Skip to main content
Erschienen in: Pediatric Cardiology 5/2009

01.07.2009 | Riley Symposium

Monitoring Clonal Growth in the Developing Ventricle

verfasst von: Lucile Miquerol, Robert G. Kelly

Erschienen in: Pediatric Cardiology | Ausgabe 5/2009

Einloggen, um Zugang zu erhalten

Abstract

Understanding the etiology of congenital heart defects depends on a detailed knowledge of the morphogenetic events underlying cardiac development. Deciphering the developmental processes and cell behaviors resulting in the formation of a four-chambered heart requires techniques by which the destiny of individual cells can be traced during development. Ideally, such approaches provide information on progenitor cells and growth properties of clonally related myocytes. In the avian system, clonal analysis based on the use of replication-defective retroviral labeling led to a model for growth of the ventricular wall from polyclonal transmural cones of myocardial cells. In the mouse, the nlaacZ retrospective clonal analysis system has proved to be a powerful technique for studying different aspects of cardiac morphogenesis. Morphologic and histologic analyses of clonally related myocytes at early stages of development have provided genetic evidence for the formation of the heart tube from two cell lineages. Additional aspects of cardiac morphogenesis, including formation of the interventricular septum and myocardial outflow tract, and more recently, the origin of the ventricular conduction system, have been studied using this system. This brief review discusses how the nlaacZ system has provided new insights into the divergent properties of clonally related cells in these different regions of the developing heart.
Literatur
1.
Zurück zum Zitat Bajolle F, Zaffran S, Meilhac SM et al (2008) Myocardium at the base of the aorta and pulmonary trunk is prefigured in the outflow tract of the heart and in subdomains of the second heart field. Dev Biol 313:25–34PubMedCrossRef Bajolle F, Zaffran S, Meilhac SM et al (2008) Myocardium at the base of the aorta and pulmonary trunk is prefigured in the outflow tract of the heart and in subdomains of the second heart field. Dev Biol 313:25–34PubMedCrossRef
2.
Zurück zum Zitat Bonnerot C, Nicolas JF (1993) Clonal analysis in the intact mouse embryos by intragenic homologour recombination. C R Acad Sci 316:1207–1217 Bonnerot C, Nicolas JF (1993) Clonal analysis in the intact mouse embryos by intragenic homologour recombination. C R Acad Sci 316:1207–1217
3.
Zurück zum Zitat Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835PubMedCrossRef Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835PubMedCrossRef
4.
Zurück zum Zitat Cheng G, Litchenberg WH, Cole GJ et al (1999) Development of the cardiac conduction system involves recruitment within a multipotent cardiomyogenic lineage. Development 126:5041–5049PubMed Cheng G, Litchenberg WH, Cole GJ et al (1999) Development of the cardiac conduction system involves recruitment within a multipotent cardiomyogenic lineage. Development 126:5041–5049PubMed
5.
Zurück zum Zitat de la Cruz M, Sanchez-Gomez C, Palomino M (1989) The primitive cardiac regions in the straight heart tube (stage 9) and their anatomical expression in the mature heart: an experimental study in the chick embryo. J Anat 165:121–131 de la Cruz M, Sanchez-Gomez C, Palomino M (1989) The primitive cardiac regions in the straight heart tube (stage 9) and their anatomical expression in the mature heart: an experimental study in the chick embryo. J Anat 165:121–131
6.
Zurück zum Zitat Eberhard D, Jockusch H (2005) Patterns of myocardial histogenesis as revealed by mouse chimeras. Dev Biol 278:336–346PubMedCrossRef Eberhard D, Jockusch H (2005) Patterns of myocardial histogenesis as revealed by mouse chimeras. Dev Biol 278:336–346PubMedCrossRef
7.
