Skip to main content
Erschienen in: Current Cardiovascular Imaging Reports 1/2013

01.02.2013 | Molecular Imaging (ZA Fayad, Section Editor)

Molecular MRI of Atherosclerosis with USPIO

verfasst von: Monica Sigovan, Emmanuelle Canet-Soulas

Erschienen in: Current Cardiovascular Imaging Reports | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

Inflammation in atherosclerosis is a risk factor for plaque rupture and atherothrombosis. USPIO-enhanced MRI is capable of evaluating the inflammatory activity in vivo on a cellular as well as a sub-cellular level. This paper reviews the recent advances in USPIO-enhanced MRI of atherosclerotic plaque inflammation. Imaging strategies for evidentiating the presence of the USPIO label in plaques take advantage of the susceptibility effect induced by the nanoparticles in their surroundings to obtain a negative contrast (T2* weighted imaging) or a positive contrast (the White Maker and Susceptibility Gradient Mapping). Quantitative methods have more recently been adapted to in vivo imaging of USPIO in atherosclerotic plaques, and showed great promise in detecting treatment responses. When they are not taken up rapidly from blood by the reticulo-endothelial system (RES), USPIOs nanoparticles passively target inflammation in atherosclerosis by engulfment in intra-plaque phagocytic cells. This has been demonstrated in both animal models and human patients. However, by modifying the surface of coating materials, nanoparticles can actively target atherosclerosis molecular and cellular actors in animal models. The goal of molecular imaging of atherosclerotic plaques is to identify events in the early onset of the disease, as well as critical evolution to vulnerable plaques. USPIO agents are preferred as basis to develop targeted agents because of the ability to overcome the toxicity issue of long-term body residence of Gd-based agents, and their lower sensitivity based on their relaxivity properties. MRI agents capable of efficiently targeting oxidized LDL, cell adhesion molecules (VCAM-1, P-selectin, E-selection), apoptosis and activated platelets have been demonstrated in animal models. The use of these methodologies at the clinical level will depend on the availability and toxicity profiles of the agents, and will require standardized state of the art imaging techniques.
Literatur
1.
Zurück zum Zitat Sanz J, Fayad ZA. Imaging of atherosclerotic cardiovascular disease. Nature. 2008;451:953–7.PubMedCrossRef Sanz J, Fayad ZA. Imaging of atherosclerotic cardiovascular disease. Nature. 2008;451:953–7.PubMedCrossRef
2.
Zurück zum Zitat Briley-Saebo KC, Shaw PX, Mulder WJ, et al. Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation. 2008;117:3206–15.PubMedCrossRef Briley-Saebo KC, Shaw PX, Mulder WJ, et al. Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation. 2008;117:3206–15.PubMedCrossRef
3.
4.
Zurück zum Zitat Yoshida K, Narumi O, Chin M, et al. Characterization of carotid atherosclerosis and detection of soft plaque with use of black-blood MR imaging. AJNR Am J Neuroradiol. 2008;29:868–74.PubMedCrossRef Yoshida K, Narumi O, Chin M, et al. Characterization of carotid atherosclerosis and detection of soft plaque with use of black-blood MR imaging. AJNR Am J Neuroradiol. 2008;29:868–74.PubMedCrossRef
5.
Zurück zum Zitat Cappendijk VC, Cleutjens KB, Kessels AG, et al. Assessment of human atherosclerotic carotid plaque components with multisequence MR imaging: initial experience. Radiology. 2005;234:487–92.PubMedCrossRef Cappendijk VC, Cleutjens KB, Kessels AG, et al. Assessment of human atherosclerotic carotid plaque components with multisequence MR imaging: initial experience. Radiology. 2005;234:487–92.PubMedCrossRef
6.
Zurück zum Zitat Hofman JM, Branderhorst WJ, ten Eikelder HM, et al. Quantification of atherosclerotic plaque components using in vivo MRI and supervised classifiers. Magn Reson Med. 2006;55:790–9.PubMedCrossRef Hofman JM, Branderhorst WJ, ten Eikelder HM, et al. Quantification of atherosclerotic plaque components using in vivo MRI and supervised classifiers. Magn Reson Med. 2006;55:790–9.PubMedCrossRef
7.
