consistently found a striking reduction of HGF levels in the CM (Fig. 2d), while miR-16 inhibition reproducibly increased HGF levels (Additional file 4: Figure S4). We checked whether miR-16 directly targets the HGF 3′UTR by luciferase assay and found a partial, yet significant, reduction of the luciferase activity when cells were transfected with miR-16 (Fig. 2e). Importantly, when the sequence corresponding to the seed region of miR-16 was mutated in the HGF 3′UTR (Additional file 3: Figure S3), the effect of the miRNA was almost completely abrogated (Fig. 2e), indicating a direct targeting of miR-16 on HGF mRNA.
Finally, we reasoned that the microenvironmental changes related to miR-16 reduction, which we previously observed in lung-derived fibroblasts (Table 3), could also potentially influence systemic levels of HGF. Interestingly, analysis of plasma samples from healthy heavy smokers enrolled in a CT-screening program for early lung cancer detection revealed a strong correlation between smoke exposure or COPD and circulating levels of HGF (p = 0.001 and p = 0.041 respectively, Fig. 2f). No correlation was found with age (data not shown).

MiR-16 expression indirectly decreases FGFR-1 levels and inhibits its signaling pathway further contributing to HGF reduction

Taking into account the strong effect of miR-16 on HGF secretion (Fig. 2a, b) and the only partial reduction of the luciferase activity in the HGF 3′UTR reporter assay (Fig. 2e), we also considered additional inhibitory mechanisms and focused on the FGFR-1 receptor. Stimulation of this receptor by means of its cognate ligand FGF-2 resulted in the accumulation of HGF in the CM (Fig. 3a) while miR-16 transfection strongly reduced the levels of FGFR-1 (Fig. 3b), but not of its cognate ligands FGF-1 and FGF-2 (Additional file 5: Figure S5), and it hindered the activation of the FGFR-1 downstream mediators ERK1/2 (Fig. 3b). Of note, miR-16-induced reduction of FGFR-1 apparently did not stem from a direct effect of this miRNA on FGFR-1 mRNA, as judged by the lack of effect of miR-16 on FGFR-1 3′UTR in a luciferase reporter assay (Fig. 3c). Nonetheless, the transfection of CAF154-hTERT cells with miR-16 or an FGFR-1-specific siRNA both resulted in HGF reduction (Fig. 3d). Moreover, treatment with a specific inhibitor of FGFR-1 caused a time-dependent reduction of HGF in the CM (Fig. 3e).
The stimulation of A549 cells with CM collected from control CAF154-hTERT cells caused a clear and rapid activation of the cMet receptor (Fig. 3b), while CM collected from the same cells transfected with miR-16 and with siRNAs directed against FGFR-1 and HGF failed to trigger the phosphorylation of cMet (Fig. 3b). Importantly, we also observed a direct correlation in patient-derived fibroblasts between HGF and FGFR-1 expression, which was however evident only in HGF high-expressing fibroblasts (HGF > 1, Fig. 3f).
We then asked whether the restoration of FGFR-1 levels was sufficient to prevent the effect of miR-16 on HGF and therefore transduced CAF154-hTERT cells to ectopically express FGFR-1 (Fig. 3g). Despite high levels of FGFR-1, miR-16 still markedly reduced the secretion of HGF (Fig. 3h), suggesting the presence of other miR-16 targets which control HGF expression downstream FGFR-1. Interestingly, miR-16 transfection abrogated ERK1/2 activation also in the presence of FGFR-1 over-expression and this correlated with the downregulation of the MEK1/2 kinases (Fig. 3g), which are responsible for ERK1/2 phosphorylation and could therefore represent additional targets of miR-16.

MEK1 is a direct target of miR-16 and regulates HGF levels in fibroblast CM

To confirm the involvement of MEK1 in the miR-16-dependent regulation of HGF, we transfected CAF154-hTERT cells with this miRNA and found that MEK1 was indeed reduced (Fig. 4a). Moreover, silencing of MEK1 (but not MEK2) prevented HGF accumulation in the CM (Fig. 4b, c and data not shown). By using a luciferase 3′UTR reporter assay, we confirmed that MEK1 is a direct target of miR-16 (Fig. 4d) and it represents a determinant of HGF secretion in the CM (Fig. 4b). Similar to what was observed for FGFR-1, ectopic expression of MEK1 is not sufficient to prevent the miR-16-dependent downregulation of HGF (Fig. 4e, f). Altogether, our data show that miR-16 acts as potent inhibitor of HGF by targeting directly and indirectly several mediators of the FGFR-1 pathway which in turn controls HGF expression.

