Skip to main content
Erschienen in: Journal of Cardiovascular Magnetic Resonance 1/2008

Open Access 01.12.2008 | Research

Multidirectional flow analysis by cardiovascular magnetic resonance in aneurysm development following repair of aortic coarctation

verfasst von: Alex Frydrychowicz, Raoul Arnold, Daniel Hirtler, Christian Schlensak, Aurelien F Stalder, Jürgen Hennig, Mathias Langer, Michael Markl

Erschienen in: Journal of Cardiovascular Magnetic Resonance | Ausgabe 1/2008

Abstract

Aneurysm formation is a life-threatening complication after operative therapy in coarctation. The identification of patients at risk for the development of such secondary pathologies is of high interest and requires a detailed understanding of the link between vascular malformation and altered hemodynamics. The routine morphometric follow-up by magnetic resonance angiography is a well-established technique. However, the intrinsic sensitivity of magnetic resonance (MR) towards motion offers the possibility to additionally investigate hemodynamic consequences of morphological changes of the aorta.
We demonstrate two cases of aneurysm formation 13 and 35 years after coarctation surgery based on a Waldhausen repair with a subclavian patch and a Vosschulte repair with a Dacron patch, respectively. Comprehensive flow visualization by cardiovascular MR (CMR) was performed using a flow-sensitive, 3-dimensional, and 3-directional time-resolved gradient echo sequence at 3T. Subsequent analysis included the calculation of a phase contrast MR angiography and color-coded streamline and particle trace 3D visualization. Additional quantitative evaluation provided regional physiological information on blood flow and derived vessel wall parameters such as wall shear stress and oscillatory shear index.
The results highlight the individual 3D blood-flow patterns associated with the different vascular pathologies following repair of aortic coarctation. In addition to known factors predisposing for aneurysm formation after surgical repair of coarctation these findings indicate the importance of flow sensitive CMR to follow up hemodynamic changes with respect to the development of vascular disease.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1532-429X-10-30) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AF, RA, CS and MM were responsible for patient recruitment, all measurements and data evaluation, DH and AFS performed 3D flow visualization and quantitative data analysis, JH and ML participated in the design of the study and assisted in data evaluation and interpretation, MM conceived of the study, and participated in its design and coordination. All authors read and approved the final manuscript.

Introduction

Despite advances in endovascular therapy, operative procedures still play a major role in the treatment of aortic coarctation. In the newborn, a severe coarctation is a life-threatening finding and immediate invasive therapy is the method of choice [1]. As a consequence, there are large numbers of patients who have survived treatment in the past and are at risk of developing secondary complications induced by vascular remodeling and impaired vascular reactivity. Common secondary pathologies are increased intima-media thickness, aortic arch hypoplasia, restenosis, and aneurysm formation decades after surgery [25]. Aneurysms may develop at the site of the aortic repair which is most likely associated with the operative technique. In this context, the largely discrepant compliance of the materials used for the patch plastic and the associated gradients along the vessel wall as well as local dehiscence within the suture have been discussed [69]. The associated complication rate may be seen as the driving force as to why the Dacron patch plastic (Vosschulte repair) has been more and more replaced by the subclavian patch angioplasty (Waldhausen repair) and a direct end-to-end anastomosis after surgical excision of the stenosis.
Aneurysms developing further upstream in the ascending aorta may be related to co-morbidities such as bicuspid aortic valve, high perioperative blood pressure, the operative procedure [10], and the patient's age at the initial repair [2]. However, little is known about the underlying process leading to such vascular changes. Although altered hemodynamics may not be the driving force their contribution, e.g. as a mediating mechanism, can not be neglected [5] and may have an impact on secondary complications such as poststenotic dilatation.
Furthermore, the identification of patients at risk for the development of such secondary pathologies would be best served by a detailed understanding of the inter-relationship between vascular pathology and the role of altered hemodynamics which is currently not well understood. In this context, regular follow-up examinations are necessary and contrast enhanced magnetic resonance (MR) angiography is increasingly used as a standard non-invasive method in the evaluation of coarctation of the aorta [11, 12]. Moreover, the ability of cardiovascular MR (CMR) to measure blood flow in-vivo and recent methodological developments have provided novel diagnostic tools that permit the direct assessment and analysis of 3D blood flow in the heart or large and mid-sized vessels [1317].
In this study, a comprehensive 4D CMR protocol was employed which permits the simultaneous acquisition of vascular geometry and associated 3D hemodynamics in-vivo. Findings in two patients illustrate marked changes in 3D blood flow 13 and 35 years after aortic surgery in differently shaped aneurysms after Waldhausen & Nahrwold [18] and Vossschulte [19, 20] repair, respectively.