Zurück zum Zitat Yuan C, Mitsumori LM, Ferguson MS, et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation. 2001;104:2051–6.PubMedCrossRef Yuan C, Mitsumori LM, Ferguson MS, et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation. 2001;104:2051–6.PubMedCrossRef
8.
Zurück zum Zitat Serfaty JM, Chaabane L, Tabib A, et al. Atherosclerotic plaques: classification and characterization with T2-weighted high-spatial-resolution MR imaging—an in vitro study. Radiology. 2001;219:403–10.PubMed Serfaty JM, Chaabane L, Tabib A, et al. Atherosclerotic plaques: classification and characterization with T2-weighted high-spatial-resolution MR imaging—an in vitro study. Radiology. 2001;219:403–10.PubMed
9.
Zurück zum Zitat Morrisett J, Vick W, Sharma R, et al. Discrimination of components in atherosclerotic plaques from human carotid endarterectomy specimens by magnetic resonance imaging ex vivo. Magn Reson Imaging. 2003;21:465–74.PubMedCrossRef Morrisett J, Vick W, Sharma R, et al. Discrimination of components in atherosclerotic plaques from human carotid endarterectomy specimens by magnetic resonance imaging ex vivo. Magn Reson Imaging. 2003;21:465–74.PubMedCrossRef
10.
Zurück zum Zitat Ronen RR, Clarke SE, Hammond RR, Rutt BK. Resolution and SNR effects on carotid plaque classification. Magn Reson Med. 2006;56:290–5.PubMedCrossRef Ronen RR, Clarke SE, Hammond RR, Rutt BK. Resolution and SNR effects on carotid plaque classification. Magn Reson Med. 2006;56:290–5.PubMedCrossRef
11.
Zurück zum Zitat Ronen RR, Clarke SE, Hammond RR, Rutt BK. Carotid plaque classification: defining the certainty with which plaque components can be differentiated. Magn Reson Med. 2007;57:874–80.PubMedCrossRef Ronen RR, Clarke SE, Hammond RR, Rutt BK. Carotid plaque classification: defining the certainty with which plaque components can be differentiated. Magn Reson Med. 2007;57:874–80.PubMedCrossRef
12.
Zurück zum Zitat Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 2003;108:1664–72.PubMedCrossRef Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 2003;108:1664–72.PubMedCrossRef
13.
Zurück zum Zitat Corot C, Petry KG, Trivedi R, et al. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest Radiol. 2004;39:619–25.PubMedCrossRef Corot C, Petry KG, Trivedi R, et al. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest Radiol. 2004;39:619–25.PubMedCrossRef
14.
Zurück zum Zitat Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11:2319–31.PubMedCrossRef Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11:2319–31.PubMedCrossRef
15.
Zurück zum Zitat Bjornerud A, Johansson L. The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system. NMR Biomed. 2004;17:465–77.PubMedCrossRef Bjornerud A, Johansson L. The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system. NMR Biomed. 2004;17:465–77.PubMedCrossRef
16.
Zurück zum Zitat Ferrucci JT, Stark DD. Iron oxide-enhanced MR imaging of the liver and spleen: review of the first 5 years. AJR Am J Roentgenol. 1990;155:943–50.PubMed Ferrucci JT, Stark DD. Iron oxide-enhanced MR imaging of the liver and spleen: review of the first 5 years. AJR Am J Roentgenol. 1990;155:943–50.PubMed
17.
Zurück zum Zitat Shen T, Weissleder R, Papisov M, et al. Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med. 1993;29:599–604.PubMedCrossRef Shen T, Weissleder R, Papisov M, et al. Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med. 1993;29:599–604.PubMedCrossRef
18.
Zurück zum Zitat Bulte JW, Brooks RA, Moskowitz BM, et al. Relaxometry and magnetometry of the MR contrast agent MION-46 L. Magn Reson Med. 1999;42:379–84.PubMedCrossRef Bulte JW, Brooks RA, Moskowitz BM, et al. Relaxometry and magnetometry of the MR contrast agent MION-46 L. Magn Reson Med. 1999;42:379–84.PubMedCrossRef
19.
Zurück zum Zitat Weissleder R, Elizondo G, Wittenberg J, et al. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology. 1990;175:494–8.PubMed Weissleder R, Elizondo G, Wittenberg J, et al. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology. 1990;175:494–8.PubMed
20.