Fibroblast miR-16 levels regulate motility features of adjacent cancer cells

The stimulation of A549 cells with CM collected from CAF154-hTERT cells had a pleiotropic effect, activating different pathways known to enhance survival and aggressiveness of cancer cells. In fact, in time-course experiments, we observed a rapid activation of cMet, AKT, and ERK1/2 (Figs. 5a and 3b). Therefore, we investigated whether the stimulation with CM could promote proliferation and motility of A549 cancer cells in a miR-16-dependent manner. CM collected from CAF154-hTERT cells transfected with miR-16 displayed a reduced capacity to promote proliferation of A549 cancer cells (Fig. 5b, upper panel) and also induced a small, but significant, difference in proliferation in another cell line previously shown to be responsive to microenvironment cues [30] (LT73, Fig. 5b, bottom panel). Additionally, A549 cells stimulated with the same CM showed reduced migratory capacity in wound-healing experiments (Fig. 5c). Of note, the pro-migratory property of HGF was assessed in our settings also by using CM collected from CAF154-hTERT cells transfected with a siRNA targeting HGF. This caused a marked delay of A549 cell migration compared to controls (Fig. 5d), confirming a central role for HGF in this setting. A panel of CM collected from primary patient-derived fibroblasts was then characterized for the concentration of HGF (Fig. 5e). Conditioned media collected from fibroblasts containing low (green arrows) and high (black arrows) levels of HGF (Fig. 5e) were employed to stimulate A549 cells in wound-healing experiments in the presence or absence of an HGF-neutralizing antibody (Fig. 5f). A549 cells stimulated with CM containing high levels of HGF migrated significantly more rapidly compared to those stimulated with low-HGF CM (Fig. 5f, g), and the HGF-neutralizing antibody partially abrogated this effect (Fig. 5f, g), thus confirming the role of fibroblast-derived HGF in promoting motility of cancer cells. Moreover, the migration speed (expressed as time point at which the gap is reduced to half of the original area, T1/2) was inversely correlated to the concentration of HGF in the CM (Fig. 5h). To verify whether the HGF-dependent pro-migratory effect of fibroblast CM was specific for A549 cells or generally applicable to other cancer cell lines, we repeated these experiments with squamous lung cancer Calu-1 cells. Migration experiments confirmed that cell motility depends on the HGF concentration present in CM (Fig. 5ij).

Over-expression of miR-16 in fibroblasts and inhibition of soluble HGF hinder cancer aggressiveness in vivo

Having shown that fibroblast miR-16 levels slightly affect the proliferation capacity of adjacent cancer cells and can strongly influence their migration, we investigated the relevance of the miR-16/HGF axis in vivo. Two experiments were performed by culturing the A549 cells with the CM collected from CAF154-hTERT fibroblasts transfected with miR-16 and control miR-C (Fig. 6a, b) before mouse engrafting (Fig. 6c) or by directly co-injecting the A549 cells with the transfected fibroblasts in nude mice (Fig. 6d).
In both cases, transfection with miR-16 of CAF154-hTERT fibroblasts delayed the ability of the A549 cancer cells to form nodules. Moreover, inhibition of HGF in CM by means of a neutralizing antibody showed an effect comparable to miR-16 transfection (Fig. 6c). Importantly, mouse lung analysis revealed that HGF inhibition also reduced the capacity of A549 cells to metastasize to lungs (Fig. 6e) in a significant manner while ectopic expression of miR-16 in CAF154-hTERT fibroblasts reduced the metastasizing potential of cancer cells, albeit not significantly (Fig. 6e, f).