Methods

The CMR protocol included 3-dimensional, 3-directional, time-resolved phase contrast velocity mapping ("comprehensive CMR velocity acquisitions"), based on a radio frequency spoiled gradient echo sequence using a 3 Tesla CMR system (Magnetom TRIO, Siemens, Erlangen, Germany).
Cardiac and navigator gating was performed to permit ECG synchronized measurement of 3-directional blood flow in the entire thoracic aorta during free breathing. Imaging parameters were adjusted to the individual patient and were as follows: flip angle = 15°, velocity sensitivity = 150 cm/s, spatial resolution = 2.5 × 1.8 × 2.6 mm3 (patient 1)/3.0 × 1.6 × 3.2 mm3 (patient 2), temporal resolution = 40.0 ms (patient 1)/48.8 ms (patient 2). Written informed consent was obtained form all subjects after approval of the local ethics committee. Contrast agent was applied for the routine diagnostic follow-up examination including a contrast-enhanced MR-angiography (CE-MRA) in patient 1 only.
Data analysis included the calculation 3D phase contrast angiograms (PC-MRA) from the comprehensive CMR velocity acquisitions data and 3D visualization of the measured time-resolved three-directional blood flow velocities (EnSight, CEI, Apex, NC). PC-MRA data were visualized as gray or red shaded iso-surfaces, respectively. Flow visualization included the calculation of time-resolved 3D particle traces and 3D stream lines [2123]. Time-integrated particle traces, i.e. the paths of virtual particles released within measured flow velocity field, were used to summarize the aspects of the temporal evolution of blood flow over the cardiac cycle within a single image.
For quantitative analysis, 2D cutplanes were manually positioned in the ascending aorta, transverse aortic arch, proximal and distal neck as well as middle of the aneurysm, and the descending aorta (see figure 1). Next, multidirectional velocity data in these planes were extracted and evaluated with a home built tool (Matlab, USA). For each cutplane analysis included manual frame-wise lumen segmentation and calculation of wall shear stress (WSS), oscillatory shear index (OSI), peak mean (Velmax) and time-averaged mean (Velmean) absolute velocities, and vessel diameter as described previously [24]. Note that WSS, i.e. the spatial velocity gradient at the vessel wall, is a time-resolved vector quantity and can be fully derived from the measured multidirectional velocity fields. For each cutplane WSS values were averaged over the cardiac cycle and along the lumen contour. To account for the vector nature of WSS the time-averaged magnitude (WSSmag) as well as axial (WSSax) and circumferential (WSScirc) components are given. OSI was calculated based on WSSmag according to previously reported strategies by He and Ku [25].

Results

Case reports

The first patient (age = 19 years, male) was scheduled for regular follow-up MRA 13 years after aortic reconstruction by a Waldhausen and Nahrwold subclavian flap angioplasty of the stenotic site. Over the past four years, contrast-enhanced MRA revealed progression of a postoperatively developing concentric true aneurysm with a maximum diameter increasing from 3.6 to 4.2 cm. Due to the rapid progress the patient was scheduled for the placement of an endovascular covered stent (Medtronic Valiant Thoracic 28/32 × 150) with a carotis-subclavian bypass and was sent for additional hemodynamic analysis before. The combined operative and endovascular procedure was successful; the patient recovered rapidly and was discharged from hospital shortly thereafter.
The second patient (age = 37 years, male) was examined 35 years after a Vossschulte approach resecting the stenotic site and performing a Dacron patch plastic. The patient did not undergo regular angiographic follow-up and a large eccentric aneurysm of 6.8 cm diameter was diagnosed coincidentally by digital subtraction angiography in the workup of new onset of shortness of breath and an episode of hemoptysis. Before the patient underwent surgical repair by aneurysm resection and interposition of a 22 mm Dacron graft he was also sent for hemodynamic evaluation. During surgery, the eccentric true aneurysm revealed a thinned anterior wall on which the patch was centered and a normal posterior vessel wall. The patient recovered from surgery without complications and was discharged quickly after surgery. During follow-up, no complications were encountered; the patient tolerated physical stress well.

