Skip to main content
Erschienen in: BMC Infectious Diseases 1/2021

Open Access 01.12.2021 | Research

Molecular study of metallo-β-lactamases and integrons in Acinetobacter baumannii isolates from burn patients

verfasst von: Mahnaz Nikibakhsh, Farzaneh Firoozeh, Farzad Badmasti, Kourosh Kabir, Mohammad Zibaei

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2021

Abstract

Background

Productions of metallo-β-lactamases enzymes are the most common mechanism of antibiotic resistance to all beta-lactam classes (except monobactams) in Acinetobacter baumannii. MBLs are usually associated with gene cassettes of integrons and spread easily among bacteria. The current study was performed to detect the genes encoding MBLs and integron structures in A. baumannii isolates from burn patients.

Methods

This study was performed on 106 non-duplicate A. baumannii isolates from burn patients referred to Shahid Motahari Hospital in Tehran. Antibiotic susceptibility of A. baumannii isolates was performed using disk diffusion and broth microdilution method in accordance with the CLSI guidelines. The presence of class 1 integron and associated gene cassettes as well as MBLs-encoding genes including blaVIM, and blaIMP were investigated using PCR and sequencing techniques.

Results

In this cross-sectional study all (100%) of the A. baumannii isolates examined were multidrug resistant. All isolates were sensitive to colistin and simultaneously all were resistant to imipenem. PCR assays showed the presence of blaVIM and blaIMP genes in 102 (96.2%) and 62 (58.5%) isolates of A. baumannii respectively. In addition, 62 (58.5%) of the A. baumannii isolates carried integron class 1, of which 49 (79.0%) were identified with at least one gene cassette. Three types of integron class 1 gene cassettes were identified including: arr2, cmlA5, qacE1 (2300 bp); arr-2, ereC, aadA1, cmlA7, qacE1 (4800 bp); and aac(3)-Ic, cmlA5 (2250 bp).

Conclusion

A high prevalence of MBLs genes, especially blaVIM, was identified in the studied MDR A. baumannii isolates. In addition, most of the strains carried class 1 integrons. Furthermore, the gene cassettes arrays of integrons including cmlA5 and cmlA7 were detected, for the first time, in A. baumannii strains in Iran.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ADP
Adenosine diphosphate
ATCC
American type culture collection
BLAST
Basic local alignment search tool
CLSI
Clinical and laboratory standards institute
CRAB
Carbapenem-resistant A. baumannii
IMP
Imipenemase
MBLs
Metallo-β-lactamases
MDR
Multidrug-resistant
MICs
Minimum inhibitory concentrations
MLST
Multilocus sequence typing
NCBI
National center for biotechnology information
O/F
Oxidative/fermentative glucose
PBPs
Penicillin-binding proteins
PCR
Polymerase chain reaction
PDR
Pan-drug resistant
PFGE
Pulse field gel electrophoresis
TSB
Trypticase soy broth
TSI
Triple sugar iron
SPSS
Statistical package for the social sciences
VIM
Verona integron-encoded metallo-β-lactamases
WGS
Whole genome sequencing
XDR
Extensively-drug resistant