Discussion

Tumor microenvironment (TME) is increasingly perceived as a major determinant of cancer progression and aggressiveness [38]. Among the cellular components of the TME, stromal fibroblasts play a crucial role during tumorigenesis [39]. Here, we show that miR-16 levels in lung fibroblasts control HGF production in an FGFR1-dependent manner unraveling a novel mechanism of communication between stromal and neoplastic cells in lung cancer, with potential clinical implications.
Initially, we exploited a high-throughput screening strategy to evaluate the function of 875 unique mature miRNAs in regulating the pro-tumorigenic properties of lung fibroblasts. For the screening, we implemented a robust technical setup based on immortalized patient-derived cancer-associated fibroblasts (CAFs) and a lung cancer cell line previously shown to be responsive to microenvironment signals [30]. The choice of patient-derived CAFs, which are already endowed with intrinsic tumor promoting activity, was based on the hypothesis that this could lead to the identification of miRNAs that could either increase or decrease this potential. Accordingly, the screening identified several miRNAs that could be clustered by their predicted targets to identify potential master regulators of the cross-talk between stromal and cancer cells. Of note, the majority of miRNAs showed a similar effect on the growth of both fibroblasts and A549 cells, but still some displayed opposite effects. The latter observation, on the one hand, supports the idea that the small concentrations of miRNAs released from CAF154-hTERT fibroblasts were not responsible for the inhibitory/stimulatory A549 cell growth effect and, on the other, confirms previous findings demonstrating that the same miRNA can display opposite effects between CAFs and adjacent cancer cells through the modulation of fibroblast-derived soluble factors [40].
Among the identified candidates, we focused on miR-16, one of the prominent negative regulators of the pro-tumorigenic activity of fibroblasts in our assay and previously shown to have direct oncosuppressive properties in tumor cells [15, 16, 41] and to mediate tumor-stroma interactions in prostate cancer [17]. Importantly, the effects observed in our experiments could not be attributed to a direct effect of miR-16 on cancer cells, but rather to a modulation of fibroblast secretome. Several factors produced by CAFs are known to regulate cancer cell behavior through different mechanisms [42]. In particular in lung cancer, it has been suggested that CAF-produced IL-6 regulates chemoresistance [43] and stromal-derived TGFβ and IGF-II have both been shown to induce EMT and regulate stemness properties of cancer cells [30, 44], but little is known about the mechanisms underlying the modification of fibroblast secretome. We identified HGF as one of the most affected factors, strongly depleted in the CM of cells upon miR-16 transfection.
HGF has pleiotropic activities both in normal and in cancer cells, and its role in cancer has been widely documented [45]. The precise mechanism of regulation of its secretion within the lung cancer microenvironment and its relevance in lung cancer aggressiveness are still unknown. We demonstrated a direct targeting of the HGF transcript by miR-16, but this could not fully explain the extent of HGF reduction. In fact, miR-16 upregulation reduced FGFR-1 levels, and this further decreased HGF levels. Conversely, stimulation of FGFR-1 with its ligand FGF-2 resulted in HGF accumulation. Together with FGFR-1, other downstream mediators of its signaling pathway, including MEK1, were also identified as targets of miR-16 (Fig. 7). This suggested profound implications considering the potential paracrine effect of HGF on surrounding cancer cells in the TME.
To test the relevance of HGF production by fibroblasts in modulating cancer cell phenotype, we performed migration assays with different lung cancer cells testing the stimulatory potential of medium collected from several primary cell lines of lung fibroblasts isolated from lung cancer patients. A clear correlation between production of HGF and stimulation of cancer cell migration was observed. Furthermore, transfection with miR-16 abrogated the pro-migratory effect of cells with elevated HGF production strengthening even further the link between miR-16 and HGF in lung fibroblasts and highlighting the potential role of this mechanism in regulating aggressiveness of this deadly disease. This notion was confirmed in vivo where miR-16 expression in fibroblasts reduced their ability to induce cancer cells to form subcutaneous tumors and disseminate to lungs.
In our assays, we used fibroblast lines isolated both from cancerous or normal tissues (CAFs or NFs) and did not observe a different behavior depending on their origin, but rather on the levels of HGF produced. This is in accordance with previous observations reporting that in lung cancer patients, also “normal” fibroblasts can display an activated phenotype and possibly reflecting their origin from an organ heavily exposed to carcinogens in the setting of heavy smokers [12]. Curiously, in this respect, maternal-smoke-associated reduction of miR-16 in the placenta has been described [46]. Even if correlation between smoke exposure and miR-16 levels in clinical samples is at present interesting, future work should address the mechanistic basis of this correlation. Nonetheless, in our case series, we found a correlation between smoke exposure (and COPD) and reduced expression of miR-16 in lung fibroblasts derived from normal tissue raising the intriguing hypothesis that smoke-induced stromal modifications could pave the way for cancer development by stimulating the growth of incipient lesions. The lack of correlation in CAFs could be explained by the fact that when tumor lesions are established, the intense cross-talk between cancer cells and fibroblasts results in higher phenotypic heterogeneity among fibroblasts (and hijacking of different metabolic pathways) which may therefore not reflect anymore the original “smoke-associated” (or inflammatory) signature. An alternative hypothesis relates to the potential origin of CAFs from circulating precursors (rather than from “resident fibroblasts”; [47, 48]). In this scenario, a “smoking” signature in CAFs deriving from circulating precursors would in fact not necessarily be expected. Finally, systemic HGF levels resulted to be elevated by exposure to smoke in individuals at high-risk for lung cancer, therefore strengthening the existence of a novel additional mechanism by which smoking could promote cancer progression. Of note, downregulation of miR-16 levels in the circulation is also a feature of our recently validated circulating miRNA-based signatures with predictive and prognostic value in heavy smokers undergoing spiral CT screening for lung cancer [35, 49].

Conclusions

In conclusion, we show here that miR-16 is a crucial mediator of HGF production by lung fibroblasts through regulation of different downstream targets including FGFR-1 and MEK1. Since production of HGF by lung fibroblasts regulates lung cancer cell aggressiveness, these findings have potential clinical implications. Taken together, our findings could imply the existence of a co-stimulatory loop whereby FGF-2 produced by cancer cells stimulates secretion of HGF by CAFs which in turn promotes migration and aggressiveness of cancer cells.

Acknowledgements

We thank Germana Falcone for providing the plasmid and retroviruses to immortalize patient-derived fibroblasts. The pWZL Neo Myr FLAG FGFR1 plasmid was a kind gift from William Hahn and Jean Zhao.

Funding

This work was supported by AIRC (Associazione Italiana per la Ricerca sul Cancro) Special Program “Innovative Tools for Cancer Risk Assessment and early Diagnosis”, 5X1000 (no. 12162) to L.R., D.D., U.P., and G.S. and IG16847 (to L.R.). Mi.M. was supported by the FIRB RBAP11Z4Z9 project from the Italian Ministry of Education, University and Research.