Morphometric and hemodynamic analysis

Both patients presented with near normal diameters of the ascending aorta and transverse arch although the arch presented with reduced lumen diameters (1.9 cm and 2.3 cm) and a tube-like shape directly pointing towards the aneurysms in the proximal descending aorta. For a listing of quantitative findings please refer to table 1 and see figures 2 and 4)
Table 1
Listing of quantitative parameters in both patients.
 
CASE 1
 
Diam. [cm]
Velmean [m/s]
Velmax [m/s]
WSSmag [N/m2]
WSSax [N/m2]
WSScirc [N/m2]
OSI [%]
AAo
3.2
0.18
0.62
0.17
0.14
0.10
17.4
Transverse arch
2.3
0.20
0.77
0.23
0.22
0.08
10.4
DAo
3.0
0.08
0.36
0.13
0.11
0.07
16.8
Prox. Aneurysm neck
2.8
0.11
0.5
0.13
0.12
0.06
23.9
Aneurysm
4.7
0.03
0.18
0.14
0.11
0.08
19.4
Dist. Aneurysm neck
3.0
0.11
0.44
0.26
0.10
0.24
12.0
 
CASE 2
AAo
2.6
0.19
0.58
0.29
0.24
0.17
12.5
Transverse arch
1.9
0.22
0.69
0.24
0.21
0.11
14.6
DAo
2.5
0.19
0.45
0.22
0.19
0.12
21.5
Prox. Aneurysm neck
2.2
0.15
0.48
0.14
0.11
0.09
19.8
Aneurysm
6.2
0.04
0.08
0.15
0.07
0.13
24.9
Dist. Aneurysm neck
2.5
0.16
0.40
0.19
0.16
0.11
19.8
 
MEAN WSS BOTH CASES
<WSSmag> [N/m2]
<WSSax> [N/m2]
<WSScirc> [N/m2]
<OSI> [%]
 
Average WSS AAo
0.23
0.19
0.14
15.0
 
Average WSS Arch
0.24
0.22
0.10
12.5
 
Average WSS Aneurysm
0.17
0.11
0.12
20.0
Average and peak velocities are increased in the traverse tubular arch and substantially reduced inside the aneurysm. In both cases absolute (WSSmag) and in particularly axial (WSSax) wall shear stress are lower at the aneurysm wall compare to ascending aorta and transverse arch. Note that circumferential wall shear stress (WSScirc) in the aneurysm remains high or is regionally even increases most likely related to enhanced vortex or helix flow in the aneurysm. AAo = Ascending aorta, Dao = descending aorta, WSS = wall shear stress, OSI = oscillatory shear index, Diam = diameter, Vel = velocity.
Comprehensive CMR velocity acquisitions for the simultaneous assessment of vascular geometry and time-resolved 3D blood flow in the entire thoracic aorta confirmed these findings and revealed marked and differing changes in 3D blood flow. In both patients, the 3D visualization of the measured blood flow velocities revealed pronounced flow acceleration within the tubular transverse arch segment leading to a flow yet directed towards the orifice of the aneurysm (figures 2, 3, and 4). These qualitative findings were confirmed by increased mean and maximum velocities in the respecting cutplane positioned in the transverse arch for both patients (see tab. 1).
The aneurysmal blood flow patterns, however, demonstrated distinct differences between patients. In patient 1, the flow jet developed into a swirling circular pattern which likely results from the tangential inflow with respect to the cavity. Further, a separation and recirculation of inflowing streamlines inferiorly more than superiorly can be appreciated (see figures 2, 3 and the additional file 1). Time-resolved flow patterns in figure 4 clearly illustrate the conversion of the initial flow acceleration along the outer curvature into subsequent formation of largely vortical and recirculating flow within the aneurysm that implies a loss of kinetic energy and momentum. In patient 2, in which the cavity extends superiorly and bilaterally as well as inferiorly with respect to the transverse arch, flow acceleration within the aortic arch presents a circumferential separation and recirculation of the inflowing streamlines which expands into an umbrella-shaped flow pattern with a point of maximum impact located at the craniolateral wall of the aneurysm wall (see figure 4 and the additional file 2).
Along with the marked reduction of mean and maximum blood flow velocities within the aneurysm, vectorial WSS and OSI calculations revealed interesting findings (see table 1). Average and peak velocities are increased in the traverse tubular arch and substantially reduced inside the aneurysm. In both cases absolute (WSSmag) and in particularly axial (WSSax) wall shear stress are lower at the aneurysm wall compare to ascending aorta and transverse arch which are in the order of previously published results [26]. Note that circumferential wall shear stress (WSScirc) in the aneurysm remained high or was regionally even increases indicating increased flow directed along the vessel lumen circumference. In addition, the OSI underlines what seems obvious from the visual analysis and demonstrated higher values within the aneurysm.

