Skip to main content
Erschienen in: Archives of Virology 11/2016

27.08.2016 | Original Article

Molecular association of herpes simplex virus type 1 glycoprotein E with membrane protein Us9

verfasst von: Sita Awasthi, Harvey M. Friedman

Erschienen in: Archives of Virology | Ausgabe 11/2016

Einloggen, um Zugang zu erhalten

Abstract

Herpes simplex virus type 1 (HSV-1) glycoprotein E (gE), glycoprotein I (gI), and Us9 promote efficient anterograde axonal transport of virus from the neuron cytoplasm to the axon terminus. HSV-1 and PRV gE and gI form a heterodimer that is required for anterograde transport, but an association that includes Us9 has not been demonstrated. NS-gE380 is an HSV-1 mutant that has five amino acids inserted after gE residue 380, rendering it defective in anterograde axonal transport. We demonstrated that gE, gI and Us9 form a trimolecular complex in Vero cells infected with NS-gE380 virus in which gE binds to both Us9 and gI. We detected the complex using immunoprecipitation with anti-gE or anti-gI monoclonal antibodies in the presence of ionic detergents. Under these conditions, Us9 did not associate with gE in cells infected with wild-type HSV-1; however, using a nonionic detergent, TritonX-100, an association between Us9 and gE was detected in immunoprecipitates of both wild-type and NS-gE380-infected cells. The results suggest that the interaction between Us9 and gE is weak and disrupted by ionic detergents in wild-type infected cells. We postulate that the tight interaction between Us9 and gE leads to the anterograde spread defect in the NS-gE380 virus.
Literatur
1.
Zurück zum Zitat Wang F, Tang W, McGraw HM, Bennett J, Enquist LW et al (2005) Herpes simplex virus type 1 glycoprotein e is required for axonal localization of capsid, tegument, and membrane glycoproteins. J Virol 79:13362–13372CrossRefPubMedPubMedCentral Wang F, Tang W, McGraw HM, Bennett J, Enquist LW et al (2005) Herpes simplex virus type 1 glycoprotein e is required for axonal localization of capsid, tegument, and membrane glycoproteins. J Virol 79:13362–13372CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Polcicova K, Biswas PS, Banerjee K, Wisner TW, Rouse BT et al (2005) Herpes keratitis in the absence of anterograde transport of virus from sensory ganglia to the cornea. Proc Natl Acad Sci USA 102:11462–11467CrossRefPubMedPubMedCentral Polcicova K, Biswas PS, Banerjee K, Wisner TW, Rouse BT et al (2005) Herpes keratitis in the absence of anterograde transport of virus from sensory ganglia to the cornea. Proc Natl Acad Sci USA 102:11462–11467CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat LaVail JH, Tauscher AN, Sucher A, Harrabi O, Brandimarti R (2007) Viral regulation of the long distance axonal transport of herpes simplex virus nucleocapsid. Neuroscience 146:974–985CrossRefPubMedPubMedCentral LaVail JH, Tauscher AN, Sucher A, Harrabi O, Brandimarti R (2007) Viral regulation of the long distance axonal transport of herpes simplex virus nucleocapsid. Neuroscience 146:974–985CrossRefPubMedPubMedCentral
4.
5.