Background

Burn infections are a noticeable health problem, especially in developing countries [1]. It has been documented that about 75% of death in patients with burn injuries are due to infections [2] Acinetobacter baumannii is one of the most common causes of nosocomial infections with high mortality and morbidity among hospitalized patients, especially in burn and intensive care units [3, 4]. Nowadays, the emergence and spread of antibiotic resistance in A. baumannii is a major global challenge [4]. Carbapenems are considered drugs of choice for the treatment of severe infections caused by MDR-A. baumannii [5]. Unfortunately, carbapenem resistance is increasing among A. baumannii isolates, which is alarming [5].
Various mechanisms are involved in the development of carbapenem resistance in A. baumannii including β-lactamases acquisition, outer membrane proteins and PBPs alteration, overexpression of efflux pumps and gene mutation of CarO [6].
One of the most important mechanisms of antibiotic resistance in A. baumannii is the production of β-lactamase enzymes, the genes of which are usually carried on mobile genetic elements, including integrons [7]. Beta-lactamases are grouped into four classes based on the amino acid sequence, including: A, B, C, and D [8]. Resistance to carbapenems is usually dependent on β-lactamases of class B (MBLs) and D (OXA-type carbapenemases) [9]. OXA β-lactamases or OXA-type carbapenemases, include distinct subgroups from which OXA-23-like, OXA-24-like, OXA-40-like, OXA-51-like, OXA-58-like and OXA-143-like have been found in A. baumannii strains [9, 10]. MBLs families are more important than other β-lactamases, due to their ability to hydrolyze a wide range of β-lactam antibiotics, especially carbapenems [11, 12]. Several MBLs including VIM and IMP have been identified among A. baumannii strains [13, 14]. Different IMP–type enzymes have been described in the globe among Gram-negative bacilli especially Enterobacterales and non-fermenter organisms including Acinetobacter spp. [15]. Previous studies have shown that the prevalence of MBL-producing strains of A. baumannii in the world is increasing, although there are different reports in various geographical areas [13].
Acinetobacter has a high potential for the acquisition of resistance genes through mobile genetic elements, including integrons [15]. MBLs are generally encoded on the gene cassettes of class 1 integrons and spread readily among A. baumannii strains [16]. The presence of integrons and association with genes encoding MBLs are frequently reported in A. baumannii isolates [17].
The current study was performed to detect the genes encoding MBLs and class 1 integron structures in A. baumannii isolates from burn patients.

Methods

Ethical consideration

Informed consent was obtained from all subjects, and all methods were carried out in accordance with the relevant guidelines and regulations of Ethics Clearance Committee of the Alborz University of Medical Sciences.

Bacterial isolates and identification

The current study was conducted between December 2019 and November 2020. A total of 106 non-duplicate A. baumannii isolates were collected from hospitalized burn patients at Shahid Motahari Hospital in Tehran, Iran. The collected clinical isolates were transferred to the laboratory of the Department of Microbiology, School of Medicine, Alborz University of Medical Sciences. Standard biochemical tests were used to identify the Gram-negative bacilli isolates as A. baumannii strains These tests included catalase, oxidase, O/F test, motility, citrate utilization test and growth on TSI agar (Merck, Germany) [18]. The diagnosed A. baumannii strains were cultured in TSB (Merck, Germany) supplemented with 20% glycerol and stored at − 20 °C for further studies. The phenotypically isolated A. baumannii strains were confirmed by PCR and sequencing of the rpoB gene [19]. The A. baumannii ATCC 19606 was used as a control strain.

Antibiotic susceptibility testing

Susceptibility of A. baumannii to imipenem (10 µg), gentamicin (10 µg), ciprofloxacin (5 µg), ampicillin-sulbactam (20 µg), trimethoprim/sulfamethaxazole (1.25/23.75 μg), ceftazidime (30 µg), doxycycline (30 µg), and minocycline (30 μg) was performed by disk diffusion method accordant with CLSI standard guidelines [20]. The studied antibiotics were purchased from MAST Company (Mast, UK). The MICs of imipenem [breakpoints (μg/ml): susceptible: ≤ 2; intermediate: 4; resistant: ≥ 8], and colistin [breakpoints (μg/ml): susceptible: ≤ 2; intermediate: -; resistant: ≥ 4] were determined by the broth microdilution method according to the guidelines of the CLSI [20]. The quality control strain was Escherichia coli ATCC 25922. The bacteria were categorized to MDR, XDR or PDR based on Magiorakos et al., [21] criteria.

Determination of integrons and associated gene cassettes

Extraction of genomic DNA of A. baumannii strains was performed using boiling method [22]. The presence of integrons class 1 and related gene cassettes were determined by PCR using related primers [23]. The gene cassettes of integrons were amplified using primers and PCR conditions as described previously [23, 24]. Amplified gene cassettes were sent for sequencing (Macrogen Research, Seoul, Korea). The sequences obtained were compared with those deposited in the NCBI database with using BLAST program (http://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi) to determine the cassettes arrays of integrons.