Discussion

Findings of these exemplary patient data demonstrate the diversity in hemodynamics associated with aneurysm formation after surgery in aortic coarctation. The results in two cases represent different shapes of true aneurysms and the associated blood flow patterns.
Although the cause for secondary aneurysm formation after repair of coarctation is most likely multifactorial and can not only be found in the hemodynamics they may in turn be associated with aneurysm formation or play a mediating or enhancing role. From the literature it is known that unfavorable shear stress can create areas at risk for vascular remodeling [3, 27, 28]. Such hemodynamic changes may thus facilitate aneurysm formation or promote its development if predisposing factors such as stress gradients along the vascular wall with implanted patches or sutures are present.
As shown for the exemplary concentric aneurysm (patient 1), a relative flow acceleration in the aortic arch developed into a flow pattern adapted to the shape of the aneurysm, i.e. highly circulating flow with a vortex core near the lateral wall. No link between both aneurysm shapes should be concluded such that eccentric aneurysms necessarily develop from concentric forms. However, the eccentrically shaped aneurysm presents with far more pronounced flow alterations and exaggerated circumferential separation and recirculation of the inflowing streamlines. These findings are further supported by the result that OSI and the fraction of circumferential WSS remains high or is increased whereas the axial WSS magnitude was considerably reduced. Whether these factors may prove useful for prediction of the severity of the disease remains speculative and is subject to larger patient studies. Note however, that in these two cases major WSS contribution were associated with the circumferential component indicating the importance to consider the vector nature of WSS.
A potential limitation of the methodology can be seen in the fact that the underlying velocity data is acquired over many cardiac cycles and effectively averages cyclic variations of flow. Hence, small scale instabilities or turbulence in blood flow properties may not be depicted. However, the presented comprehensive CMR velocity acquisitions, visualization strategy, and quantification possibilities are promising to further improve the understanding of vascular pathologies and associated hemodynamics as well as comprehensively assess cardiovascular physiology in-vivo by CMR.