Zurück zum Zitat Brideau AD, Card JP, Enquist LW (2000) Role of pseudorabies virus Us9, a type II membrane protein, in infection of tissue culture cells and the rat nervous system. J Virol 74:834–845CrossRefPubMedPubMedCentral Brideau AD, Card JP, Enquist LW (2000) Role of pseudorabies virus Us9, a type II membrane protein, in infection of tissue culture cells and the rat nervous system. J Virol 74:834–845CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat McGraw HM, Awasthi S, Wojcechowskyj JA, Friedman HM (2009) Anterograde spread of herpes simplex virus Type 1 requires glycoprotein E and glycoprotein I but not Us9. J Virol 83:8315–8326CrossRefPubMedPubMedCentral McGraw HM, Awasthi S, Wojcechowskyj JA, Friedman HM (2009) Anterograde spread of herpes simplex virus Type 1 requires glycoprotein E and glycoprotein I but not Us9. J Virol 83:8315–8326CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Ch’ng TH, Enquist LW (2005) Efficient axonal localization of alphaherpesvirus structural proteins in cultured sympathetic neurons requires viral glycoprotein E. J Virol 79:8835–8846CrossRefPubMedPubMedCentral Ch’ng TH, Enquist LW (2005) Efficient axonal localization of alphaherpesvirus structural proteins in cultured sympathetic neurons requires viral glycoprotein E. J Virol 79:8835–8846CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Card JP, Whealy ME, Robbins AK, Enquist LW (1992) Pseudorabies virus envelope glycoprotein gI influences both neurotropism and virulence during infection of the rat visual system. J Virol 66:3032–3041PubMedPubMedCentral Card JP, Whealy ME, Robbins AK, Enquist LW (1992) Pseudorabies virus envelope glycoprotein gI influences both neurotropism and virulence during infection of the rat visual system. J Virol 66:3032–3041PubMedPubMedCentral
9.
Zurück zum Zitat Butchi NB, Jones C, Perez S, Doster A, Chowdhury SI (2007) Envelope protein Us9 is required for the anterograde transport of bovine herpesvirus type 1 from trigeminal ganglia to nose and eye upon reactivation. J Neurovirol 13:384–388CrossRefPubMed Butchi NB, Jones C, Perez S, Doster A, Chowdhury SI (2007) Envelope protein Us9 is required for the anterograde transport of bovine herpesvirus type 1 from trigeminal ganglia to nose and eye upon reactivation. J Neurovirol 13:384–388CrossRefPubMed
10.
Zurück zum Zitat Chowdhury SI, Onderci M, Bhattacharjee PS, Al-Mubarak A, Weiss ML et al (2002) Bovine herpesvirus 5 (BHV-5) Us9 is essential for BHV-5 neuropathogenesis. J Virol 76:3839–3851CrossRefPubMedPubMedCentral Chowdhury SI, Onderci M, Bhattacharjee PS, Al-Mubarak A, Weiss ML et al (2002) Bovine herpesvirus 5 (BHV-5) Us9 is essential for BHV-5 neuropathogenesis. J Virol 76:3839–3851CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Snyder A, Polcicova K, Johnson DC (2008) Herpes simplex virus gE/gI and US9 proteins promote transport of both capsids and virion glycoproteins in neuronal axons. J Virol 82:10613–10624CrossRefPubMedPubMedCentral Snyder A, Polcicova K, Johnson DC (2008) Herpes simplex virus gE/gI and US9 proteins promote transport of both capsids and virion glycoproteins in neuronal axons. J Virol 82:10613–10624CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Lyman MG, Curanovic D, Enquist LW (2008) Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts. PLoS Pathogens 4:e1000065CrossRefPubMedPubMedCentral Lyman MG, Curanovic D, Enquist LW (2008) Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts. PLoS Pathogens 4:e1000065CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Taylor MP, Kramer T, Lyman MG, Kratchmarov R, Enquist LW (2012) Visualization of an alphaherpesvirus membrane protein that is essential for anterograde axonal spread of infection in neurons. mBio 3:e00063–e00112CrossRefPubMedPubMedCentral Taylor MP, Kramer T, Lyman MG, Kratchmarov R, Enquist LW (2012) Visualization of an alphaherpesvirus membrane protein that is essential for anterograde axonal spread of infection in neurons. mBio 3:e00063–e00112CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat McGeoch DJ, Dolan A, Donald S, Rixon FJ (1985) Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. J Mol Biol 181:1–13CrossRefPubMed McGeoch DJ, Dolan A, Donald S, Rixon FJ (1985) Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. J Mol Biol 181:1–13CrossRefPubMed
15.