Zurück zum Zitat Saokar A, Gee MS, Islam T, et al. Appearance of primary lymphoid malignancies on lymphotropic nanoparticle-enhanced magnetic resonance imaging using ferumoxtran-10. Clin Imaging. 2010;34:448–52.PubMedCrossRef Saokar A, Gee MS, Islam T, et al. Appearance of primary lymphoid malignancies on lymphotropic nanoparticle-enhanced magnetic resonance imaging using ferumoxtran-10. Clin Imaging. 2010;34:448–52.PubMedCrossRef
21.
Zurück zum Zitat Taupitz M, Schnorr J, Abramjuk C, et al. New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits. J Magn Reson Imaging. 2000;12:905–11.PubMedCrossRef Taupitz M, Schnorr J, Abramjuk C, et al. New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits. J Magn Reson Imaging. 2000;12:905–11.PubMedCrossRef
22.
Zurück zum Zitat Kinner S, Maderwald S, Albert J, et al. Comparison of two different iron oxide-based contrast agents for discrimination of benign and malignant lymph nodes. Invest Radiol. 2012;47:511–5.PubMedCrossRef Kinner S, Maderwald S, Albert J, et al. Comparison of two different iron oxide-based contrast agents for discrimination of benign and malignant lymph nodes. Invest Radiol. 2012;47:511–5.PubMedCrossRef
23.
Zurück zum Zitat Berry CC, Curtis AS. Functionalisation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics. 2003;36:R198–206.CrossRef Berry CC, Curtis AS. Functionalisation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics. 2003;36:R198–206.CrossRef
24.
Zurück zum Zitat Owens 3rd DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307:93–102.PubMedCrossRef Owens 3rd DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307:93–102.PubMedCrossRef
25.
Zurück zum Zitat Raynal I, Prigent P, Peyramaure S, et al. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest Radiol. 2004;39:56–63.PubMedCrossRef Raynal I, Prigent P, Peyramaure S, et al. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest Radiol. 2004;39:56–63.PubMedCrossRef
26.
Zurück zum Zitat Sun R, Dittrich J, Le-Huu M, et al. Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells: a comparison. Invest Radiol. 2005;40:504–13.PubMedCrossRef Sun R, Dittrich J, Le-Huu M, et al. Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells: a comparison. Invest Radiol. 2005;40:504–13.PubMedCrossRef
27.
Zurück zum Zitat Oude Engberink RD, van der Pol SM, Dopp EA, et al. Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology. 2007;243:467–74.PubMedCrossRef Oude Engberink RD, van der Pol SM, Dopp EA, et al. Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology. 2007;243:467–74.PubMedCrossRef
28.
Zurück zum Zitat Zhu MT, Wang B, Wang Y, et al. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: risk factors for early atherosclerosis. Toxicol Lett. 2011;203:162–71.PubMedCrossRef Zhu MT, Wang B, Wang Y, et al. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: risk factors for early atherosclerosis. Toxicol Lett. 2011;203:162–71.PubMedCrossRef
29.
Zurück zum Zitat Feng J, Liu H, Bhakoo KK, et al. A metabonomic analysis of organ specific response to USPIO administration. Biomaterials. 2011;32:6558–69.PubMedCrossRef Feng J, Liu H, Bhakoo KK, et al. A metabonomic analysis of organ specific response to USPIO administration. Biomaterials. 2011;32:6558–69.PubMedCrossRef
30.
Zurück zum Zitat Bernd H, De Kerviler E, Gaillard S, Bonnemain B. Safety and tolerability of ultrasmall superparamagnetic iron oxide contrast agent: comprehensive analysis of a clinical development program. Invest Radiol. 2009;44:336–42.PubMedCrossRef Bernd H, De Kerviler E, Gaillard S, Bonnemain B. Safety and tolerability of ultrasmall superparamagnetic iron oxide contrast agent: comprehensive analysis of a clinical development program. Invest Radiol. 2009;44:336–42.PubMedCrossRef
31.
Zurück zum Zitat • Neuwelt EA, Hamilton BE, Varallyay CG, et al. Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int. 2009;75:465–74. This paper discusses USPIOs as a potential replacement for Gadolinium based agents for patients with kidney disease, and provides a great overview of superparamagnetic agents, the magnetic properties of two of the USPIOs (Ferumoxtran-10 and Ferumoxytol.PubMedCrossRef • Neuwelt EA, Hamilton BE, Varallyay CG, et al. Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int. 2009;75:465–74. This paper discusses USPIOs as a potential replacement for Gadolinium based agents for patients with kidney disease, and provides a great overview of superparamagnetic agents, the magnetic properties of two of the USPIOs (Ferumoxtran-10 and Ferumoxytol.PubMedCrossRef
32.