Molecular detection of metallo-β-lactamases-encoding genes

The amplification of the metallo-β-lactamases-encoding genes including blaVIM, and blaIMP which is associated with carbapenem resistance was performed by PCR assays in all isolates. The relevant primers used for PCR testing are listed in Table 1. The PCR conditions were performed according to the protocol provided [22].
Table 1
Primers used for PCR assays in this study
Gene
Primer
Sequence (5′–3′)
Product (bp)
References
intI1
F
CAG TGG ACA TAA GCC TGT TC
160
[23]
 
R
CCC GAG GCA TAG ACT GTA
  
CS††
F
GGC ATC CAA GCA GCA AG
Variable
[23, 24]
 
R
AAG CAG ACT TGA CCT GA
  
blaVIM
F
GAT GGT GTT TGG TCG CAT A
390
[22]
 
R
CGA ATG CGC AGC ACC AG
  
blaIMP
F
GGA ATA GAG TGG CTT AAY TCT C
232
[22]
 
R
GGT TTA AYA AAA CAA CCA CC
  
Intl1: Class 1integron-integrase gene
††CS: Conserved segment of class 1 integrons

Statistical analysis

All statistical analysis was performed using SPSS software version 21 (SPSS, Inc.). The differences between variables were evaluated by the chi-square (χ2) test and P-values (P < 0.05) were interpreted statistically significant.

Results

In this cross-sectional study, a total of 106 non-duplicate A. baumannii isolates were collected from burn wounds of hospitalized patients. Seventy-six of the A. baumannii strains were isolated from male (71.7%) and 30 females (28.3%) patients. According to the results of antimicrobial susceptibility testing, all (100%) of our A. baumannii isolates were identified as MDR and 101 (95.3%) were XDR, however, PDR phenotype were not detected in any of the isolates. The antibiotic susceptibility profiles of the A. baumannii isolates by disk diffusion method are shown in Table 2. Determination of MICs of imipenem and colistin showed that all isolates were sensitive to colistin (MIC of ≤ 2 μg/ml) and at the same time all were resistant to imipenem (MIC of ≥ 8 μg/ml).
Table 2
Antibiotic susceptibility of Acinetobacter baumannii isolates by disk diffusion method
Antibiotic
Susceptible (S), N (%)
Intermediate (I), N (%)
Resistant (R), N (%)
Interpretive categories and zone diameter breakpoints (mm)
S
I
R
Imipenem
0 (0.0)
0 (0.0)
106 (100)
 ≥ 22
19–21
 ≤ 18
Ceftazidime
0 (0.0)
0 (0.0)
106 (100)
 ≥ 18
15–17
 ≤ 14
Gentamicin
5 (4.7)
2 (1.9)
99 (93.4)
 ≥ 15
13–14
 ≤ 12
Doxycycline
101 (95.3)
0 (0.0)
5 (4.7)
 ≥ 13
10–12
 ≤ 9
Minocycline
102 (96.2)
4 (3.8)
0 (0.0)
 ≥ 16
13–15
 ≤ 12
Ciprofloxacin
5 (4.7)
0 (0.0)
101 (95.3)
 ≥ 21
16–20
 ≤ 15
Ampicillin-sulbactam
100 (94.3)
0 (0.0)
6 (5.7)
 ≥ 15
12–14
 ≤ 11
Trimethoprim/sulfamethaxazole
0 (0.0)
0 (0.0)
106 (100)
 ≥ 16
11–15
 ≤ 10
The presence of integrons class 1 was detected by amplification of integrase (intI1) in 62 (58.5%) of the A. baumannii isolates (Table 3). Of 62 integron class 1 -positive A. baumannii strains, 49 (79.0%) were identified with at least one gene cassette and 13 (21.0%) of these were identified as empty integrons without gene cassettes. Mapping of integrons revealed three different gene cassettes including: arr2, cmlA5, qacE1 (2300 bp); arr-2, ereC, aadA1, cmlA7, qacE1 (4800 bp); and aac(3)-Ic, cmlA5 (2250 bp) (Fig. 1) which were identified in 44 (70.9%), 2 (3.2%) and 3 (4.8%) integron class 1 positive A. baumannii isolates respectively. Also the frequency rates of blaVIM, and blaIMP among 106 A. baumannii isolates were 102 (96.2%) and 62 (58.5%) respectively and 60 (56.6%) carried both blaVIM, and blaIMP genes. The association between intI1 + blaVIM, and intI1 + blaIMP genes was identified among 58 (54.7%), and 42 (39.6%) respectively. Forty (37.7%) of 106 A. baumannii isolates, carried all three intI1 + blaVIM + blaIMP genes. It was also shown that 44 (41.5%), isolates were intI1 (−); blaVIM (+) and 4 (3.8%) of which identified as intI1 (+); blaVIM (−) whereas 20 (18.9%) and 20 (18.9%) out of 106 A. baumannii isolates were intI1 (−); blaIMP (+) and intI1 (+); blaIMP (−) respectively (Table 3).
Table 3
Distribution of blaVIM, blaIMP, intI1 and gene cassettes among Acinetobacter baumannii isolates (N = 106)
Strains, N (%)
Genes
intI1
CS
blaVIM
blaIMP
31 (29.2)
 + 
 + 
 + 
 + 
14 (13.2)
 + 
 + 
 + 
2 (1.9)
 + 
 + 
 + 
9 (8.5)
 + 
 + 
 + 
2 (1.9)
 + 
 + 
4 (3.8)
 + 
 + 
20 (18.9)
 + 
 + 
24 (22.6)
 + 
Interpretation of the results of statistical analysis showed there was no significant association between the presence of class 1 integrons and age groups (P = 0.55), and burn size (P = 0.52). However the presence of class 1 integrons were significantly higher in female than male patients (P = 0.017).