Zurück zum Zitat Lyman MG, Feierbach B, Curanovic D, Bisher M, Enquist LW (2007) Pseudorabies virus Us9 directs axonal sorting of viral capsids. J Virol 81:11363–11371CrossRefPubMedPubMedCentral Lyman MG, Feierbach B, Curanovic D, Bisher M, Enquist LW (2007) Pseudorabies virus Us9 directs axonal sorting of viral capsids. J Virol 81:11363–11371CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Enquist LW, Tomishima MJ, Gross S, Smith GA (2002) Directional spread of an alpha-herpesvirus in the nervous system. Vet Microbiol 86:5–16CrossRefPubMed Enquist LW, Tomishima MJ, Gross S, Smith GA (2002) Directional spread of an alpha-herpesvirus in the nervous system. Vet Microbiol 86:5–16CrossRefPubMed
18.
Zurück zum Zitat Whealy ME, Card JP, Robbins AK, Dubin JR, Rziha HJ et al (1993) Specific pseudorabies virus infection of the rat visual system requires both gI and gp63 glycoproteins. J Virol 67:3786–3797PubMedPubMedCentral Whealy ME, Card JP, Robbins AK, Dubin JR, Rziha HJ et al (1993) Specific pseudorabies virus infection of the rat visual system requires both gI and gp63 glycoproteins. J Virol 67:3786–3797PubMedPubMedCentral
19.
Zurück zum Zitat Rizvi SM, Raghavan M (2001) An N-terminal domain of herpes simplex virus type Ig E is capable of forming stable complexes with gI. J Virol 75:11897–11901CrossRefPubMedPubMedCentral Rizvi SM, Raghavan M (2001) An N-terminal domain of herpes simplex virus type Ig E is capable of forming stable complexes with gI. J Virol 75:11897–11901CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Tyborowska J, Bieńkowska-Szewczyk K, Rychłowski M, Van Oirschot JT, Rijsewijk FAM (2000) The extracellular part of glycoprotein E of bovine herpesvirus 1 is sufficient for complex formation with glycoprotein I but not for cell-to-cell spread. Arch Virol 145:333–351CrossRefPubMed Tyborowska J, Bieńkowska-Szewczyk K, Rychłowski M, Van Oirschot JT, Rijsewijk FAM (2000) The extracellular part of glycoprotein E of bovine herpesvirus 1 is sufficient for complex formation with glycoprotein I but not for cell-to-cell spread. Arch Virol 145:333–351CrossRefPubMed
21.
Zurück zum Zitat Johnson DC, Feenstra V (1987) Identification of a novel herpes simplex virus type 1-induced glycoprotein which complexes with gE and binds immunoglobulin. J Virol 61:2208–2216PubMedPubMedCentral Johnson DC, Feenstra V (1987) Identification of a novel herpes simplex virus type 1-induced glycoprotein which complexes with gE and binds immunoglobulin. J Virol 61:2208–2216PubMedPubMedCentral
22.
Zurück zum Zitat Brideau AD, Banfield BW, Enquist LW (1998) The Us9 gene product of pseudorabies virus, an alphaherpesvirus, is a phosphorylated, tail-anchored type II membrane protein. J Virol 72:4560–4570PubMedPubMedCentral Brideau AD, Banfield BW, Enquist LW (1998) The Us9 gene product of pseudorabies virus, an alphaherpesvirus, is a phosphorylated, tail-anchored type II membrane protein. J Virol 72:4560–4570PubMedPubMedCentral
23.
Zurück zum Zitat Kato A, Yamamoto M, Ohno T, Kodaira H, Nishiyama Y et al (2005) Identification of proteins phosphorylated directly by the Us3 protein kinase encoded by herpes simplex virus 1. J Virol 79:9325–9331CrossRefPubMedPubMedCentral Kato A, Yamamoto M, Ohno T, Kodaira H, Nishiyama Y et al (2005) Identification of proteins phosphorylated directly by the Us3 protein kinase encoded by herpes simplex virus 1. J Virol 79:9325–9331CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Brandimarti R, Roizman B (1997) Us9, a stable lysine-less herpes simplex virus 1 protein, is ubiquitinated before packaging into virions and associates with proteasomes. Proc Natl Acad Sci USA 94:13973–13978CrossRefPubMedPubMedCentral Brandimarti R, Roizman B (1997) Us9, a stable lysine-less herpes simplex virus 1 protein, is ubiquitinated before packaging into virions and associates with proteasomes. Proc Natl Acad Sci USA 94:13973–13978CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Basu S, Dubin G, Nagashunmugam T, Basu M, Goldstein LT et al (1997) Mapping regions of herpes simplex virus type 1 glycoprotein I required for formation of the viral Fc receptor for monomeric IgG. J Immunol 158:209–215PubMed Basu S, Dubin G, Nagashunmugam T, Basu M, Goldstein LT et al (1997) Mapping regions of herpes simplex virus type 1 glycoprotein I required for formation of the viral Fc receptor for monomeric IgG. J Immunol 158:209–215PubMed
26.