Acknowledgements

Grant support: Dr. Markl receives funding from „Deutsche Forschungsgemeinschaft“ (DFG) Grant # MA 2383/4-1 and the Bundesministerium für Bildung und Forschung (BMBF), Grant # 01EV0706.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AF, RA, CS and MM were responsible for patient recruitment, all measurements and data evaluation, DH and AFS performed 3D flow visualization and quantitative data analysis, JH and ML participated in the design of the study and assisted in data evaluation and interpretation, MM conceived of the study, and participated in its design and coordination. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Webb GD, Smallhorn JF, Therrien J, Redington AN: Diseases of the Heart, Pericardium, and Pulmonary Vasculature Bed. Braunwald's heart disease: a textbook of cardiovascular medicine. Edited by: Libby P, Bonow RO, Mann DL, Zipes DP. 2008, 1605-1608. 8 Webb GD, Smallhorn JF, Therrien J, Redington AN: Diseases of the Heart, Pericardium, and Pulmonary Vasculature Bed. Braunwald's heart disease: a textbook of cardiovascular medicine. Edited by: Libby P, Bonow RO, Mann DL, Zipes DP. 2008, 1605-1608. 8
2.
Zurück zum Zitat de Divitiis M, Pilla C, Kattenhorn M, Zadinello M, Donald A, Leeson P, Wallace S, Redington A, Deanfield JE: Vascular dysfunction after repair of coarctation of the aorta: impact of early surgery. Circulation. 2001, 104 (12 Suppl 1): I165-170.PubMed de Divitiis M, Pilla C, Kattenhorn M, Zadinello M, Donald A, Leeson P, Wallace S, Redington A, Deanfield JE: Vascular dysfunction after repair of coarctation of the aorta: impact of early surgery. Circulation. 2001, 104 (12 Suppl 1): I165-170.PubMed
3.
Zurück zum Zitat Oliver JM, Gallego P, Gonzalez A, Aroca A, Bret M, Mesa JM: Risk factors for aortic complications in adults with coarctation of the aorta. J Am Coll Cardiol. 2004, 44 (8): 1641-1647. 10.1016/j.jacc.2004.07.037.CrossRefPubMed Oliver JM, Gallego P, Gonzalez A, Aroca A, Bret M, Mesa JM: Risk factors for aortic complications in adults with coarctation of the aorta. J Am Coll Cardiol. 2004, 44 (8): 1641-1647. 10.1016/j.jacc.2004.07.037.CrossRefPubMed
4.
Zurück zum Zitat Ou P, Celermajer DS, Mousseaux E, Giron A, Aggoun Y, Szezepanski I, Sidi D, Bonnet D: Vascular remodeling after "successful" repair of coarctation: impact of aortic arch geometry. J Am Coll Cardiol. 2007, 49 (8): 883-890. 10.1016/j.jacc.2006.10.057.CrossRefPubMed Ou P, Celermajer DS, Mousseaux E, Giron A, Aggoun Y, Szezepanski I, Sidi D, Bonnet D: Vascular remodeling after "successful" repair of coarctation: impact of aortic arch geometry. J Am Coll Cardiol. 2007, 49 (8): 883-890. 10.1016/j.jacc.2006.10.057.CrossRefPubMed
5.
Zurück zum Zitat von Kodolitsch Y, Aydin MA, Koschyk DH, Loose R, Schalwat I, Karck M, Cremer J, Haverich A, Berger J, Meinertz T, Nienaber CA: Predictors of aneurysmal formation after surgical correction of aortic coarctation. J Am Coll Cardiol. 2002, 39 (4): 617-624. 10.1016/S0735-1097(01)01784-3.CrossRefPubMed von Kodolitsch Y, Aydin MA, Koschyk DH, Loose R, Schalwat I, Karck M, Cremer J, Haverich A, Berger J, Meinertz T, Nienaber CA: Predictors of aneurysmal formation after surgical correction of aortic coarctation. J Am Coll Cardiol. 2002, 39 (4): 617-624. 10.1016/S0735-1097(01)01784-3.CrossRefPubMed
6.