Discussion

Acinetobacter baumannii is one of the most important pathogens leading to infections in burn patients. Control of A. baumannii infections in these patients is a major challenge due to the proliferation of MDR strains [25]. In the current study, all isolates were identified as MDR strains. Also in accordance with other studies, we found that all our A. baumannii strains were carbapenem resistant [26]. Similarly to our study, 94.5% of A. baumannii isolated from burn patients were resistant to carbapenems in the study by Pournajaf et al., [5], suggesting that the mentioned group of antibiotics is no longer suitable for the treatment of infections caused by this bacterium. Determination of resistance by MIC showed that all strains were sensitive to colistin. These data are in agreement with those of Tarashi et al., [27] and previous studies [17], and show that colistin is still an effective antibiotic against MDR A. baumannii. In our study, blaVIM was identified as the most common gene encoding MBLs in the vast majority of isolates, followed by blaIMP. According to the literature, a wide distribution of VIM type metallo-β-lactamase has been reported at Middle East CRAB [22]. An association between class 1 integrons and MBLs genes, particularly blaIMP and blaVIM, has been reported in other studies [17]. However, our findings showed that the blaIMP and blaVIM genes were not located on the class 1 integrons and no association was found between MBL genes and the presence of class 1 integrons among studied isolates. The reason could be that these genes may have been located on the other region of bacterial DNA.
The analysis of integrons content revealed that 79.0% of studied integron class 1 positive A. baumannii strains carried at least one gene cassette, while 21.0% had no cassettes and carried empty integrons. Considering that strains with empty integrons have the potential to capture cassettes carrying resistance genes, this result could be remarkable. The most common integron cassettes identified among integron-positive A. baumannii strains were arr2, cmlA5, qacE1, which encode rifampin ADP -ribosyltransferase, chloramphenicol transporter and quaternary ammonium resistance protein leading to resistance to rifampicin, chloramphenicol and quaternary ammonium compounds, respectively. Rifampin resistance due to the arr-2 gene carried by class 1 integrons has been documented in A. baumannii strains [28]. Also other variants of cmlA gene have been reported in other studies and it seems that this is the first report of detecting cmlA5 and cmlA7 variants in A. baumannii strains in Iran [24]. Other cassettes, including aadA1 and aac(3)-Ic encoding aminoglycoside adenylase and aminoglycoside acetyltransferase respectively were found to be less common in the present study. In researches conducted in other parts of the world, including Taiwan, mainland China, and France, different variants of the aadA gene such as aadA1, aadA2 and aadA6 have been identified in multidrug-resistant A. baumannii strains [23, 24, 29]. The identification of aadA1 and aac(3)-Ic genes in cassettes of class 1 integrons could explain the high resistance to aminoglycosides in the present study. Despite the high resistance to antibiotics such as ceftazidime, ciprofloxacin, and trimethoprim/sulfamethaxazole, no gene cassette encoding resistance to these antibiotics was found in the present study. Therefore, the development of resistance to mentioned antibiotics may depend on the presence of genetic elements other than integrons.