Zurück zum Zitat Dingwell KS, Brunetti CR, Hendricks RL, Tang Q, Tang M et al (1994) Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells. J Virol 68:834–845PubMedPubMedCentral Dingwell KS, Brunetti CR, Hendricks RL, Tang Q, Tang M et al (1994) Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells. J Virol 68:834–845PubMedPubMedCentral
27.
Zurück zum Zitat Zsak L, Zuckermann F, Sugg N, Ben-Porat T (1992) Glycoprotein gI of pseudorabies virus promotes cell fusion and virus spread via direct cell-to-cell transmission. J Virol 66:2316–2325PubMedPubMedCentral Zsak L, Zuckermann F, Sugg N, Ben-Porat T (1992) Glycoprotein gI of pseudorabies virus promotes cell fusion and virus spread via direct cell-to-cell transmission. J Virol 66:2316–2325PubMedPubMedCentral
28.
Zurück zum Zitat Whitbeck JC, Knapp AC, Enquist LW, Lawrence WC, Bello LJ (1996) Synthesis, processing, and oligomerization of bovine herpesvirus 1 gE and gI membrane proteins. J Virol 70:7878–7884PubMedPubMedCentral Whitbeck JC, Knapp AC, Enquist LW, Lawrence WC, Bello LJ (1996) Synthesis, processing, and oligomerization of bovine herpesvirus 1 gE and gI membrane proteins. J Virol 70:7878–7884PubMedPubMedCentral
29.
Zurück zum Zitat Al-Mubarak A, Chowdhury SI (2004) In the absence of glycoprotein I (gI), gE determines bovine herpesvirus type 5 neuroinvasiveness and neurovirulence. J Neurovirol 10:233–243CrossRefPubMed Al-Mubarak A, Chowdhury SI (2004) In the absence of glycoprotein I (gI), gE determines bovine herpesvirus type 5 neuroinvasiveness and neurovirulence. J Neurovirol 10:233–243CrossRefPubMed
30.
Zurück zum Zitat Chowdhury SI, Lee BJ, Ozkul A, Weiss ML (2000) Bovine herpesvirus 5 glycoprotein E is important for neuroinvasiveness and neurovirulence in the olfactory pathway of the rabbit. J Virol 74:2094–2106CrossRefPubMedPubMedCentral Chowdhury SI, Lee BJ, Ozkul A, Weiss ML (2000) Bovine herpesvirus 5 glycoprotein E is important for neuroinvasiveness and neurovirulence in the olfactory pathway of the rabbit. J Virol 74:2094–2106CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Tsujimura K, Yamanaka T, Kondo T, Fukushi H, Matsumura T (2006) Pathogenicity and immunogenicity of equine herpesvirus type 1 mutants defective in either gI or gE gene in murine and hamster models. J Vet Med Sci 68:1029–1038CrossRefPubMed Tsujimura K, Yamanaka T, Kondo T, Fukushi H, Matsumura T (2006) Pathogenicity and immunogenicity of equine herpesvirus type 1 mutants defective in either gI or gE gene in murine and hamster models. J Vet Med Sci 68:1029–1038CrossRefPubMed
32.
Zurück zum Zitat Mijnes JD, Lutters BC, Vlot AC, van Anken E, Horzinek MC et al (1997) Structure-function analysis of the gE-gI complex of feline herpesvirus: mapping of gI domains required for gE-gI interaction, intracellular transport, and cell-to-cell spread. J Virol 71:8397–8404PubMedPubMedCentral Mijnes JD, Lutters BC, Vlot AC, van Anken E, Horzinek MC et al (1997) Structure-function analysis of the gE-gI complex of feline herpesvirus: mapping of gI domains required for gE-gI interaction, intracellular transport, and cell-to-cell spread. J Virol 71:8397–8404PubMedPubMedCentral
33.