Zurück zum Zitat Provenzano R, Schiller B, Rao M, et al. Ferumoxytol as an intravenous iron replacement therapy in hemodialysis patients. Clin J Am Soc Nephrol. 2009;4:386–93.PubMedCrossRef Provenzano R, Schiller B, Rao M, et al. Ferumoxytol as an intravenous iron replacement therapy in hemodialysis patients. Clin J Am Soc Nephrol. 2009;4:386–93.PubMedCrossRef
33.
Zurück zum Zitat Sigovan M, Gasper W, Alley HF, et al. USPIO-enhanced MR angiography of arteriovenous fistulas in patients with renal failure. Radiology. 2012. doi:10.1148/radiol.12112694. Sigovan M, Gasper W, Alley HF, et al. USPIO-enhanced MR angiography of arteriovenous fistulas in patients with renal failure. Radiology. 2012. doi:10.​1148/​radiol.​12112694.
34.
Zurück zum Zitat Corot C, Robert P, Idee JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev. 2006;58:1471–504.PubMedCrossRef Corot C, Robert P, Idee JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev. 2006;58:1471–504.PubMedCrossRef
35.
Zurück zum Zitat • Levy M, Luciani N, Alloyeau D, et al. Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials. 2011;32:3988–99. This paper describes the in vivo degradation of USPIOs. PubMedCrossRef • Levy M, Luciani N, Alloyeau D, et al. Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials. 2011;32:3988–99. This paper describes the in vivo degradation of USPIOs. PubMedCrossRef
36.
Zurück zum Zitat • Levy M, Wilhelm C, Devaud M, et al. How cellular processing of superparamagnetic nanoparticles affects their magnetic behavior and NMR relaxivity. Contrast Media Mol Imaging. 2012;7:373–83. This paper and the previous one describe the in vivo degradation of USPIOs using a comprehensive methodology by combining magnetic characterization of USPIOs and their transformation products.PubMedCrossRef • Levy M, Wilhelm C, Devaud M, et al. How cellular processing of superparamagnetic nanoparticles affects their magnetic behavior and NMR relaxivity. Contrast Media Mol Imaging. 2012;7:373–83. This paper and the previous one describe the in vivo degradation of USPIOs using a comprehensive methodology by combining magnetic characterization of USPIOs and their transformation products.PubMedCrossRef
37.
Zurück zum Zitat Schmitz SA, Coupland SE, Gust R, et al. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol. 2000;35:460–71.PubMedCrossRef Schmitz SA, Coupland SE, Gust R, et al. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol. 2000;35:460–71.PubMedCrossRef
38.
Zurück zum Zitat Ruehm SG, Corot C, Vogt P, et al. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation. 2001;103:415–22.PubMedCrossRef Ruehm SG, Corot C, Vogt P, et al. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation. 2001;103:415–22.PubMedCrossRef
39.
Zurück zum Zitat Schmitz SA, Taupitz M, Wagner S, et al. Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles. J Magn Reson Imaging. 2001;14:355–61.PubMedCrossRef Schmitz SA, Taupitz M, Wagner S, et al. Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles. J Magn Reson Imaging. 2001;14:355–61.PubMedCrossRef
40.
Zurück zum Zitat Schmitz SA, Winterhalter S, Schiffler S, et al. USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits. Radiology. 2001;221:237–43.PubMedCrossRef Schmitz SA, Winterhalter S, Schiffler S, et al. USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits. Radiology. 2001;221:237–43.PubMedCrossRef
41.
Zurück zum Zitat Priest AN, Ittrich H, Jahntz CL, et al. Investigation of atherosclerotic plaques with MRI at 3 T using ultrasmall superparamagnetic particles of iron oxide. Magn Reson Imaging. 2006;24:1287–93.PubMedCrossRef Priest AN, Ittrich H, Jahntz CL, et al. Investigation of atherosclerotic plaques with MRI at 3 T using ultrasmall superparamagnetic particles of iron oxide. Magn Reson Imaging. 2006;24:1287–93.PubMedCrossRef
42.