Zurück zum Zitat Bromberg BI, Beekman RH, Rocchini AP, Snider AR, Bank ER, Heidelberger K, Rosenthal A: Aortic aneurysm after patch aortoplasty repair of coarctation: a prospective analysis of prevalence, screening tests and risks. J Am Coll Cardiol. 1989, 14 (3): 734-741.CrossRefPubMed Bromberg BI, Beekman RH, Rocchini AP, Snider AR, Bank ER, Heidelberger K, Rosenthal A: Aortic aneurysm after patch aortoplasty repair of coarctation: a prospective analysis of prevalence, screening tests and risks. J Am Coll Cardiol. 1989, 14 (3): 734-741.CrossRefPubMed
7.
Zurück zum Zitat Kron IL, Flanagan TL, Rheuban KS, Carpenter MA, Gutgesell HP, Blackbourne LH, Nolan SP: Incidence and risk of reintervention after coarctation repair. Ann Thorac Surg. 1990, 49 (6): 920-925. discussion 925–926.CrossRefPubMed Kron IL, Flanagan TL, Rheuban KS, Carpenter MA, Gutgesell HP, Blackbourne LH, Nolan SP: Incidence and risk of reintervention after coarctation repair. Ann Thorac Surg. 1990, 49 (6): 920-925. discussion 925–926.CrossRefPubMed
8.
Zurück zum Zitat Parks WJ, Ngo TD, Plauth WH, Bank ER, Sheppard SK, Pettigrew RI, Williams WH: Incidence of aneurysm formation after Dacron patch aortoplasty repair for coarctation of the aorta: long-term results and assessment utilizing magnetic resonance angiography with three-dimensional surface rendering. J Am Coll Cardiol. 1995, 26 (1): 266-271. 10.1016/0735-1097(95)00127-L.CrossRefPubMed Parks WJ, Ngo TD, Plauth WH, Bank ER, Sheppard SK, Pettigrew RI, Williams WH: Incidence of aneurysm formation after Dacron patch aortoplasty repair for coarctation of the aorta: long-term results and assessment utilizing magnetic resonance angiography with three-dimensional surface rendering. J Am Coll Cardiol. 1995, 26 (1): 266-271. 10.1016/0735-1097(95)00127-L.CrossRefPubMed
9.
Zurück zum Zitat Roth M, Bauer EP, Reuthebuch O, Klovekorn WP: Reoperations after dacron patch aortoplasty with heparinized femoro-femoral bypass. Eur J Cardiothorac Surg. 1997, 11 (5): 997-1000. 10.1016/S1010-7940(97)01171-8.CrossRefPubMed Roth M, Bauer EP, Reuthebuch O, Klovekorn WP: Reoperations after dacron patch aortoplasty with heparinized femoro-femoral bypass. Eur J Cardiothorac Surg. 1997, 11 (5): 997-1000. 10.1016/S1010-7940(97)01171-8.CrossRefPubMed
10.
Zurück zum Zitat Martin MM, Beekman RH, Rocchini AP, Crowley DC, Rosenthal A: Aortic aneurysms after subclavian angioplasty repair of coarctation of the aorta. Am J Cardiol. 1988, 61 (11): 951-953. 10.1016/0002-9149(88)90390-6.CrossRefPubMed Martin MM, Beekman RH, Rocchini AP, Crowley DC, Rosenthal A: Aortic aneurysms after subclavian angioplasty repair of coarctation of the aorta. Am J Cardiol. 1988, 61 (11): 951-953. 10.1016/0002-9149(88)90390-6.CrossRefPubMed
11.
Zurück zum Zitat Nielsen JC, Powell AJ, Gauvreau K, Marcus EN, Prakash A, Geva T: Magnetic resonance imaging predictors of coarctation severity. Circulation. 2005, 111 (5): 622-628. 10.1161/01.CIR.0000154549.53684.64.CrossRefPubMed Nielsen JC, Powell AJ, Gauvreau K, Marcus EN, Prakash A, Geva T: Magnetic resonance imaging predictors of coarctation severity. Circulation. 2005, 111 (5): 622-628. 10.1161/01.CIR.0000154549.53684.64.CrossRefPubMed
12.
Zurück zum Zitat Prince MR, Narasimham DL, Jacoby WT, Williams DM, Cho KJ, Marx MV, Deeb GM: Three-dimensional gadolinium-enhanced MR angiography of the thoracic aorta. AJR Am J Roentgenol. 1996, 166 (6): 1387-1397.CrossRefPubMed Prince MR, Narasimham DL, Jacoby WT, Williams DM, Cho KJ, Marx MV, Deeb GM: Three-dimensional gadolinium-enhanced MR angiography of the thoracic aorta. AJR Am J Roentgenol. 1996, 166 (6): 1387-1397.CrossRefPubMed
13.