Limitations

This project is a cross-sectional study. However, to demonstrate the clinical relevance and dynamic community structure of clinical isolates, we need to continuously monitor the outbreaks using PFGE, MLST, or WGS tools. More information about resistant bacteria helps us to respond to how bacteria spread throughout clinical settings. Part of the limitations of the current study is also due to limited resources. However, other genes responsible for carbapenem resistance and MBL formation could be identified by WGS. In addition to class 1, detection of gene cassette arrays associated with other integron classes could level up the study. Seemingly, the data obtained in the present study may provide a basis for future studies and assess the trend of infection generated by A. baumannii in burn patients in our region.

Conclusion

A high prevalence of MBLs genes especially blaVIM was identified in studied MDR A. baumannii isolates. In addition, most of the VIM type MBL-positive strains carried class 1 integrons. Furthermore, the gene cassettes arrays of integrons including cmlA5 and cmlA7 were detected, for the first time, in A. baumannii strains in Iran.

Acknowledgements

The authors would like to thank all staffs of the laboratories of Department of Microbiology, School of Medicine, Alborz University of Medical Sciences and the Department of Bacteriology, Pasteur Institute of Iran. The results described in this paper formed part of an MSc student thesis.

Declarations

Informed consent was obtained from all subjects, and all methods were carried out in accordance with the relevant guidelines and regulations of Ethics Clearance Committee of the Alborz University of Medical Sciences. Ethical approval for the study was obtained from the Ethics Clearance Committee of the Alborz University of Medical Sciences (ECCABZUMS) (IR.ABZUMS.REC.1398.190).
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006;19:403–34.CrossRef Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006;19:403–34.CrossRef
2.
Zurück zum Zitat Tarashi S, Goudarzi H, Erfanimanesh S, Pormohammad A, Hashemi A. Phenotypic and molecular detection of metallo-beta-lactamase genes among imipenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii strains isolated from patients with burn injuries. Arch Clin Infect Dis. 2016;11:e39036.CrossRef Tarashi S, Goudarzi H, Erfanimanesh S, Pormohammad A, Hashemi A. Phenotypic and molecular detection of metallo-beta-lactamase genes among imipenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii strains isolated from patients with burn injuries. Arch Clin Infect Dis. 2016;11:e39036.CrossRef
3.
Zurück zum Zitat Akrami F, Ebrahimzadeh NA. Acinetobacter baumannii as nosocomial pathogenic bacteria. Mol Gen Microbiol Virol. 2019;34:84–96.CrossRef Akrami F, Ebrahimzadeh NA. Acinetobacter baumannii as nosocomial pathogenic bacteria. Mol Gen Microbiol Virol. 2019;34:84–96.CrossRef
4.
Zurück zum Zitat Bagheri Josheghani S, Moniri R, Firoozeh F, Sehat M, Dastehgoli K, Koosha H, et al. Emergence of blaOXA-carrying carbapenem resistance in multidrug-resistant Acinetobacter baumannii in the intensive care unit. Iran Red Crescent Med J. 2017;19:e27327. Bagheri Josheghani S, Moniri R, Firoozeh F, Sehat M, Dastehgoli K, Koosha H, et al. Emergence of blaOXA-carrying carbapenem resistance in multidrug-resistant Acinetobacter baumannii in the intensive care unit. Iran Red Crescent Med J. 2017;19:e27327.
5.