Zurück zum Zitat Nishikawa Y, Xuan X, Otsuka H (1998) Identification and characterization of the glycoprotein E and I genes of canine herpesvirus. Virus Res 56:77–92CrossRefPubMed Nishikawa Y, Xuan X, Otsuka H (1998) Identification and characterization of the glycoprotein E and I genes of canine herpesvirus. Virus Res 56:77–92CrossRefPubMed
34.
Zurück zum Zitat Balan P, Davis-Poynter N, Bell S, Atkinson H, Browne H et al (1994) An analysis of the in vitro and in vivo phenotypes of mutants of herpes simplex virus type 1 lacking glycoproteins gG, gE, gI or the putative gJ. J Gen Virol 75:1245–1258CrossRefPubMed Balan P, Davis-Poynter N, Bell S, Atkinson H, Browne H et al (1994) An analysis of the in vitro and in vivo phenotypes of mutants of herpes simplex virus type 1 lacking glycoproteins gG, gE, gI or the putative gJ. J Gen Virol 75:1245–1258CrossRefPubMed
35.
Zurück zum Zitat Han J, Chadha P, Starkey JL, Wills JW (2012) Function of glycoprotein E of herpes simplex virus requires coordinated assembly of three tegument proteins on its cytoplasmic tail. Proc Natl Acad Sci USA 109:19798–19803CrossRefPubMedPubMedCentral Han J, Chadha P, Starkey JL, Wills JW (2012) Function of glycoprotein E of herpes simplex virus requires coordinated assembly of three tegument proteins on its cytoplasmic tail. Proc Natl Acad Sci USA 109:19798–19803CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Weeks BS, Sundaresan P, Nagashunmugam T, Kang E, Friedman HM (1997) The herpes simplex virus-1 glycoprotein E (gE) mediates IgG binding and cell-to-cell spread through distinct gE domains. Biochem Biophys Res Commun 235:31–35CrossRefPubMed Weeks BS, Sundaresan P, Nagashunmugam T, Kang E, Friedman HM (1997) The herpes simplex virus-1 glycoprotein E (gE) mediates IgG binding and cell-to-cell spread through distinct gE domains. Biochem Biophys Res Commun 235:31–35CrossRefPubMed
37.
Zurück zum Zitat Dubin G, Basu S, Mallory DL, Basu M, Tal-Singer R et al (1994) Characterization of domains of herpes simplex virus type 1 glycoprotein E involved in Fc binding activity for immunoglobulin G aggregates. J Virol 68:2478–2485PubMedPubMedCentral Dubin G, Basu S, Mallory DL, Basu M, Tal-Singer R et al (1994) Characterization of domains of herpes simplex virus type 1 glycoprotein E involved in Fc binding activity for immunoglobulin G aggregates. J Virol 68:2478–2485PubMedPubMedCentral
38.