Zurück zum Zitat Kooi ME, Cappendijk VC, Cleutjens KB, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation. 2003;107:2453–8.PubMedCrossRef Kooi ME, Cappendijk VC, Cleutjens KB, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation. 2003;107:2453–8.PubMedCrossRef
43.
Zurück zum Zitat Trivedi RA, UK-I JM, Graves MJ, et al. In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke. 2004;35:1631–5.PubMedCrossRef Trivedi RA, UK-I JM, Graves MJ, et al. In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke. 2004;35:1631–5.PubMedCrossRef
44.
Zurück zum Zitat Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064–110.PubMedCrossRef Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064–110.PubMedCrossRef
45.
Zurück zum Zitat Briley-Saebo KC, Mani V, Hyafil F, et al. Fractionated Feridex and positive contrast: in vivo MR imaging of atherosclerosis. Magn Reson Med. 2008;59:721–30.PubMedCrossRef Briley-Saebo KC, Mani V, Hyafil F, et al. Fractionated Feridex and positive contrast: in vivo MR imaging of atherosclerosis. Magn Reson Med. 2008;59:721–30.PubMedCrossRef
46.
Zurück zum Zitat Yancy AD, Olzinski AR, Hu TC, et al. Differential uptake of ferumoxtran-10 and ferumoxytol, ultrasmall superparamagnetic iron oxide contrast agents in rabbit: critical determinants of atherosclerotic plaque labeling. J Magn Reson Imaging. 2005;21:432–42.PubMedCrossRef Yancy AD, Olzinski AR, Hu TC, et al. Differential uptake of ferumoxtran-10 and ferumoxytol, ultrasmall superparamagnetic iron oxide contrast agents in rabbit: critical determinants of atherosclerotic plaque labeling. J Magn Reson Imaging. 2005;21:432–42.PubMedCrossRef
47.
Zurück zum Zitat Sigovan M, Boussel L, Sulaiman A, et al. Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology. 2009;252:401–9.PubMedCrossRef Sigovan M, Boussel L, Sulaiman A, et al. Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology. 2009;252:401–9.PubMedCrossRef
48.
Zurück zum Zitat •• Makowski MR, Varma G, Wiethoff AJ, et al. Noninvasive assessment of atherosclerotic plaque progression in ApoE-/- mice using susceptibility gradient mapping. Circ Cardiovasc Imaging. 2011;4:295–303. This paper describes the application of a novel contrast strategy to quantitatively assess the macrophage recruitment in mouse atherosclerotic plaques.PubMedCrossRef •• Makowski MR, Varma G, Wiethoff AJ, et al. Noninvasive assessment of atherosclerotic plaque progression in ApoE-/- mice using susceptibility gradient mapping. Circ Cardiovasc Imaging. 2011;4:295–303. This paper describes the application of a novel contrast strategy to quantitatively assess the macrophage recruitment in mouse atherosclerotic plaques.PubMedCrossRef
49.
Zurück zum Zitat Kuhlpeter R, Dahnke H, Matuszewski L, et al. R2 and R2* mapping for sensing cell-bound superparamagnetic nanoparticles: in vitro and murine in vivo testing. Radiology. 2007;245:449–57.PubMedCrossRef Kuhlpeter R, Dahnke H, Matuszewski L, et al. R2 and R2* mapping for sensing cell-bound superparamagnetic nanoparticles: in vitro and murine in vivo testing. Radiology. 2007;245:449–57.PubMedCrossRef
50.
Zurück zum Zitat Brisset JC, Desestret V, Marcellino S, et al. Quantitative effects of cell internalization of two types of ultrasmall superparamagnetic iron oxide nanoparticles at 4.7 T and 7 T. Eur Radiol. 2010;20(2):275–85.PubMedCrossRef Brisset JC, Desestret V, Marcellino S, et al. Quantitative effects of cell internalization of two types of ultrasmall superparamagnetic iron oxide nanoparticles at 4.7 T and 7 T. Eur Radiol. 2010;20(2):275–85.PubMedCrossRef
51.
Zurück zum Zitat Klug K, Gert G, Thomas K, et al. Murine atherosclerotic plaque imaging with the USPIO Ferumoxtran-10. Front Biosci. 2009;14:2546–52.PubMedCrossRef Klug K, Gert G, Thomas K, et al. Murine atherosclerotic plaque imaging with the USPIO Ferumoxtran-10. Front Biosci. 2009;14:2546–52.PubMedCrossRef
52.