Availability of data and materials

Gene expression profiles are deposited in the Gene Expression Omnibus (GEO) Repository, GSE97545 accession number.
Experiments were approved by the Independent Ethics Committee of the INT (18/12/2012 – 0016337), and informed consent was obtained from patients included in the study.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Anhänge

Additional files

Literatur
1.
Zurück zum Zitat Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRefPubMed Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRefPubMed
2.
Zurück zum Zitat Imbimbo M, Lo Russo G, Blackhall F. Current status of immunotherapy for non-small-cell lung cancer. Tumori. 2016;102(4):337–51.CrossRefPubMed Imbimbo M, Lo Russo G, Blackhall F. Current status of immunotherapy for non-small-cell lung cancer. Tumori. 2016;102(4):337–51.CrossRefPubMed
3.
Zurück zum Zitat Mayekar MK, Bivona TG. Current landscape of targeted therapy in lung cancer. Clin Pharmacol Ther. 2017;102(5):757–64.CrossRefPubMed Mayekar MK, Bivona TG. Current landscape of targeted therapy in lung cancer. Clin Pharmacol Ther. 2017;102(5):757–64.CrossRefPubMed
4.
Zurück zum Zitat Woodard GA, Jones KD, Jablons DM. Lung cancer staging and prognosis. Cancer Treat Res. 2016;170:47–75.CrossRefPubMed Woodard GA, Jones KD, Jablons DM. Lung cancer staging and prognosis. Cancer Treat Res. 2016;170:47–75.CrossRefPubMed
5.
Zurück zum Zitat Tabassum DP, Polyak K. Tumorigenesis: it takes a village. Nat Rev Cancer. 2015;15(8):473–83.CrossRefPubMed Tabassum DP, Polyak K. Tumorigenesis: it takes a village. Nat Rev Cancer. 2015;15(8):473–83.CrossRefPubMed
6.
Zurück zum Zitat Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer. 2017;17(11):637–58.CrossRefPubMed Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer. 2017;17(11):637–58.CrossRefPubMed
7.
Zurück zum Zitat Swanton C, Govindan R. Clinical implications of genomic discoveries in lung cancer. N Engl J Med. 2016;374(19):1864–73.CrossRefPubMed Swanton C, Govindan R. Clinical implications of genomic discoveries in lung cancer. N Engl J Med. 2016;374(19):1864–73.CrossRefPubMed
8.
Zurück zum Zitat Bertolini G, D’Amico L, Moro M, Landoni E, Perego P, Miceli R, Gatti L, Andriani F, Wong D, Caserini R, Tortoreto M, Milione M, Ferracini R, Mariani L, Pastorino U, Roato I, Sozzi G, Roz L. Microenvironment-modulated metastatic CD133+/CXCR4+/EpCAM- lung cancer-initiating cells sustain tumor dissemination and correlate with poor prognosis. Cancer Res. 2015;75(17):3636–49.CrossRefPubMed Bertolini G, D’Amico L, Moro M, Landoni E, Perego P, Miceli R, Gatti L, Andriani F, Wong D, Caserini R, Tortoreto M, Milione M, Ferracini R, Mariani L, Pastorino U, Roato I, Sozzi G, Roz L. Microenvironment-modulated metastatic CD133+/CXCR4+/EpCAM- lung cancer-initiating cells sustain tumor dissemination and correlate with poor prognosis. Cancer Res. 2015;75(17):3636–49.CrossRefPubMed
9.
Zurück zum Zitat Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501(7467):346–54.CrossRefPubMed Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501(7467):346–54.CrossRefPubMed
10.
Zurück zum Zitat Mueller MM, Fusenig NE. Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004;4(11):839–49.CrossRefPubMed Mueller MM, Fusenig NE. Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004;4(11):839–49.CrossRefPubMed
11.
Zurück zum Zitat Navab R, Strumpf D, Bandarchi B, Zhu CQ, Pintilie M, Ramnarine VR, Ibrahimov E, Radulovich N, Leung L, Barczyk M, Panchal D, To C, Yun JJ, Der S, Shepherd FA, Jurisica I, Tsao MS. Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proc Natl Acad Sci U S A. 2011;108(17):7160–5.CrossRefPubMedPubMedCentral Navab R, Strumpf D, Bandarchi B, Zhu CQ, Pintilie M, Ramnarine VR, Ibrahimov E, Radulovich N, Leung L, Barczyk M, Panchal D, To C, Yun JJ, Der S, Shepherd FA, Jurisica I, Tsao MS. Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proc Natl Acad Sci U S A. 2011;108(17):7160–5.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Gandellini P, Andriani F, Merlino G, D’Aiuto F, Roz L, Callari M. Complexity in the tumour microenvironment: cancer associated fibroblast gene expression patterns identify both common and unique features of tumour-stroma crosstalk across cancer types. Semin Cancer Biol. 2015;35:96–106.CrossRefPubMed Gandellini P, Andriani F, Merlino G, D’Aiuto F, Roz L, Callari M. Complexity in the tumour microenvironment: cancer associated fibroblast gene expression patterns identify both common and unique features of tumour-stroma crosstalk across cancer types. Semin Cancer Biol. 2015;35:96–106.CrossRefPubMed