Zurück zum Zitat Pournajaf A, Rajabnia R, Razavi S, Solgi S, Ardebili A, Yaghoubi S, et al. Molecular characterization of carbapenem-resistant Acinetobacter baumannii isolated from pediatric burns patients in an Iranian hospital. Trop J Pharm Res. 2018;17:135–41.CrossRef Pournajaf A, Rajabnia R, Razavi S, Solgi S, Ardebili A, Yaghoubi S, et al. Molecular characterization of carbapenem-resistant Acinetobacter baumannii isolated from pediatric burns patients in an Iranian hospital. Trop J Pharm Res. 2018;17:135–41.CrossRef
6.
Zurück zum Zitat Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L, et al. Beta-lactamase database (BLDB)–structure and function. J Enzym Inhib Med Chem. 2017;32:917–9.CrossRef Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L, et al. Beta-lactamase database (BLDB)–structure and function. J Enzym Inhib Med Chem. 2017;32:917–9.CrossRef
7.
Zurück zum Zitat Leungtongkam U, Thummeepak R, Tasanapak K, Sitthisak S. Acquisition and transfer of antibiotic resistance genes in association with conjugative plasmid or class 1 integrons of Acinetobacter baumannii. PLoS ONE. 2018;13:e0208468.CrossRef Leungtongkam U, Thummeepak R, Tasanapak K, Sitthisak S. Acquisition and transfer of antibiotic resistance genes in association with conjugative plasmid or class 1 integrons of Acinetobacter baumannii. PLoS ONE. 2018;13:e0208468.CrossRef
8.
Zurück zum Zitat Antunes NT, Fisher JF. Acquired class D β-lactamases. Antibiotics (Basel). 2014;3:398–434.CrossRef Antunes NT, Fisher JF. Acquired class D β-lactamases. Antibiotics (Basel). 2014;3:398–434.CrossRef
9.
Zurück zum Zitat Ibrahim ME. Prevalence of Acinetobacter baumannii in Saudi Arabia: risk factors, antimicrobial resistance patterns and mechanisms of carbapenem resistance. Ann Clin Microbiol Antimicrob. 2019;18:1.CrossRef Ibrahim ME. Prevalence of Acinetobacter baumannii in Saudi Arabia: risk factors, antimicrobial resistance patterns and mechanisms of carbapenem resistance. Ann Clin Microbiol Antimicrob. 2019;18:1.CrossRef
10.
Zurück zum Zitat Lee YT, Kuo SC, Chiang MC, Yang SP, Chen CP, Chen TL, et al. Emergence of carbapenem-resistant non-baumannii species of Acinetobacter harboring a blaOXA-51-like gene that is intrinsic to A. baumannii. Antimicrob Agents Chemother. 2012;56:1124–7.CrossRef Lee YT, Kuo SC, Chiang MC, Yang SP, Chen CP, Chen TL, et al. Emergence of carbapenem-resistant non-baumannii species of Acinetobacter harboring a blaOXA-51-like gene that is intrinsic to A. baumannii. Antimicrob Agents Chemother. 2012;56:1124–7.CrossRef
11.
Zurück zum Zitat Saffari M, Firoozeh F, Pourbabaee M, Zibaei M. Evaluation of metallo-β-lactamase-production and carriage of blaVIM genes in Pseudomonas aeruginosa isolated from burn wound infections in Isfahan. Arch Trauma Res. 2016;5:e34343.CrossRef Saffari M, Firoozeh F, Pourbabaee M, Zibaei M. Evaluation of metallo-β-lactamase-production and carriage of blaVIM genes in Pseudomonas aeruginosa isolated from burn wound infections in Isfahan. Arch Trauma Res. 2016;5:e34343.CrossRef
12.
Zurück zum Zitat Firoozeh F, Mahluji Z, Shams E, Khorshidi A, Zibaei M. New Delhi metallo-β-lactamase-1-producing klebsiella pneumoniae isolates in hospitalized patients in Kashan, Iran. Iran J Microbiol. 2017;9:283–7.PubMedPubMedCentral Firoozeh F, Mahluji Z, Shams E, Khorshidi A, Zibaei M. New Delhi metallo-β-lactamase-1-producing klebsiella pneumoniae isolates in hospitalized patients in Kashan, Iran. Iran J Microbiol. 2017;9:283–7.PubMedPubMedCentral
13.
Zurück zum Zitat Fallah F, Noori M, Hashemi A, Goudarzi H, Karimi A, Erfanimanesh S, et al. Prevalence of blaNDM, blaPER, blaVEB, blaIMP, and blaVIM genes among Acinetobacter baumannii isolated from two hospitals of Tehran, Iran. Scientifica (Cairo). 2014;2014:245162. Fallah F, Noori M, Hashemi A, Goudarzi H, Karimi A, Erfanimanesh S, et al. Prevalence of blaNDM, blaPER, blaVEB, blaIMP, and blaVIM genes among Acinetobacter baumannii isolated from two hospitals of Tehran, Iran. Scientifica (Cairo). 2014;2014:245162.