Zurück zum Zitat Sigovan M, Bessaad A, Alsaid H, et al. Assessment of age modulated vascular inflammation in ApoE-/- mice by USPIO-enhanced magnetic resonance imaging. Invest Radiol. 2010;45:702–7.PubMedCrossRef Sigovan M, Bessaad A, Alsaid H, et al. Assessment of age modulated vascular inflammation in ApoE-/- mice by USPIO-enhanced magnetic resonance imaging. Invest Radiol. 2010;45:702–7.PubMedCrossRef
53.
Zurück zum Zitat Sigovan M, Kaye E, Lancelot E, et al. Anti-inflammatory drug evaluation in ApoE-/- mice by ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging. Invest Radiol. 2012;47:546–52.PubMedCrossRef Sigovan M, Kaye E, Lancelot E, et al. Anti-inflammatory drug evaluation in ApoE-/- mice by ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging. Invest Radiol. 2012;47:546–52.PubMedCrossRef
54.
Zurück zum Zitat Morris JB, Olzinski AR, Bernard RE, et al. p38 MAPK inhibition reduces aortic ultrasmall superparamagnetic iron oxide uptake in a mouse model of atherosclerosis: MRI assessment. Arterioscler Thromb Vasc Biol. 2008;28:265–71.PubMedCrossRef Morris JB, Olzinski AR, Bernard RE, et al. p38 MAPK inhibition reduces aortic ultrasmall superparamagnetic iron oxide uptake in a mouse model of atherosclerosis: MRI assessment. Arterioscler Thromb Vasc Biol. 2008;28:265–71.PubMedCrossRef
55.
Zurück zum Zitat Olzinski AR, Turner GH, Bernard RE, et al. Pharmacological inhibition of C-C chemokine receptor 2 decreases macrophage infiltration in the aortic root of the human C-C chemokine receptor 2/apolipoprotein E-/- mouse: magnetic resonance imaging assessment. Arterioscler Thromb Vasc Biol. 2010;30:253–9.PubMedCrossRef Olzinski AR, Turner GH, Bernard RE, et al. Pharmacological inhibition of C-C chemokine receptor 2 decreases macrophage infiltration in the aortic root of the human C-C chemokine receptor 2/apolipoprotein E-/- mouse: magnetic resonance imaging assessment. Arterioscler Thromb Vasc Biol. 2010;30:253–9.PubMedCrossRef
56.
Zurück zum Zitat Tang TY, Patterson AJ, Miller SR, et al. Temporal dependence of in vivo USPIO-enhanced MRI signal changes in human carotid atheromatous plaques. Neuroradiology. 2009;51:457–65.PubMedCrossRef Tang TY, Patterson AJ, Miller SR, et al. Temporal dependence of in vivo USPIO-enhanced MRI signal changes in human carotid atheromatous plaques. Neuroradiology. 2009;51:457–65.PubMedCrossRef
57.
Zurück zum Zitat •• Patterson AJ, Tang TY, Graves MJ, et al. In vivo carotid plaque MRI using quantitative T2* measurements with ultrasmall superparamagnetic iron oxide particles: a dose-response study to statin therapy. NMR Biomed. 2011;24:89–95. This paper describes the capability of quantitative USPIO-enhanced MRI to detect a response to statin treatment in carotid atherosclerotic plaques in patients.PubMedCrossRef •• Patterson AJ, Tang TY, Graves MJ, et al. In vivo carotid plaque MRI using quantitative T2* measurements with ultrasmall superparamagnetic iron oxide particles: a dose-response study to statin therapy. NMR Biomed. 2011;24:89–95. This paper describes the capability of quantitative USPIO-enhanced MRI to detect a response to statin treatment in carotid atherosclerotic plaques in patients.PubMedCrossRef
58.
Zurück zum Zitat Raman SV, Winner 3rd MW, Tran T, et al. In vivo atherosclerotic plaque characterization using magnetic susceptibility distinguishes symptom-producing plaques. JACC Cardiovasc Imaging. 2008;1:49–57.PubMedCrossRef Raman SV, Winner 3rd MW, Tran T, et al. In vivo atherosclerotic plaque characterization using magnetic susceptibility distinguishes symptom-producing plaques. JACC Cardiovasc Imaging. 2008;1:49–57.PubMedCrossRef
59.