Zurück zum Zitat Polcicova K, Goldsmith K, Rainish BL, Wisner TW, Johnson DC (2005) The extracellular domain of herpes simplex virus gE is indispensable for efficient cell-to-cell spread: evidence for gE/gI receptors. J Virol 79:11990–12001CrossRefPubMedPubMedCentral Polcicova K, Goldsmith K, Rainish BL, Wisner TW, Johnson DC (2005) The extracellular domain of herpes simplex virus gE is indispensable for efficient cell-to-cell spread: evidence for gE/gI receptors. J Virol 79:11990–12001CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Brideau AD, Eldridge MG, Enquist LW (2000) Directional transneuronal infection by pseudorabies virus is dependent on an acidic internalization motif in the Us9 cytoplasmic tail. J Virol 74:4549–4561CrossRefPubMedPubMedCentral Brideau AD, Eldridge MG, Enquist LW (2000) Directional transneuronal infection by pseudorabies virus is dependent on an acidic internalization motif in the Us9 cytoplasmic tail. J Virol 74:4549–4561CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Daniel GR, Sollars PJ, Pickard GE, Smith GA (2015) Pseudorabies virus fast axonal transport occurs by a pUS9-independent mechanism. J Virol 89:8088–8091CrossRefPubMedPubMedCentral Daniel GR, Sollars PJ, Pickard GE, Smith GA (2015) Pseudorabies virus fast axonal transport occurs by a pUS9-independent mechanism. J Virol 89:8088–8091CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Lin X, Lubinski JM, Friedman HM (2004) Immunization strategies to block the herpes simplex virus type 1 immunoglobulin G Fc receptor. J Virol 78:2562–2571CrossRefPubMedPubMedCentral Lin X, Lubinski JM, Friedman HM (2004) Immunization strategies to block the herpes simplex virus type 1 immunoglobulin G Fc receptor. J Virol 78:2562–2571CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Friedman HM, Macarak EJ, MacGregor RR, Wolfe J, Kefalides NA (1981) Virus infection of endothelial cells. J Infect Dis 143:266–273CrossRefPubMed Friedman HM, Macarak EJ, MacGregor RR, Wolfe J, Kefalides NA (1981) Virus infection of endothelial cells. J Infect Dis 143:266–273CrossRefPubMed
44.
Zurück zum Zitat Nagashunmugam T, Lubinski J, Wang L, Goldstein LT, Weeks BS et al (1998) In vivo immune evasion mediated by the herpes simplex virus type 1 immunoglobulin G Fc receptor. J Virol 72:5351–5359PubMedPubMedCentral Nagashunmugam T, Lubinski J, Wang L, Goldstein LT, Weeks BS et al (1998) In vivo immune evasion mediated by the herpes simplex virus type 1 immunoglobulin G Fc receptor. J Virol 72:5351–5359PubMedPubMedCentral
46.
Zurück zum Zitat Greenfield JP, Tsai J, Gouras GK, Hai B, Thinakaran G et al (1999) Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer β-amyloid peptides. Proc Natl Acad Sci USA 96:742–747CrossRefPubMedPubMedCentral Greenfield JP, Tsai J, Gouras GK, Hai B, Thinakaran G et al (1999) Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer β-amyloid peptides. Proc Natl Acad Sci USA 96:742–747CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Kramer T, Greco TM, Taylor MP, Ambrosini AE, Cristea IM et al (2012) Kinesin-3 mediates axonal sorting and directional transport of alphaherpesvirus particles in neurons. Cell Host Microbe 12:806–814CrossRefPubMedPubMedCentral Kramer T, Greco TM, Taylor MP, Ambrosini AE, Cristea IM et al (2012) Kinesin-3 mediates axonal sorting and directional transport of alphaherpesvirus particles in neurons. Cell Host Microbe 12:806–814CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Kratchmarov R, Kramer T, Greco TM, Taylor MP, Ch’ng TH et al (2013) Glycoproteins gE and gI are required for efficient KIF1A-dependent anterograde axonal transport of alphaherpesvirus particles in neurons. J Virol 87:9431–9440CrossRefPubMedPubMedCentral Kratchmarov R, Kramer T, Greco TM, Taylor MP, Ch’ng TH et al (2013) Glycoproteins gE and gI are required for efficient KIF1A-dependent anterograde axonal transport of alphaherpesvirus particles in neurons. J Virol 87:9431–9440CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Diefenbach RJ, Davis A, Miranda-Saksena M, Fernandez MA, Kelly BJ et al (2016) The basic domain of herpes simplex virus 1 pUS9 recruits kinesin-1 to facilitate egress from neurons. J Virol 90:2102–2111CrossRefPubMedCentral Diefenbach RJ, Davis A, Miranda-Saksena M, Fernandez MA, Kelly BJ et al (2016) The basic domain of herpes simplex virus 1 pUS9 recruits kinesin-1 to facilitate egress from neurons. J Virol 90:2102–2111CrossRefPubMedCentral
50.
Zurück zum Zitat Arnold T, Linke D (2007) Phase separation in the isolation and purification of membrane proteins. Biotechniques 43:427–430, 432, 434 passim Arnold T, Linke D (2007) Phase separation in the isolation and purification of membrane proteins. Biotechniques 43:427–430, 432, 434 passim
51.