13.
14.
Zurück zum Zitat Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99(24):15524–9.CrossRefPubMedPubMedCentral Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99(24):15524–9.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102(39):13944–9.CrossRefPubMedPubMedCentral Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102(39):13944–9.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, D’Urso L, Pagliuca A, Biffoni M, Labbaye C, Bartucci M, Muto G, Peschle C, De Maria R. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008;14(11):1271–7.CrossRefPubMed Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, D’Urso L, Pagliuca A, Biffoni M, Labbaye C, Bartucci M, Muto G, Peschle C, De Maria R. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008;14(11):1271–7.CrossRefPubMed
17.
Zurück zum Zitat Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Sacca M, Memeo L, Colarossi C, Francescangeli F, Biffoni M, Collura D, Giacobbe A, D’Urso L, Falchi M, Venneri MA, Muto G, De Maria R, Bonci D. Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene. 2011;30(41):4231–42.CrossRefPubMed Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Sacca M, Memeo L, Colarossi C, Francescangeli F, Biffoni M, Collura D, Giacobbe A, D’Urso L, Falchi M, Venneri MA, Muto G, De Maria R, Bonci D. Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene. 2011;30(41):4231–42.CrossRefPubMed
18.
Zurück zum Zitat Jiang T, Gao G, Fan G, Li M, Zhou C. FGFR1 amplification in lung squamous cell carcinoma: a systematic review with meta-analysis. Lung Cancer. 2015;87(1):1–7.CrossRefPubMed Jiang T, Gao G, Fan G, Li M, Zhou C. FGFR1 amplification in lung squamous cell carcinoma: a systematic review with meta-analysis. Lung Cancer. 2015;87(1):1–7.CrossRefPubMed
19.
Zurück zum Zitat Terai H, Soejima K, Yasuda H, Nakayama S, Hamamoto J, Arai D, Ishioka K, Ohgino K, Ikemura S, Sato T, Yoda S, Satomi R, Naoki K, Betsuyaku T. Activation of the FGF2-FGFR1 autocrine pathway: a novel mechanism of acquired resistance to gefitinib in NSCLC. Mol Cancer Res. 2013;11(7):759–67.CrossRefPubMed Terai H, Soejima K, Yasuda H, Nakayama S, Hamamoto J, Arai D, Ishioka K, Ohgino K, Ikemura S, Sato T, Yoda S, Satomi R, Naoki K, Betsuyaku T. Activation of the FGF2-FGFR1 autocrine pathway: a novel mechanism of acquired resistance to gefitinib in NSCLC. Mol Cancer Res. 2013;11(7):759–67.CrossRefPubMed
20.
Zurück zum Zitat Sharifnia T, Rusu V, Piccioni F, Bagul M, Imielinski M, Cherniack AD, Pedamallu CS, Wong B, Wilson FH, Garraway LA, Altshuler D, Golub TR, Root DE, Subramanian A, Meyerson M. Genetic modifiers of EGFR dependence in non-small cell lung cancer. Proc Natl Acad Sci U S A. 2014;111(52):18661–6.CrossRefPubMedPubMedCentral Sharifnia T, Rusu V, Piccioni F, Bagul M, Imielinski M, Cherniack AD, Pedamallu CS, Wong B, Wilson FH, Garraway LA, Altshuler D, Golub TR, Root DE, Subramanian A, Meyerson M. Genetic modifiers of EGFR dependence in non-small cell lung cancer. Proc Natl Acad Sci U S A. 2014;111(52):18661–6.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Kim SM, Kim H, Yun MR, Kang HN, Pyo KH, Park HJ, Lee JM, Choi HM, Ellinghaus P, Ocker M, Paik S, Kim HR, Cho BC. Activation of the Met kinase confers acquired drug resistance in FGFR-targeted lung cancer therapy. Oncogenesis. 2016;5(7):e241. Kim SM, Kim H, Yun MR, Kang HN, Pyo KH, Park HJ, Lee JM, Choi HM, Ellinghaus P, Ocker M, Paik S, Kim HR, Cho BC. Activation of the Met kinase confers acquired drug resistance in FGFR-targeted lung cancer therapy. Oncogenesis. 2016;5(7):e241.
22.