Zurück zum Zitat Reynolds PR, Larkman DJ, Haskard DO, et al. Detection of vascular expression of E-selectin in vivo with MR imaging. Radiology. 2006;241:469–76.PubMedCrossRef Reynolds PR, Larkman DJ, Haskard DO, et al. Detection of vascular expression of E-selectin in vivo with MR imaging. Radiology. 2006;241:469–76.PubMedCrossRef
60.
Zurück zum Zitat Jacobin-Valat MJ, Deramchia K, Mornet S, et al. MRI of inducible P-selectin expression in human activated platelets involved in the early stages of atherosclerosis. NMR Biomed. 2010;24:413–24.PubMed Jacobin-Valat MJ, Deramchia K, Mornet S, et al. MRI of inducible P-selectin expression in human activated platelets involved in the early stages of atherosclerosis. NMR Biomed. 2010;24:413–24.PubMed
61.
Zurück zum Zitat Burtea C, Ballet S, Laurent S, et al. Development of a magnetic resonance imaging protocol for the characterization of atherosclerotic plaque by using vascular cell adhesion molecule-1 and apoptosis-targeted ultrasmall superparamagnetic iron oxide derivatives. Arterioscler Thromb Vasc Biol. 2012;32:e36–48.PubMedCrossRef Burtea C, Ballet S, Laurent S, et al. Development of a magnetic resonance imaging protocol for the characterization of atherosclerotic plaque by using vascular cell adhesion molecule-1 and apoptosis-targeted ultrasmall superparamagnetic iron oxide derivatives. Arterioscler Thromb Vasc Biol. 2012;32:e36–48.PubMedCrossRef
62.
Zurück zum Zitat •• Michalska M, Machtoub L, Manthey HD, et al. Visualization of vascular inflammation in the atherosclerotic mouse by ultrasmall superparamagnetic iron oxide vascular cell adhesion molecule-1-specific nanoparticles. Arterioscler Thromb Vasc Biol. 2012. doi:10.1161/ATVBAHA.112.255224. This paper describes a VCAM-1 targeted agent (P03011), in visualizing early and advanced atherosclerotic plaques in ApoE-/- mice. Importantly, post-contrast imaging was possible as early as 24 hours. •• Michalska M, Machtoub L, Manthey HD, et al. Visualization of vascular inflammation in the atherosclerotic mouse by ultrasmall superparamagnetic iron oxide vascular cell adhesion molecule-1-specific nanoparticles. Arterioscler Thromb Vasc Biol. 2012. doi:10.​1161/​ATVBAHA.​112.​255224. This paper describes a VCAM-1 targeted agent (P03011), in visualizing early and advanced atherosclerotic plaques in ApoE-/- mice. Importantly, post-contrast imaging was possible as early as 24 hours.
63.
Zurück zum Zitat Briley-Saebo KC, Nguyen TH, Saeboe AM, et al. In vivo detection of oxidation-specific epitopes in atherosclerotic lesions using biocompatible manganese molecular magnetic imaging probes. J Am Coll Cardiol. 2012;59:616–26.PubMedCrossRef Briley-Saebo KC, Nguyen TH, Saeboe AM, et al. In vivo detection of oxidation-specific epitopes in atherosclerotic lesions using biocompatible manganese molecular magnetic imaging probes. J Am Coll Cardiol. 2012;59:616–26.PubMedCrossRef
65.
Zurück zum Zitat Kang HW, Josephson L, Petrovsky A, et al. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug Chem. 2002;13:122–7.PubMedCrossRef Kang HW, Josephson L, Petrovsky A, et al. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug Chem. 2002;13:122–7.PubMedCrossRef
66.
Zurück zum Zitat Schellenberger EA, Bogdanov Jr A, Hogemann D, et al. Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Mol Imaging. 2002;1:102–7.PubMedCrossRef Schellenberger EA, Bogdanov Jr A, Hogemann D, et al. Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Mol Imaging. 2002;1:102–7.PubMedCrossRef
67.
Zurück zum Zitat Weissleder R, Kelly K, Sun EY, et al. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol. 2005;23:1418–23.PubMedCrossRef Weissleder R, Kelly K, Sun EY, et al. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol. 2005;23:1418–23.PubMedCrossRef
68.