Zurück zum Zitat O’Connor JP, Alwine JC, Lutz CS (1997) Identification of a novel, non-snRNP protein complex containing U1A protein. RNA 3:1444–1455PubMedPubMedCentral O’Connor JP, Alwine JC, Lutz CS (1997) Identification of a novel, non-snRNP protein complex containing U1A protein. RNA 3:1444–1455PubMedPubMedCentral
52.
Zurück zum Zitat Chamberlain LH (2004) Detergents as tools for the purification and classification of lipid rafts. FEBS Lett 559:1–5CrossRefPubMed Chamberlain LH (2004) Detergents as tools for the purification and classification of lipid rafts. FEBS Lett 559:1–5CrossRefPubMed
53.
Zurück zum Zitat Lichtenberg D, Ahyayauch H, Alonso A, Goñi FM (2013) Detergent solubilization of lipid bilayers: a balance of driving forces. Trends Biochem Sci 38:85–93CrossRefPubMed Lichtenberg D, Ahyayauch H, Alonso A, Goñi FM (2013) Detergent solubilization of lipid bilayers: a balance of driving forces. Trends Biochem Sci 38:85–93CrossRefPubMed
54.
Zurück zum Zitat Dailey HA, Strittmatter P (1978) Structural and functional properties of the membrane binding segment of cytochrome b5. J Biol Chem 253:8203–8209PubMed Dailey HA, Strittmatter P (1978) Structural and functional properties of the membrane binding segment of cytochrome b5. J Biol Chem 253:8203–8209PubMed
55.
Zurück zum Zitat Brideau AD, del Rio T, Wolffe EJ, Enquist LW (1999) Intracellular trafficking and localization of the pseudorabies virus Us9 type II envelope protein to host and viral membranes. J Virol 73:4372–4384PubMedPubMedCentral Brideau AD, del Rio T, Wolffe EJ, Enquist LW (1999) Intracellular trafficking and localization of the pseudorabies virus Us9 type II envelope protein to host and viral membranes. J Virol 73:4372–4384PubMedPubMedCentral
57.
Zurück zum Zitat Sanchez-San Martin C, Liu CY, Kielian M (2009) Dealing with low pH: entry and exit of alphaviruses and flaviviruses. Trends Microbiol 17:514–521CrossRefPubMed Sanchez-San Martin C, Liu CY, Kielian M (2009) Dealing with low pH: entry and exit of alphaviruses and flaviviruses. Trends Microbiol 17:514–521CrossRefPubMed
58.
Zurück zum Zitat Farnsworth A, Johnson DC (2006) Herpes simplex virus gE/gI must accumulate in the trans-Golgi network at early times and then redistribute to cell junctions to promote cell-cell spread. J Virol 80:3167–3179CrossRefPubMedPubMedCentral Farnsworth A, Johnson DC (2006) Herpes simplex virus gE/gI must accumulate in the trans-Golgi network at early times and then redistribute to cell junctions to promote cell-cell spread. J Virol 80:3167–3179CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Lyman MG, Kemp CD, Taylor MP, Enquist LW (2009) Comparison of the pseudorabies virus Us9 protein with homologs from other veterinary and human alphaherpesviruses. J Virol 83:6978–6986CrossRefPubMedPubMedCentral Lyman MG, Kemp CD, Taylor MP, Enquist LW (2009) Comparison of the pseudorabies virus Us9 protein with homologs from other veterinary and human alphaherpesviruses. J Virol 83:6978–6986CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Huang X, Miller W (1991) A time-efficient, linear-space local similarity algorithm. Adv Appl Math 12:337–357CrossRef Huang X, Miller W (1991) A time-efficient, linear-space local similarity algorithm. Adv Appl Math 12:337–357CrossRef
Metadaten
Titel
Molecular association of herpes simplex virus type 1 glycoprotein E with membrane protein Us9
verfasst von
Sita Awasthi
Harvey M. Friedman
Publikationsdatum
27.08.2016
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 11/2016
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-016-3028-z

Weitere Artikel der Ausgabe 11/2016

Archives of Virology 11/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.