Zurück zum Zitat Kentsis A, Reed C, Rice KL, Sanda T, Rodig SJ, Tholouli E, Christie A, Valk PJ, Delwel R, Ngo V, Kutok JL, Dahlberg SE, Moreau LA, Byers RJ, Christensen JG, Vande Woude G, Licht JD, Kung AL, Staudt LM, Look AT. Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia. Nat Med. 2012;18(7):1118–22.CrossRefPubMedPubMedCentral Kentsis A, Reed C, Rice KL, Sanda T, Rodig SJ, Tholouli E, Christie A, Valk PJ, Delwel R, Ngo V, Kutok JL, Dahlberg SE, Moreau LA, Byers RJ, Christensen JG, Vande Woude G, Licht JD, Kung AL, Staudt LM, Look AT. Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia. Nat Med. 2012;18(7):1118–22.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Pallangyo CK, Ziegler PK, Greten FR. IKKbeta acts as a tumor suppressor in cancer-associated fibroblasts during intestinal tumorigenesis. J Exp Med. 2015;212(13):2253–66.CrossRefPubMedPubMedCentral Pallangyo CK, Ziegler PK, Greten FR. IKKbeta acts as a tumor suppressor in cancer-associated fibroblasts during intestinal tumorigenesis. J Exp Med. 2015;212(13):2253–66.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Lau EY, Lo J, Cheng BY, Ma MK, Lee JM, Ng JK, Chai S, Lin CH, Tsang SY, Ma S, Ng IO, Lee TK. Cancer-associated fibroblasts regulate tumor-initiating cell plasticity in hepatocellular carcinoma through c-Met/FRA1/HEY1 signaling. Cell Rep. 2016;15(6):1175–89.CrossRefPubMed Lau EY, Lo J, Cheng BY, Ma MK, Lee JM, Ng JK, Chai S, Lin CH, Tsang SY, Ma S, Ng IO, Lee TK. Cancer-associated fibroblasts regulate tumor-initiating cell plasticity in hepatocellular carcinoma through c-Met/FRA1/HEY1 signaling. Cell Rep. 2016;15(6):1175–89.CrossRefPubMed
25.
Zurück zum Zitat Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.CrossRefPubMed Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.CrossRefPubMed
26.
Zurück zum Zitat Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Wargo JA, Golub TR. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487(7408):500–4.CrossRefPubMedPubMedCentral Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Wargo JA, Golub TR. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487(7408):500–4.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Wang W, Li Q, Yamada T, Matsumoto K, Matsumoto I, Oda M, Watanabe G, Kayano Y, Nishioka Y, Sone S, Yano S. Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res. 2009;15(21):6630–8.CrossRefPubMed Wang W, Li Q, Yamada T, Matsumoto K, Matsumoto I, Oda M, Watanabe G, Kayano Y, Nishioka Y, Sone S, Yano S. Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res. 2009;15(21):6630–8.CrossRefPubMed
28.
Zurück zum Zitat Vermeulen L, De Sousa E, Melo F, van der Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, Rodermond H, Sprick MR, Kemper K, Richel DJ, Stassi G, Medema JP. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12(5):468–76.CrossRefPubMed Vermeulen L, De Sousa E, Melo F, van der Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, Rodermond H, Sprick MR, Kemper K, Richel DJ, Stassi G, Medema JP. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12(5):468–76.CrossRefPubMed
29.
Zurück zum Zitat Vigna E, Comoglio PM. Targeting the oncogenic Met receptor by antibodies and gene therapy. Oncogene. 2015;34(15):1883–9.CrossRefPubMed Vigna E, Comoglio PM. Targeting the oncogenic Met receptor by antibodies and gene therapy. Oncogene. 2015;34(15):1883–9.CrossRefPubMed
30.
Zurück zum Zitat Andriani F, Bertolini G, Facchinetti F, Baldoli E, Moro M, Casalini P, Caserini R, Milione M, Leone G, Pelosi G, Pastorino U, Sozzi G, Roz L. Conversion to stem-cell state in response to microenvironmental cues is regulated by balance between epithelial and mesenchymal features in lung cancer cells. Mol Oncol. 2016;10(2):253–71.CrossRefPubMed Andriani F, Bertolini G, Facchinetti F, Baldoli E, Moro M, Casalini P, Caserini R, Milione M, Leone G, Pelosi G, Pastorino U, Sozzi G, Roz L. Conversion to stem-cell state in response to microenvironmental cues is regulated by balance between epithelial and mesenchymal features in lung cancer cells. Mol Oncol. 2016;10(2):253–71.CrossRefPubMed
31.
Zurück zum Zitat Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L, Pratesi G, Fabbri A, Andriani F, Tinelli S, Roz E, Caserini R, Lo Vullo S, Camerini T, Mariani L, Delia D, Calabrò E, Pastorino U, Sozzi G. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci. 2009;106(38):16281–6.CrossRefPubMedPubMedCentral Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L, Pratesi G, Fabbri A, Andriani F, Tinelli S, Roz E, Caserini R, Lo Vullo S, Camerini T, Mariani L, Delia D, Calabrò E, Pastorino U, Sozzi G. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci. 2009;106(38):16281–6.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Nanni S, Benvenuti V, Grasselli A, Priolo C, Aiello A, Mattiussi S, Colussi C, Lirangi V, Illi B, D’Eletto M, Cianciulli AM, Gallucci M, De Carli P, Sentinelli S, Mottolese M, Carlini P, Strigari L, Finn S, Mueller E, Arcangeli G, Gaetano C, Capogrossi MC, Donnorso RP, Bacchetti S, Sacchi A, Pontecorvi A, Loda M, Farsetti A. Endothelial NOS, estrogen receptor beta, and HIFs cooperate in the activation of a prognostic transcriptional pattern in aggressive human prostate cancer. J Clin Invest. 