Zurück zum Zitat Jarrett BR, Correa C, Ma KL, Louie AY. In vivo mapping of vascular inflammation using multimodal imaging. PLoS One. 2011;5:e13254.CrossRef Jarrett BR, Correa C, Ma KL, Louie AY. In vivo mapping of vascular inflammation using multimodal imaging. PLoS One. 2011;5:e13254.CrossRef
69.
Zurück zum Zitat Tu C, Ng TS, Sohi HK, et al. Receptor-targeted iron oxide nanoparticles for molecular MR imaging of inflamed atherosclerotic plaques. Biomaterials. 2011;32:7209–16.PubMedCrossRef Tu C, Ng TS, Sohi HK, et al. Receptor-targeted iron oxide nanoparticles for molecular MR imaging of inflamed atherosclerotic plaques. Biomaterials. 2011;32:7209–16.PubMedCrossRef
70.
Zurück zum Zitat von Elverfeldt D, Meissner M, Peter K, et al. An approach towards molecular imaging of activated platelets allows imaging of symptomatic human carotid plaques in a new model of a tissue flow chamber. Contrast Media Mol Imaging. 2011;7:204–13.CrossRef von Elverfeldt D, Meissner M, Peter K, et al. An approach towards molecular imaging of activated platelets allows imaging of symptomatic human carotid plaques in a new model of a tissue flow chamber. Contrast Media Mol Imaging. 2011;7:204–13.CrossRef
71.
Zurück zum Zitat Caldorera-Moore ME, Liechty WB, Peppas NA. Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc Chem Res. 2011;44:1061–70.PubMedCrossRef Caldorera-Moore ME, Liechty WB, Peppas NA. Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc Chem Res. 2011;44:1061–70.PubMedCrossRef
72.
Zurück zum Zitat Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Acc Chem Res. 2011;44:1050–60.PubMedCrossRef Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Acc Chem Res. 2011;44:1050–60.PubMedCrossRef
73.
Zurück zum Zitat Yu SS, Scherer RL, Ortega RA, et al. Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs). J Nanobiotechnology. 2011;9:7.PubMedCrossRef Yu SS, Scherer RL, Ortega RA, et al. Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs). J Nanobiotechnology. 2011;9:7.PubMedCrossRef
74.
Zurück zum Zitat Gazeau F, Wilhelm C. Magnetic labeling, imaging and manipulation of endothelial progenitor cells using iron oxide nanoparticles. Future Med Chem. 2010;2:397–408.PubMedCrossRef Gazeau F, Wilhelm C. Magnetic labeling, imaging and manipulation of endothelial progenitor cells using iron oxide nanoparticles. Future Med Chem. 2010;2:397–408.PubMedCrossRef
75.
Zurück zum Zitat Davis ME, Zuckerman JE, Choi CH, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464:1067–70.PubMedCrossRef Davis ME, Zuckerman JE, Choi CH, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464:1067–70.PubMedCrossRef
76.
Zurück zum Zitat Li JM, Newburger PE, Gounis MJ, et al. Local arterial nanoparticle delivery of siRNA for NOX2 knockdown to prevent restenosis in an atherosclerotic rat model. Gene Ther. 2010;17:1279–87.PubMedCrossRef Li JM, Newburger PE, Gounis MJ, et al. Local arterial nanoparticle delivery of siRNA for NOX2 knockdown to prevent restenosis in an atherosclerotic rat model. Gene Ther. 2010;17:1279–87.PubMedCrossRef
Metadaten
Titel
Molecular MRI of Atherosclerosis with USPIO
verfasst von
Monica Sigovan
Emmanuelle Canet-Soulas
Publikationsdatum
01.02.2013
Verlag
Current Science Inc.
Erschienen in
Current Cardiovascular Imaging Reports / Ausgabe 1/2013
Print ISSN: 1941-9066
Elektronische ISSN: 1941-9074
DOI
https://doi.org/10.1007/s12410-012-9174-0

Weitere Artikel der Ausgabe 1/2013

Current Cardiovascular Imaging Reports 1/2013 Zur Ausgabe

Molecular Imaging (ZA Fayad, Section Editor)

Lipid-Based Nanoparticles in Cardiovascular Molecular Imaging

Molecular Imaging (ZA Fayad, Section Editor)

Molecular MRI of the Cardiovascular System in the Post-NSF Era

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.