Zurück zum Zitat Franco D, Meilhac SM, Christoffels VM et al (2006) Left and right ventricular contributions to the formation of the interventricular septum in the mouse heart. Dev Biol 294:366–375PubMedCrossRef Franco D, Meilhac SM, Christoffels VM et al (2006) Left and right ventricular contributions to the formation of the interventricular septum in the mouse heart. Dev Biol 294:366–375PubMedCrossRef
8.
Zurück zum Zitat Garcia-Martinez V, Schoenwolf GC (1993) Primitive streak origin of the cardiovascular system in avian embryos. Dev Biol 159:706–719PubMedCrossRef Garcia-Martinez V, Schoenwolf GC (1993) Primitive streak origin of the cardiovascular system in avian embryos. Dev Biol 159:706–719PubMedCrossRef
9.
Zurück zum Zitat Gourdie RG, Mima T, Thompson RP, Mikawa T (1995) Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system. Development 121:1423–1431PubMed Gourdie RG, Mima T, Thompson RP, Mikawa T (1995) Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system. Development 121:1423–1431PubMed
10.
Zurück zum Zitat Huynh T, Chen L, Terrell P, Baldini A (2007) A fate map of Tbx1-expressing cells reveals heterogeneity in the second cardiac field. Genesis 45:470–475PubMedCrossRef Huynh T, Chen L, Terrell P, Baldini A (2007) A fate map of Tbx1-expressing cells reveals heterogeneity in the second cardiac field. Genesis 45:470–475PubMedCrossRef
11.
Zurück zum Zitat Kelly RG, Zammit PS, Buckingham ME (1999) Cardiosensor mice and transcriptional subdomains of the vertebrate heart. Trends Cardiovasc Med 9:3–10PubMedCrossRef Kelly RG, Zammit PS, Buckingham ME (1999) Cardiosensor mice and transcriptional subdomains of the vertebrate heart. Trends Cardiovasc Med 9:3–10PubMedCrossRef
12.
Zurück zum Zitat Kitajima S, Miyagawa-Tomita S, Inoue T et al (2006) Mesp1-nonexpressing cells contribute to the ventricular cardiac conduction system. Dev Dyn 235:395–402PubMedCrossRef Kitajima S, Miyagawa-Tomita S, Inoue T et al (2006) Mesp1-nonexpressing cells contribute to the ventricular cardiac conduction system. Dev Dyn 235:395–402PubMedCrossRef
13.
Zurück zum Zitat Mathis L, Nicolas JF (2002) Cellular patterning of the vertebrate embryo. Trends Genet 18:627–635PubMedCrossRef Mathis L, Nicolas JF (2002) Cellular patterning of the vertebrate embryo. Trends Genet 18:627–635PubMedCrossRef
14.
Zurück zum Zitat Meilhac SM, Kelly RG, Rocancourt D et al (2003) A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. Development 130:3877–3889PubMedCrossRef Meilhac SM, Kelly RG, Rocancourt D et al (2003) A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. Development 130:3877–3889PubMedCrossRef
15.
Zurück zum Zitat Meilhac SM, Esner M, Kelly RG et al (2004) The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6:685–698PubMedCrossRef Meilhac SM, Esner M, Kelly RG et al (2004) The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6:685–698PubMedCrossRef
16.
Zurück zum Zitat Meilhac SM, Esner M, Kerszberg M et al (2004) Oriented clonal cell growth in the developing mouse myocardium underlies cardiac morphogenesis. J Cell Biol 164:97–109PubMedCrossRef Meilhac SM, Esner M, Kerszberg M et al (2004) Oriented clonal cell growth in the developing mouse myocardium underlies cardiac morphogenesis. J Cell Biol 164:97–109PubMedCrossRef
17.
Zurück zum Zitat Mikawa T, Borisov A, Brown AM, Fischman DA (1992) Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. Formation of the ventricular myocardium. Dev Dyn 193:11–23PubMed Mikawa T, Borisov A, Brown AM, Fischman DA (1992) Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. Formation of the ventricular myocardium. Dev Dyn 193:11–23PubMed
18.
Zurück zum Zitat Mikawa T, Cohen-Gould L, Fischman DA (1992) Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: III. Polyclonal origin of adjacent ventricular myocytes. Dev Dyn 195:133–141PubMed Mikawa T, Cohen-Gould L, Fischman DA (1992) Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: III. Polyclonal origin of adjacent ventricular myocytes. Dev Dyn 195:133–141PubMed
19.
Zurück zum Zitat Mikawa T, Hurtado R (2007) Development of the cardiac conduction system. Sem Cell Dev Biol 18:90–100CrossRef Mikawa T, Hurtado R (2007) Development of the cardiac conduction system. Sem Cell Dev Biol 18:90–100CrossRef