2009;119(5):1093–108.CrossRefPubMedPubMedCentral Nanni S, Benvenuti V, Grasselli A, Priolo C, Aiello A, Mattiussi S, Colussi C, Lirangi V, Illi B, D’Eletto M, Cianciulli AM, Gallucci M, De Carli P, Sentinelli S, Mottolese M, Carlini P, Strigari L, Finn S, Mueller E, Arcangeli G, Gaetano C, Capogrossi MC, Donnorso RP, Bacchetti S, Sacchi A, Pontecorvi A, Loda M, Farsetti A. Endothelial NOS, estrogen receptor beta, and HIFs cooperate in the activation of a prognostic transcriptional pattern in aggressive human prostate cancer. J Clin Invest. 2009;119(5):1093–108.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Conti A, Majorini MT, Elliott R, Ashworth A, Lord CJ, Cancelliere C, Bardelli A, Seneci P, Walczak H, Delia D, Lecis D. Oncogenic KRAS sensitizes premalignant, but not malignant cells, to Noxa-dependent apoptosis through the activation of the MEK/ERK pathway. Oncotarget. 2015;6(13):10994–1008.CrossRefPubMedPubMedCentral Conti A, Majorini MT, Elliott R, Ashworth A, Lord CJ, Cancelliere C, Bardelli A, Seneci P, Walczak H, Delia D, Lecis D. Oncogenic KRAS sensitizes premalignant, but not malignant cells, to Noxa-dependent apoptosis through the activation of the MEK/ERK pathway. Oncotarget. 2015;6(13):10994–1008.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Boehm JS, Zhao JJ, Yao J, Kim SY, Firestein R, Dunn IF, Sjostrom SK, Garraway LA, Weremowicz S, Richardson AL, Greulich H, Stewart CJ, Mulvey LA, Shen RR, Ambrogio L, Hirozane-Kishikawa T, Hill DE, Vidal M, Meyerson M, Grenier JK, Hinkle G, Root DE, Roberts TM, Lander ES, Polyak K, Hahn WC. Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell. 2007;129(6):1065–79.CrossRefPubMed Boehm JS, Zhao JJ, Yao J, Kim SY, Firestein R, Dunn IF, Sjostrom SK, Garraway LA, Weremowicz S, Richardson AL, Greulich H, Stewart CJ, Mulvey LA, Shen RR, Ambrogio L, Hirozane-Kishikawa T, Hill DE, Vidal M, Meyerson M, Grenier JK, Hinkle G, Root DE, Roberts TM, Lander ES, Polyak K, Hahn WC. Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell. 2007;129(6):1065–79.CrossRefPubMed
35.
Zurück zum Zitat Boeri M, Verri C, Conte D, Roz L, Modena P, Facchinetti F, Calabro E, Croce CM, Pastorino U, Sozzi G. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci U S A. 2011;108(9):3713–8.CrossRefPubMedPubMedCentral Boeri M, Verri C, Conte D, Roz L, Modena P, Facchinetti F, Calabro E, Croce CM, Pastorino U, Sozzi G. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci U S A. 2011;108(9):3713–8.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Pastorino U, Rossi M, Rosato V, Marchiano A, Sverzellati N, Morosi C, Fabbri A, Galeone C, Negri E, Sozzi G, Pelosi G, La Vecchia C. Annual or biennial CT screening versus observation in heavy smokers: 5-year results of the MILD trial. Eur J Cancer Prev. 2012;21(3):308–15.CrossRefPubMed Pastorino U, Rossi M, Rosato V, Marchiano A, Sverzellati N, Morosi C, Fabbri A, Galeone C, Negri E, Sozzi G, Pelosi G, La Vecchia C. Annual or biennial CT screening versus observation in heavy smokers: 5-year results of the MILD trial. Eur J Cancer Prev. 2012;21(3):308–15.CrossRefPubMed
37.
Zurück zum Zitat Colombo C, Minna E, Rizzetti MG, Romeo P, Lecis D, Persani L, Mondellini P, Pierotti MA, Greco A, Fugazzola L, Borrello MG. The modifier role of RET-G691S polymorphism in hereditary medullary thyroid carcinoma: functional characterization and expression/penetrance studies. Orphanet J Rare Dis. 2015;10:25.CrossRefPubMedPubMedCentral Colombo C, Minna E, Rizzetti MG, Romeo P, Lecis D, Persani L, Mondellini P, Pierotti MA, Greco A, Fugazzola L, Borrello MG. The modifier role of RET-G691S polymorphism in hereditary medullary thyroid carcinoma: functional characterization and expression/penetrance studies. Orphanet J Rare Dis. 2015;10:25.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle. 2006;5(15):1597–601.CrossRefPubMed Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle. 2006;5(15):1597–601.CrossRefPubMed
40.