14.
Zurück zum Zitat Cornaglia G, Giamarellou H, Rossolini GM. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis. 2011;11:381–93.CrossRef Cornaglia G, Giamarellou H, Rossolini GM. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis. 2011;11:381–93.CrossRef
15.
Zurück zum Zitat Fallah F, Borhan RS, Hashemi A. Detection of bla(IMP) and bla(VIM) metallo-beta-lactamases genes among Pseudomonas aeruginosa strains. Int J Burns Trauma. 2013;3:122–4.PubMedPubMedCentral Fallah F, Borhan RS, Hashemi A. Detection of bla(IMP) and bla(VIM) metallo-beta-lactamases genes among Pseudomonas aeruginosa strains. Int J Burns Trauma. 2013;3:122–4.PubMedPubMedCentral
16.
Zurück zum Zitat Khosravi Y, Tay ST, Vadivelu J. Analysis of integrons and associated gene cassettes of metallo-β-lactamase-positive Pseudomonas aeruginosa in Malaysia. J Med Microbiol. 2011;60:988–94.CrossRef Khosravi Y, Tay ST, Vadivelu J. Analysis of integrons and associated gene cassettes of metallo-β-lactamase-positive Pseudomonas aeruginosa in Malaysia. J Med Microbiol. 2011;60:988–94.CrossRef
17.
Zurück zum Zitat Amin M, Navidifar T, Saleh Shooshtari F, Goodarzi H. Association of the genes encoding metallo-β-lactamase with the presence of integrons among multidrug-resistant clinical isolates of Acinetobacter baumannii. Infect Drug Resist. 2019;12:1171–80.CrossRef Amin M, Navidifar T, Saleh Shooshtari F, Goodarzi H. Association of the genes encoding metallo-β-lactamase with the presence of integrons among multidrug-resistant clinical isolates of Acinetobacter baumannii. Infect Drug Resist. 2019;12:1171–80.CrossRef
18.
Zurück zum Zitat Mahon CR, Lehman DC, Manuselis G. Textbook of diagnostic microbiology. 5th ed. Washington DC: Saunders; 2015. Mahon CR, Lehman DC, Manuselis G. Textbook of diagnostic microbiology. 5th ed. Washington DC: Saunders; 2015.
19.
Zurück zum Zitat Gundi VAKB, Dijkshoorn L, Burignat S, Raoult D, La Scola B. Validation of partial rpoB gene sequence analysis for the identification of clinically important and emerging Acinetobacter species. Microbiology (Reading). 2009;155:2333–41.CrossRef Gundi VAKB, Dijkshoorn L, Burignat S, Raoult D, La Scola B. Validation of partial rpoB gene sequence analysis for the identification of clinically important and emerging Acinetobacter species. Microbiology (Reading). 2009;155:2333–41.CrossRef
20.
Zurück zum Zitat Clinical and Laboratory Standards Institute: Performance Standards for Antimicrobial Susceptibility Testing. Wayne, PA, 2020. 30th information supplement, M100-S30. Clinical and Laboratory Standards Institute: Performance Standards for Antimicrobial Susceptibility Testing. Wayne, PA, 2020. 30th information supplement, M100-S30.
21.
Zurück zum Zitat Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.CrossRef Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.CrossRef
22.
Zurück zum Zitat Seyyedi Abhari S, Badmasti F, Modiri L, Aslani MM, Asmar M. Circulation of imipenem-resistant Acinetobacter baumannii ST10, ST2 and ST3 in a university teaching hospital from Tehran. Iran J Med Microbiol. 2019;68:860–5.CrossRef Seyyedi Abhari S, Badmasti F, Modiri L, Aslani MM, Asmar M. Circulation of imipenem-resistant Acinetobacter baumannii ST10, ST2 and ST3 in a university teaching hospital from Tehran. Iran J Med Microbiol. 2019;68:860–5.CrossRef
23.