Zurück zum Zitat Bogren HG, Buonocore MH, Valente RJ: Four-dimensional magnetic resonance velocity mapping of blood flow patterns in the aorta in patients with atherosclerotic coronary artery disease compared to age-matched normal subjects. J Magn Reson Imaging. 2004, 19 (4): 417-427. 10.1002/jmri.20018.CrossRefPubMed Bogren HG, Buonocore MH, Valente RJ: Four-dimensional magnetic resonance velocity mapping of blood flow patterns in the aorta in patients with atherosclerotic coronary artery disease compared to age-matched normal subjects. J Magn Reson Imaging. 2004, 19 (4): 417-427. 10.1002/jmri.20018.CrossRefPubMed
14.
Zurück zum Zitat Bogren HG, Mohiaddin RH, Yang GZ, Kilner PJ, Firmin DN: Magnetic resonance velocity vector mapping of blood flow in thoracic aortic aneurysms and grafts. J Thorac Cardiovasc Surg. 1995, 110 (3): 704-714. 10.1016/S0022-5223(95)70102-8.CrossRefPubMed Bogren HG, Mohiaddin RH, Yang GZ, Kilner PJ, Firmin DN: Magnetic resonance velocity vector mapping of blood flow in thoracic aortic aneurysms and grafts. J Thorac Cardiovasc Surg. 1995, 110 (3): 704-714. 10.1016/S0022-5223(95)70102-8.CrossRefPubMed
15.
Zurück zum Zitat Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB: Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation. 1993, 88 (5 Pt 1): 2235-2247.CrossRefPubMed Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB: Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation. 1993, 88 (5 Pt 1): 2235-2247.CrossRefPubMed
16.
Zurück zum Zitat Markl M, Harloff A, Zaitsev M, Jung B, Weigang E, Langer M, Hennig J, Frydrychowicz A: Time Resolved 3D MR Velocity Mapping at 3T: Improved Navigator Gated Assessment of Vascular Anatomy and Blood Flow. J Magn Reson Imaging. 2007, 25 (4): 824-831. 10.1002/jmri.20871.CrossRefPubMed Markl M, Harloff A, Zaitsev M, Jung B, Weigang E, Langer M, Hennig J, Frydrychowicz A: Time Resolved 3D MR Velocity Mapping at 3T: Improved Navigator Gated Assessment of Vascular Anatomy and Blood Flow. J Magn Reson Imaging. 2007, 25 (4): 824-831. 10.1002/jmri.20871.CrossRefPubMed
17.
Zurück zum Zitat Wigstrom L, Sjoqvist L, Wranne B: Temporally resolved 3D phase-contrast imaging. Magn Reson Med. 1996, 36 (5): 800-803. 10.1002/mrm.1910360521.CrossRefPubMed Wigstrom L, Sjoqvist L, Wranne B: Temporally resolved 3D phase-contrast imaging. Magn Reson Med. 1996, 36 (5): 800-803. 10.1002/mrm.1910360521.CrossRefPubMed
18.
Zurück zum Zitat Waldhausen JA, Nahrwold DL: Repair of coarctation of the aorta with a subclavian flap. J Thorac Cardiovasc Surg. 1966, 51 (4): 532-533.PubMed Waldhausen JA, Nahrwold DL: Repair of coarctation of the aorta with a subclavian flap. J Thorac Cardiovasc Surg. 1966, 51 (4): 532-533.PubMed
19.
Zurück zum Zitat Vossschulte K: [Plastic surgery of the isthmus in aortic isthmus stenosis.]. Thoraxchirurgie. 1957, 4 (5): 443-450.PubMed Vossschulte K: [Plastic surgery of the isthmus in aortic isthmus stenosis.]. Thoraxchirurgie. 1957, 4 (5): 443-450.PubMed
21.
Zurück zum Zitat Buonocore MH: Visualizing blood flow patterns using streamlines, arrows, and particle paths. Magn Reson Med. 1998, 40 (2): 210-226. 10.1002/mrm.1910400207.CrossRefPubMed Buonocore MH: Visualizing blood flow patterns using streamlines, arrows, and particle paths. Magn Reson Med. 1998, 40 (2): 210-226. 10.1002/mrm.1910400207.CrossRefPubMed
22.