Zurück zum Zitat Taddei ML, Cavallini L, Comito G, Giannoni E, Folini M, Marini A, Gandellini P, Morandi A, Pintus G, Raspollini MR, Zaffaroni N, Chiarugi P. Senescent stroma promotes prostate cancer progression: the role of miR-210. Mol Oncol. 2014;8(8):1729–46.CrossRefPubMedPubMedCentral Taddei ML, Cavallini L, Comito G, Giannoni E, Folini M, Marini A, Gandellini P, Morandi A, Pintus G, Raspollini MR, Zaffaroni N, Chiarugi P. Senescent stroma promotes prostate cancer progression: the role of miR-210. Mol Oncol. 2014;8(8):1729–46.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L, Kappeler A, Brunner T, Vassella E. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res. 2009;69(13):5553–9.CrossRefPubMed Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L, Kappeler A, Brunner T, Vassella E. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res. 2009;69(13):5553–9.CrossRefPubMed
43.
Zurück zum Zitat Shintani Y, Fujiwara A, Kimura T, Kawamura T, Funaki S, Minami M, Okumura M. IL-6 secreted from cancer-associated fibroblasts mediates chemoresistance in NSCLC by increasing epithelial-mesenchymal transition signaling. J Thorac Oncol. 2016;11(9):1482–92.CrossRefPubMed Shintani Y, Fujiwara A, Kimura T, Kawamura T, Funaki S, Minami M, Okumura M. IL-6 secreted from cancer-associated fibroblasts mediates chemoresistance in NSCLC by increasing epithelial-mesenchymal transition signaling. J Thorac Oncol. 2016;11(9):1482–92.CrossRefPubMed
44.
Zurück zum Zitat Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA, Ling TY, Yu SL, Yuan SS, Chen YJ, Lin CY, Pan SH, Chou HY, Chen YJ, Chang GC, Chu WC, Lee YM, Lee JY, Lee PJ, Li KC, Chen HW, Yang PC. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014;5:3472.PubMed Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA, Ling TY, Yu SL, Yuan SS, Chen YJ, Lin CY, Pan SH, Chou HY, Chen YJ, Chang GC, Chu WC, Lee YM, Lee JY, Lee PJ, Li KC, Chen HW, Yang PC. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014;5:3472.PubMed
45.
Zurück zum Zitat Zhang YW, Vande Woude GF. HGF/SF-met signaling in the control of branching morphogenesis and invasion. J Cell Biochem. 2003;88(2):408–17.CrossRefPubMed Zhang YW, Vande Woude GF. HGF/SF-met signaling in the control of branching morphogenesis and invasion. J Cell Biochem. 2003;88(2):408–17.CrossRefPubMed
46.
Zurück zum Zitat Maccani MA, Avissar-Whiting M, Banister CE, McGonnigal B, Padbury JF, Marsit CJ. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics. 2010;5(7):583–9.CrossRefPubMedPubMedCentral Maccani MA, Avissar-Whiting M, Banister CE, McGonnigal B, Padbury JF, Marsit CJ. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics. 2010;5(7):583–9.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS, Friedman R, Varro A, Tycko B, Wang TC. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19(2):257–72.CrossRefPubMedPubMedCentral Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS, Friedman R, Varro A, Tycko B, Wang TC. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19(2):257–72.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H, Takeyama H. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers (Basel). 2015;7(4):2443–58.CrossRef Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H, Takeyama H. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers (Basel). 2015;7(4):2443–58.CrossRef
49.
Zurück zum Zitat Sozzi G, Boeri M, Rossi M, Verri C, Suatoni P, Bravi F, Roz L, Conte D, Grassi M, Sverzellati N, Marchiano A, Negri E, La Vecchia C, Pastorino U. Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a correlative MILD trial study. J Clin Oncol. 2014;32(8):768–73.CrossRefPubMedPubMedCentral Sozzi G, Boeri M, Rossi M, Verri C, Suatoni P, Bravi F, Roz L, Conte D, Grassi M, Sverzellati N, Marchiano A, Negri E, La Vecchia C, Pastorino U. Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a correlative MILD trial study. J Clin Oncol. 2014;32(8):768–73.CrossRefPubMedPubMedCentral
Metadaten
Titel
MiR-16 regulates the pro-tumorigenic potential of lung fibroblasts through the inhibition of HGF production in an FGFR-1- and MEK1-dependent manner
verfasst von
Francesca Andriani
Maria Teresa Majorini
Miguel Mano
Elena Landoni
Rosalba Miceli
Federica Facchinetti
Mavis Mensah
Enrico Fontanella
Matteo Dugo
Mauro Giacca
Ugo Pastorino
Gabriella Sozzi
Domenico Delia
Luca Roz
Daniele Lecis
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2018
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-018-0594-4

Weitere Artikel der Ausgabe 1/2018

Journal of Hematology & Oncology 1/2018 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.