Zurück zum Zitat Chen J, Li H, Yang J, Zhan R, Chen A, Yan Y. Prevalence and characterization of integrons in multidrug resistant Acinetobacter baumannii in eastern China: a multiple-hospital study. Int J Environ Res Public Health. 2015;12:10093–105.CrossRef Chen J, Li H, Yang J, Zhan R, Chen A, Yan Y. Prevalence and characterization of integrons in multidrug resistant Acinetobacter baumannii in eastern China: a multiple-hospital study. Int J Environ Res Public Health. 2015;12:10093–105.CrossRef
24.
Zurück zum Zitat Ploy MC, Denis F, Courvalin P, Lambert T. Molecular characterization of integrons in Acinetobacter baumannii: description of a hybrid class 2 integron. Antimicrob Agents Chemother. 2000;44:2684–8.CrossRef Ploy MC, Denis F, Courvalin P, Lambert T. Molecular characterization of integrons in Acinetobacter baumannii: description of a hybrid class 2 integron. Antimicrob Agents Chemother. 2000;44:2684–8.CrossRef
25.
Zurück zum Zitat Rafla K, Tredget EE. Infection control in the burn unit. Burns. 2011;37:5–15.CrossRef Rafla K, Tredget EE. Infection control in the burn unit. Burns. 2011;37:5–15.CrossRef
26.
Zurück zum Zitat Uwingabiye J, Lemnouer A, Roca I, Alouane T, Frikh M, Belefquih B, et al. Clonal diversity and detection of carbapenem resistance encoding genes among multidrug-resistant Acinetobacter baumannii isolates recovered from patients and environment in two intensive care units in a Moroccan hospital. Antimicrob Resist Infect Control. 2017;6:99.CrossRef Uwingabiye J, Lemnouer A, Roca I, Alouane T, Frikh M, Belefquih B, et al. Clonal diversity and detection of carbapenem resistance encoding genes among multidrug-resistant Acinetobacter baumannii isolates recovered from patients and environment in two intensive care units in a Moroccan hospital. Antimicrob Resist Infect Control. 2017;6:99.CrossRef
27.
Zurück zum Zitat Tarashi S, Goodarzi H, Erfanimanesh S, Pormohammad A, Hashemi A. Phenotypic and molecular detection of metallo-beta-lactamase genes among imipenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii strains isolated from patients with burn injuries. Arch Clin Infect Dis. 2016;11:e39036.CrossRef Tarashi S, Goodarzi H, Erfanimanesh S, Pormohammad A, Hashemi A. Phenotypic and molecular detection of metallo-beta-lactamase genes among imipenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii strains isolated from patients with burn injuries. Arch Clin Infect Dis. 2016;11:e39036.CrossRef
28.
Zurück zum Zitat Vrancianu CO, Gheorghe I, Czobor IB, Chifiriuc MC. Antibiotic resistance profiles, molecular mechanisms and innovative treatment strategies of Acinetobacter baumannii. Microorganisms. 2020;8:935.CrossRef Vrancianu CO, Gheorghe I, Czobor IB, Chifiriuc MC. Antibiotic resistance profiles, molecular mechanisms and innovative treatment strategies of Acinetobacter baumannii. Microorganisms. 2020;8:935.CrossRef
29.
Zurück zum Zitat Firoozeh F, Mahluji Z, Khorshidi A, Zibaei M. Molecular characterization of class 1, 2 and integrons in clinical multi-drug resistant Klebsiella pneumoniae isolates. Antimicrob Resist Infect Control. 2019;8:59.CrossRef Firoozeh F, Mahluji Z, Khorshidi A, Zibaei M. Molecular characterization of class 1, 2 and integrons in clinical multi-drug resistant Klebsiella pneumoniae isolates. Antimicrob Resist Infect Control. 2019;8:59.CrossRef
Metadaten
Titel
Molecular study of metallo-β-lactamases and integrons in Acinetobacter baumannii isolates from burn patients
verfasst von
Mahnaz Nikibakhsh
Farzaneh Firoozeh
Farzad Badmasti
Kourosh Kabir
Mohammad Zibaei
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2021
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-021-06513-w

Weitere Artikel der Ausgabe 1/2021

BMC Infectious Diseases 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.