20.
Zurück zum Zitat Miquerol L, Meysen S, Mangoni M et al (2004) Architectural and functional asymmetry of the His-Purkinje system of the murine heart. Cardiovasc Res 63:77–86PubMedCrossRef Miquerol L, Meysen S, Mangoni M et al (2004) Architectural and functional asymmetry of the His-Purkinje system of the murine heart. Cardiovasc Res 63:77–86PubMedCrossRef
21.
Zurück zum Zitat Moorman AF, de Jong F, Denyn MM, Lamers WH (1998) Development of the cardiac conduction system. Circ Res 82:629–644PubMed Moorman AF, de Jong F, Denyn MM, Lamers WH (1998) Development of the cardiac conduction system. Circ Res 82:629–644PubMed
22.
Zurück zum Zitat Myers DC, Fishman GI (2003) Molecular and functional maturation of the murine cardiac conduction system. Trends Cardiovasc Med 13:289–295PubMedCrossRef Myers DC, Fishman GI (2003) Molecular and functional maturation of the murine cardiac conduction system. Trends Cardiovasc Med 13:289–295PubMedCrossRef
23.
Zurück zum Zitat Petit AC, Legue E, Nicolas JF (2005) Methods in clonal analysis and applications. Reprod Nutr Dev 45:321–339PubMedCrossRef Petit AC, Legue E, Nicolas JF (2005) Methods in clonal analysis and applications. Reprod Nutr Dev 45:321–339PubMedCrossRef
24.
Zurück zum Zitat Redkar A, Montgomery M, Litvin J (2001) Fate map of early avian cardiac progenitor cells. Development 128:2269–2279PubMed Redkar A, Montgomery M, Litvin J (2001) Fate map of early avian cardiac progenitor cells. Development 128:2269–2279PubMed
25.
Zurück zum Zitat Stalsberg H, De Haan RL (1969) The precardiac areas and formation of the tubular heart in the chick embryo. Dev Biol 19:128–159PubMedCrossRef Stalsberg H, De Haan RL (1969) The precardiac areas and formation of the tubular heart in the chick embryo. Dev Biol 19:128–159PubMedCrossRef
26.
Zurück zum Zitat Theveniau-Ruissy M, Dandonneau M, Mesbah K et al (2008) The del22q11.2 candidate gene Tbx1 controls regional outflow tract identity and coronary artery patterning. Circ Res 103:142–148PubMedCrossRef Theveniau-Ruissy M, Dandonneau M, Mesbah K et al (2008) The del22q11.2 candidate gene Tbx1 controls regional outflow tract identity and coronary artery patterning. Circ Res 103:142–148PubMedCrossRef
27.
Zurück zum Zitat Verzi MP, McCulley DJ, De Val S et al (2005) The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev Biol 287:134–145PubMedCrossRef Verzi MP, McCulley DJ, De Val S et al (2005) The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev Biol 287:134–145PubMedCrossRef
28.
Zurück zum Zitat Wilkie AL, Jordan AJ, Jackson IJ (2002) Neural crest progenitors of the melanocyte lineage: coat colour patterns revisited. Development 129:3349–3357PubMed Wilkie AL, Jordan AJ, Jackson IJ (2002) Neural crest progenitors of the melanocyte lineage: coat colour patterns revisited. Development 129:3349–3357PubMed
29.
Zurück zum Zitat Zaffran S, Kelly RG, Meilhac SM et al (2004) Right ventricular myocardium derives from the anterior heart field. Circ Res 95:261–268PubMedCrossRef Zaffran S, Kelly RG, Meilhac SM et al (2004) Right ventricular myocardium derives from the anterior heart field. Circ Res 95:261–268PubMedCrossRef
Metadaten
Titel
Monitoring Clonal Growth in the Developing Ventricle
verfasst von
Lucile Miquerol
Robert G. Kelly
Publikationsdatum
01.07.2009
Verlag
Springer-Verlag
Erschienen in
Pediatric Cardiology / Ausgabe 5/2009
Print ISSN: 0172-0643
Elektronische ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-008-9371-4

Weitere Artikel der Ausgabe 5/2009

Pediatric Cardiology 5/2009 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Adipositas-Medikament auch gegen Schlafapnoe wirksam

24.04.2024 Adipositas Nachrichten

Der als Antidiabetikum sowie zum Gewichtsmanagement zugelassene Wirkstoff Tirzepatid hat in Studien bei adipösen Patienten auch schlafbezogene Atmungsstörungen deutlich reduziert, informiert der Hersteller in einer Vorab-Meldung zum Studienausgang.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.