Zurück zum Zitat Frydrychowicz A, Harloff A, Jung B, Zaitsev M, Weigang E, Bley TA, Langer M, Hennig J, Markl M: Time-resolved, 3-dimensional magnetic resonance flow analysis at 3 T: visualization of normal and pathological aortic vascular hemodynamics. J Comput Assist Tomogr. 2007, 31 (1): 9-15. 10.1097/01.rct.0000232918.45158.c9.CrossRefPubMed Frydrychowicz A, Harloff A, Jung B, Zaitsev M, Weigang E, Bley TA, Langer M, Hennig J, Markl M: Time-resolved, 3-dimensional magnetic resonance flow analysis at 3 T: visualization of normal and pathological aortic vascular hemodynamics. J Comput Assist Tomogr. 2007, 31 (1): 9-15. 10.1097/01.rct.0000232918.45158.c9.CrossRefPubMed
23.
Zurück zum Zitat Napel S, Lee DH, Frayne R, Rutt BK: Visualizing three-dimensional flow with simulated streamlines and three-dimensional phase-contrast MR imaging. J Magn Reson Imaging. 1992, 2 (2): 143-153. 10.1002/jmri.1880020206.CrossRefPubMed Napel S, Lee DH, Frayne R, Rutt BK: Visualizing three-dimensional flow with simulated streamlines and three-dimensional phase-contrast MR imaging. J Magn Reson Imaging. 1992, 2 (2): 143-153. 10.1002/jmri.1880020206.CrossRefPubMed
24.
Zurück zum Zitat Stalder AF, Frydrychowicz A, Canstein C, Hennig J, Markl M: Quantitative planar analysis of flow sensitive 3D CINE MRI. Proc: ISMRM Workshop on Flow and Motion: Imaging Assessment of Cardiovascular and Tissue Mechanics, New York, USA. 2006, July Stalder AF, Frydrychowicz A, Canstein C, Hennig J, Markl M: Quantitative planar analysis of flow sensitive 3D CINE MRI. Proc: ISMRM Workshop on Flow and Motion: Imaging Assessment of Cardiovascular and Tissue Mechanics, New York, USA. 2006, July
25.
Zurück zum Zitat He X, Ku DN: Pulsatile flow in the human left coronary artery bifurcation: average conditions. Journal of biomechanical engineering. 1996, 118 (1): 74-82. 10.1115/1.2795948.CrossRefPubMed He X, Ku DN: Pulsatile flow in the human left coronary artery bifurcation: average conditions. Journal of biomechanical engineering. 1996, 118 (1): 74-82. 10.1115/1.2795948.CrossRefPubMed
26.
Zurück zum Zitat Wentzel JJ, Corti R, Fayad ZA, Wisdom P, Macaluso F, Winkelman MO, Fuster V, Badimon JJ: Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging. J Am Coll Cardiol. 2005, 45 (6): 846-854. 10.1016/j.jacc.2004.12.026.CrossRefPubMed Wentzel JJ, Corti R, Fayad ZA, Wisdom P, Macaluso F, Winkelman MO, Fuster V, Badimon JJ: Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging. J Am Coll Cardiol. 2005, 45 (6): 846-854. 10.1016/j.jacc.2004.12.026.CrossRefPubMed
27.
Zurück zum Zitat Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ: Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987, 316 (22): 1371-1375.CrossRefPubMed Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ: Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987, 316 (22): 1371-1375.CrossRefPubMed
28.
Zurück zum Zitat Langille BL, O'Donnell F: Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science. 1986, 231 (4736): 405-407. 10.1126/science.3941904.CrossRefPubMed Langille BL, O'Donnell F: Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science. 1986, 231 (4736): 405-407. 10.1126/science.3941904.CrossRefPubMed
Metadaten
Titel
Multidirectional flow analysis by cardiovascular magnetic resonance in aneurysm development following repair of aortic coarctation
verfasst von
Alex Frydrychowicz
Raoul Arnold
Daniel Hirtler
Christian Schlensak
Aurelien F Stalder
Jürgen Hennig
Mathias Langer
Michael Markl
Publikationsdatum
01.12.2008
Verlag
BioMed Central
Erschienen in
Journal of Cardiovascular Magnetic Resonance / Ausgabe 1/2008
Elektronische ISSN: 1532-429X
DOI
https://doi.org/10.1186/1532-429X-10-30

Weitere Artikel der Ausgabe 1/2008

Journal of Cardiovascular Magnetic Resonance 1/2008 Zur Ausgabe

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.